딥러닝 기반의 인공지능, 자율주행 기술 경쟁의 핵심을 바꾼다

Size: px
Start display at page:

Download "딥러닝 기반의 인공지능, 자율주행 기술 경쟁의 핵심을 바꾼다"

Transcription

1 딥러닝기반의인공지능자율주행기술경쟁의핵심을바꾼다 이승훈 1. 딥러닝기반의자율주행혁신의시작 2. 인공지능기술의자율주행적용 3. 주요연구소및기업동향 4. 맺음말

2 요약 최근까지만해도자율주행기술은고가의특화센서와자동차산업의전문성을기반으로한소수의기업만이구현할수있었다. 기술진입장벽이매우높아장기적인투자와기술개발역량을확보한거대 ICT 기업및자동차산업내소수의기업이자율주행기술개발을주도해왔다. 실제구글의자율주행자동차개발초기에사용되었던자동차 1대의가격만약 1.7억원이었으며그중핵심센서로활용된 LIDAR 센서하나의가격만 8 천만원에달했다. 또한완성차제조사로부터영입된인력들을중심으로약 170여명에이르는인력이 4년이상의 R&D를통해구현한결과였다. 하지만, 이러한높은기술진입장벽이인공지능, 특히딥러닝으로인해허물어지고있다. 딥러닝을활용해자율주행기술을구현하는기업들이최근 2년동안실리콘밸리를중심으로빠르게출현하고있다. 이들기업은종전의자율주행기술이주로자동차전문가들에의해규칙기반방식 (Rule-based Approach) 으로구현되었던것과는달리딥러닝을활용해마치사람이주행을반복할수록운전을익혀가는것과같은과정으로자율주행기술을구현한다. 소수의개발자들이고가의센서가아닌저가의범용센서들을사용하면서도매우단시간에기술을구현해내고있다. 게다가최근빠르게진화하고있는인공지능기술이자율주행분야에적용되며향후기술경쟁의혁신적변화를가속화할것으로예상된다. 자율주행분야의선행연구소들에서는이미강화학습 (Reinforcement Learning), 관계형추론 (Relational Networks), 지능이식 (Transferring Intelligence) 과같은인공지능분야의최신연구들을자율주행기술개발에접목시키기위한연구를진행중에있다. 특히이들연구는인공지능이인간과유사한방식으로학습, 추론, 예측하는과정을구현한다는점에서자율주행기술에접목될경우마치사람처럼생각하고판단하며주행하는자동차의출현도가능하게할것으로보인다. 학계, 스타트업계에서는이미딥러닝기반의자율주행기술의공개가잇따르고있다. 매년혁신적인사례들이등장하는가운데자동차업계의전문가가아닌인공지능, 딥러닝분야의전문가들이자신들의연구를자동차분야에접목시키며기술을발표하고있다. 특히이들기업은오픈소스로자신들의기술을공개하며연구자들의참여와경쟁을통해기술을더욱빠르게고도화시키고있다. 이러한방식은기술공개를지양하며자체기술개발및내재화를통해기술을발전시켜온자동차산업내주요기업들의기술경쟁방식과큰차이가있다. 기존방식을고수해오던완성차제조사들도최근딥러닝관련역량을빠르게확보하며새로운기술패러다임에대응중이다. Daimler, VW, Toyota 등주요 OEM들은 2016년이후딥러닝관련스타트업을투자 / 인수하며외부기술을빠르게도입하고있으며내부적으로는인공지능전용연구소를설립하며자체기술개발에도막대한투자를진행하기시작했다. 특히 GM, Ford는각각약 1조원이넘는금액으로딥러닝기반의자율주행스타트업을인수하거나투자하며뒤쳐졌던기술경쟁에대응하고있다. 자율주행기술경쟁의핵심은이미딥러닝으로이동하기시작했다. 딥러닝분야의인공

3 지능전문가들이저가의범용센서로자율주행기술을빠르게구현하고있다. 대부분의기업들도딥러닝기반의자율주행기술개발을본격화하고있는가운데자동차산업내향후경쟁은인공지능분야의역량확보와주행데이터확보가핵심이될전망이다. 딥러닝등기계학습기반의인공지능의성능은더욱많은그리고더욱다양한주행환경에서수집된데이터와학습과정활용이기술의완성도를결정할것이기때문이다. 실제주행데이터확보의중요성을일찍이인지한 comma.ai, Tesla와같은기업들은이미수백만에서수억 Km에달하는주행데이터를수집해자율주행지능학습과정에활용하고있다. 향후자율주행자동차시장이본격개화시시장초기부터이러한데이터를미리확보하고고도화된지능을보유한기업들과그렇지못한기업들간의기술격차는매우클것으로전망되며그격차는후발주자가단기간에따라잡기가매우어려울것이다.

4 1. 딥러닝기반의자율주행혁신의시작 사람이운전하면자동차가주행하는방법을스스로깨우친다, 실리콘밸리의 Startup인 comma.ai의창업자 George Hotz가딥러닝기반의자율주행자동차를선보이며한말이다. 딥러닝기반인공지능이탑재된자동차를운전자가주행하면인공지능이사람이운전하는방식을깨우쳐스스로주행이가능한자동차로발전해나간다는것이다. 실제 comma.ai는지난 2016년 3월이러한방법으로 4주만에자율주행학습이가능한인공지능을만들어자동차에탑재했으며 10시간동안의학습으로기본적인자율주행기능을구현해냈다. 고가의특화센서를사용하지않고총 $1000 이하의범용센서만으로딥러닝기반자율주행기술을개발하는것을목표로하고있다. 이는과거구글및주요완성차업체들의자율주행기술구현방식과크게다르다. 기존에는고가의특화센서를사용하고완성차업계에종사한전문인력들이기술개발의중심이되었다. 이들은다양한센서정보와주행규칙을전문가들이모델링하여자율주행기능을구현해냈다. 구글의 2012년자율주행자동차를발표했을때당시차체의가격만약 $150,000에달했으며그중 $70,000이 LIDAR 1 주행주체센서가격이었다. 완성차업 - 운전자계에서수많은전문인력들을영입해약 170여명 운전자가모든감시 / 제어 Level 1 Eyes-on, Hands-On, 에이르는개발팀을꾸리고, 약 4년이상의주행 Feet-On, 테스트를걸쳐자율주행기술을구현해냈다. 하 - 운전자 운전자가제어 + 제한된 Level 2 일부기능지원지만신생 Startup인 comma.ai는단 4명의개발 Eyes-on, Hands-On, Feet-OFF 자가 4주만에딥러닝을활용해구현해낸것이다. 물론구글과 comma.ai가개발한자율주행기능의기술수준및완성도의차이는크다. 하지만딥러닝을적용해기존자율주행개발패러다임을혁신한것이다. 실제최근 1~2년간실리콘밸리를중심으로자율주행기술을개발해낸 Startup이빠르게출현하고있으며이들은대부분딥러닝을핵심으로활용하고있다. 즉자율주행자동차구현의핵심이특화센서와자동차업계의전문가에서딥러닝전문가와주행과정을학습시킬수있는데이터로이동하고있는것이다. Level 3 Level 4 Level 5 - 자동차 가속 / 감속 / 정지기능수행 ( 단, 운전자주행상황주시 ) Eyes-on, Hands OFF, Feet-OFF - 자동차 차선 / 차간거리유지및차선변경등운전자개입신호로차량제어 Eyes-on/OFF, Hands-OFF, Feet-OFF - 자동차 목적지입력만으로완전자율주행 Eyes-OFF, Hands-OFF, Feet-OFF 자율주행관련적용센서, 예시적 ( 구현방법및기술수준에따라다름 ) - 3 종 6 개센서 Ultrasonic: 4 개 Long Range Radar: 1 개 Camera: 1 개 - 4 종 17 개 Ultrasonic: 8 개 Radar: 5 개 (Long: 1, Short: 4) Short Range Radar: 4 개 Camera: 4 개 - 9 종 29 개 Ultrasonic: 10 개 Radar: 8 개 (Long: 2, Short: 6) Camera: 8 개 ( 장거리 : 2, 스테레오 : 1, 서라운드 : 5) LIDAR: 1 개, 기타 : 2 종 2 개 - 9 종 32 개 Ultrasonic: 10 개 Radar: 8 개 (Long: 2, Short: 6) Camera: 8 개 ( 장거리 : 4, 스테레오 : 2, 서라운드 : 5) LIDAR: 1 개, 기타 : 2 종 2 개 1 자율주행기술레벨및적용센서 ( 기존방법 ) Source: NHTSA( 주행단계관련 ), Yole Development( 센서관련 ) 1 LIDAR(Light Detection and Ranging): 빛을분사해주변상황을인식하는센서로카메라 / 레이더대비높은정밀도로물체형상인식차량, 보행자, 동물등식별이가능 ), 2012 년이후기술혁신및양산화로인해가격이빠르게하락중 LG 경제연구원 1

5 2. 인공지능기술의자율주행적용 2014년이후인공지능분야는딥러닝을시작으로매우빠르게진화하고있다. 혁신적인연구들이경쟁적으로출현하고있는가운데이러한연구들이특정산업영역에종속되지않고다양한산업에활용가능한범용기술이라는점이더욱큰의미를갖는다. 인공지능연구를선도하는연구기관, 학계에서는다양한산업영역중응용분야가명확하고활용가치가높은자율주행분야를우선적으로탐색하고있다. 실제인공지능분야의다양한최신연구들이자율주행기술로빠르게구현되고있다. (1) 시각인식지능의적용자율주행기술의가장핵심은사물인식기술이다. 전방충돌방지, 차선이탈방지, 차간거리조절등지능형주행및자율주행과관련한모든기능을구현하기위해서는주변상황을인식하는것에서부터시작하기때문이다. 물론사물인식기술은차량주변의물체를단순히감지하는것을넘어인식된사물의종류와의미를이해하는단계를포괄한다. 인식된사물이차량인지, 표지판인지, 보행자인지에따라각기다른주행제어기능으로구현되기때문이다. 특히자율주행기술분야의인식기술은다양한사물에대한높은정확도의인식률과이에따른실시간처리가필수적이기때문에기술구현의난이도가매우높다. 시각정보에기반해운전을하는사람과달리자동차는매우다양한정보를복합적으로활용해야인식의정확도와속도를보장할수있다. 따라서모빌아이 (Mobileye) 와같은매우소수의기업이카메라를통해수집된정보만으로전방의차량및차선의감지하거나다양한교통표지판을인식하는기술을구현하고있으며, 그외대부분의기업들은카메라를통해수집되는정보와레이더, 라이다, 초음파, 적외선센서등매우다양한센서를복합적으로활용해왔다. 하지만최근빠르게발전해온딥러닝기반의인공지능기술은이러한기존한계를혁신적으로극복하고있다. 딥러닝을활용한시각인식지능은이미인간의수준을넘어서고있다. 실제인공지능을통해이미지속사물의정확도를측정하는경진대회인 ImageNet Challenge 2 에서는지난 2015년마이크로소프트가 96.43% 의정확도를달성하며인간의인식률을 (94.90%) 추월하였다. (2017년정확도 : 97.85%) ( 그림 2 ) 이렇게발전된시각인식지능은자율주행기술구현에빠르게적용되고있다. 다양한사물을높은정확도로인식가능하게한기술은주변의차량, 보행자및각종표 2 스탠포드대에서주관하는영상인식분야경진대회로서 1000 가지종류의사물로구성된 100 만장의이미지가무작위로주어지며각이미지속에존재하는사물의종류를알아맞히는경쟁 2 LG 경제연구원

6 ImageNet 경진대회의예시 연도별정확도향상 딥러닝등장 인간추월 96.43% 94.9% 2~3% 성능향상경쟁반복 72%, 74%...76% 84.79% U of Toronto Google MS Research 인간 이미지인식기술의발전 Source: ImangeNet Challenge 참조 지판을인식하는수준으로구현되고있다. 더나아가관련연구기관, 기업들에서는어두운밤이나, 눈 / 비가내리는기상환경에서도높은정확도로사물을인식할수있는기술로발전시켜나가고있다. 실제 Nvidia 등일부기업들의현재구현되는시각인식관련기술시연에서는인간의시각으로는인식하기어려운물체들까지인공지능이더높은성능으로인식해내기도하고있다 ( 그림 3 ). 단순한사물인식수준을넘어인공지능은인식된사물들의의미를이해하는수준으로발전하고있다. 보행자의움직임, 차량의진행방향, 도로가차도인지인도인지등과같이이미지내인식된사물들의문맥적의미 (Context Awareness) 를이해하게되는것이다. 이러한문맥적의미를이해하는것은인식된사물에따라각기다른기능의차량제어기술의구현으로이어진다는점에서매우중요한역할을한다. 과거에는다양한센서에서복합적으로수집된정보를종합적으로분석해야인식된사물의의미를분석할수있어완성차업체및일부 Tier 1 기업들만제한적으로자율주행기능의구현이가능했다. 하지만이미지정보만을통해사물을인식하고이해하게되는것이가능해지면서인공지능역량을갖춘새로운기업들이그역할을대신할수있게되고있다. 실제 AutoX라는신생벤처기업은다른센서에는전혀의존하지않고오직카메라를통해입력된영상정보만으로자율주행기능을구현한다. 6개의카메라를통해입력되는자동차주변환경정보를딥러닝으로학습한시각지능이마치사람처럼주변을 3 Nvidia 의차량주행영상인식기술 ( 차량 / 보행자 / 표지판인식및분류, 눈 / 흐린날씨차량인식 ) Source: nvdia.com LG 경제연구원 3

7 인지하고자동차를제어한다. AutoX의창업자이자프린스턴대교수인 Xiao 3 는자율주행분야의전문가가아닌컴퓨터비전 (Vision) 분야의전문가로서해당기술을구현해내고있다 ( 그림 4 ). 또한 AutoX와같은딥러닝기반의비전기술에기반한 Startup들이최근빠르게등장하고있는상황이다. 4 AutoX 자율주행구현 ( 밤 / 낮 / 시내 / 고속도로주행데모 ) Source: autox.ai (2) 학습지능의적용 : 사람처럼주행하며배우기차량주행기능들은최근까지도모든상황들이규칙으로정의되고모델링된후소프트웨어로구현되는규칙기반방식 (Rule-based Approach) 으로구현되어왔다. 따라서이러한규칙들을정교하게정의하고모델링할수있는자동차분야의전문가를확보하는것이자율주행기능구현의핵심으로작용해왔다. 실제주요 ICT 기업들이초기자율주행기술개발시완성차업체의전문인력들을대거영입하며팀을구성했던것도이와같은이유였다. 구글은과거자율주행관련조직설립시전체 170여명의엔지니어중약 40여명의인력을완성차및 Tier 1 기업에서영입하였으며, 애플또한자율주행팀구성시폭스바겐, 포드및 Bosch, Delphi 등자동차산업내전문인력을대거영입하기도했다. 하지만이러한규칙기반방식으로자율주행기능을구현하는데는큰한계가있다. 첫째, 매우비효율적이다. 산업내전문성을갖춘인력을영입해야하며이들이매우오랜시간에걸쳐정교하게규칙들을모델링해야하기때문이다. 또한이렇게만들어진모델을실제상황에지속적으로적용해가며테스트를반복해검증하는과정이동반된다. 구글의자율주행자동차가수년동안도로주행테스트를지속하는것도이러한과정의하나인것이다. 둘째, 확장성 (Scalability) 이매우떨어진다. 정교하게모델링된규칙을만들었다할지라도주행규칙이다른국가에적용하거나기후적 / 지역적으로주행환경이다른지역에바로적용하는것이매우어렵기때문이다. 이경우이미만들어진모델을새로운환경에맞게재조정하는과정이필요하게되며새롭게구성된모델에대한검증과정이또다시뒤따르게된다. 셋째, 아무리정교하게만들어 3 MIT Tech Review 2017 년선정 35 세이하혁신가 35 명중한명 4 LG 경제연구원

8 특화센서 + 전문가중심구현 범용센서 + 딥러닝중심구현 - 주요활용센서및주요구현기능 (2009 년개발초기 ) - 다수의특화센서를활용해기능구현 다양한센서정보를종합적으로분석해시스템의완결성, 안전성 (Safety), 안정성 (Stability) 을극대화 전방충돌방지차선이탈방지사각지역탐지차간거리조절주차지원 카메라 ($120~ $200) 레이더 ($50~ $150) 라이다 ($90~ $8,000) 초음파 ($15~ $20) O O O O O O O O O O O O O O * 센서는기능별, 완성도별가격편차가매우큼 카메라 ( 모노 / 스테레오 ), 레이더 ( 단 / 장거리 ), 라이다 ( 상용화수준 ) 에따라가격이결정됨 * 기능구현방식에따라동종의센서가 2 개이상사용가능 카메라 6 개동시활용등 vs. comma.ai - 최소의범용센서를사용하며딥러닝을통해기능구현 센서비용총 $1,000 이하를목표 딥러닝을통해제한된정보를지능적으로분석해자율주행구현 카메라 + 딥러닝중심구현 - 딥러닝기반의고도화된비전 (Vision) 기술을활용해기능구현 카메라를통해수집되는비전정보만을활용 마치 인간 처럼시각지능에만의존해자율주행구현 5 기존방법 vs. 딥러닝기반방법 진규칙이라할지라도자동차주행중에발생가능한모든상황을사전에반영하는것은거의불가능하다. 일반적인도로주행, 차선변경과같은대표적인상황들이아닌수많은예외상황, 돌발변수등을모두예측해모델링하는것은매우어려울수밖에없다. 실제지난 2016년구글의자율주행자동차의첫사고 4 가발생한것도미리예측하지못했던상황이발생했고적절히반응하는데실패하면서일어났다. 반면, 딥러닝을기반으로한인공지능을통해자율주행을구현하려는방식은과거의방식과크게다르다. 딥러닝을통해구현되는방식은사람이운전을배워가는과정과유사하다. 딥러닝기반의인공지능이장착된차량을사람이운전하면인공지능이운전자의주행과정을관찰하며운전하는방법을스스로학습해간다. 또한다른차량의주행데이터를인공지능이학습할수도있다. 마치사람이초보운전때다른사람이주행하는모습을조수석에서관찰하거나, 교통량이적은주차장, 이면도로에서운전을익혀가고서서히도심, 고속도로등과같이교통량이많은곳에서도주행을해가며운전을배워가는과정과비슷하다. 따라서이와같은방식에서는인공지능이많은주행데이터를학습할수록자율주행기능의완성도가높아지게된다. 여기서많은양의주행데이터는단순히오랜시간의주행데이터보다는다양한주행환경및상황에서사람들이반응하는과정이포함된다양한데이터를의미한다. 즉안정적인주행이지속되는상황의데이터를많은양으로확보하기보다는각종위험상황과예측하기어려운상황에대응하는것과같은다양한상황의주행데이터를확보하 4 구글자율주행자동차가장애물을회피하며차선변경시버스와충돌 (2016 년 2 월 14 일발생 ) LG 경제연구원 5

9 6 drive.ai 자율주행테스트 비오는밤주행 ( 좌 ), 어두운밤교통신호인식 ( 우 ) Source: drive.ai 는것이더욱중요한의미를갖는것이다. 이는딥러닝기반의자율주행지능은데이터를통해다른사람의시행착오를학습하고향후유사한상황에대응하는방법을배워가기때문이다. 따라서딥러닝기반의자율주행구현방식은과거방식과달리자동차산업내전문성보다는인공지능, 특히딥러닝관련역량과주행데이터가핵심적인역할을하게된다. 실제최근등장하고있는자율주행관련 Startup들은딥러닝전공의전문가들이주행데이터를가지고자율주행기능을구현해내고있다. 2015년창업된 drive.ai 는창업당시 8명의멤버중 6명이스탠포드대인공지능연구실의딥러닝전공의박사과정학생들이었다. 이들은카메라를통한인식과정에서부터주행기능구현에이르기까지자율주행전과정을딥러닝만으로구현하였다. 단순히차량간의거리를조정하고충돌을방지하는수준을넘어 (Level 3, 4) 교통표지판, 신호등등을정확히인식해목적지까지완전자율주행이가능한수준까지 (Level 5) 기능을구현하고있다. 특히 drive.ai는비가오거나어두운밤과같이차량주행이쉽지않은상황에서의주행데이터를집중적으로학습시켜매우어려운상황에서도자동차가안전하게주행할수있도록기능을고도화하고있다 ( 그림 6 ). (3) 강화학습 (Reinforcement Learning) 의적용 : 스스로규칙을터득하기최근급속히발전하고있는인공지능분야의기술중자율주행분야에적용될경우큰기술혁신을만들어낼것으로기대되는기술은바로강화학습 (Reinforcement Learning) 이다. 강화학습은인간의개입이없이도반복학습을통해인공지능이스스로목적을달성하는과정을터득해내는방법이다. 인간은단지인공지능이달성해야하는목적과시행착오중성공과실패에대한보상 (reward) 값만정의해주면된다. 이에기반해인공지능은수십, 수백만번의시행착오를반복하며보상값을극대화하면서목적을달성할수있는방법을스스로찾아낸다. 실제알파고를구현해낸딥마인드가구글에인수당시보유했던핵심기술이바로강화학습이었고, 알파고또 6 LG 경제연구원

10 한강화학습에기반해바둑을두는방법을스스로터득해인간과의대결에서승리했던것이다. 이러한강화학습분야의연구가이제자율주행기술구현에적용되기시작하고있다. 특히기존방법으로모델링이어렵고주행데이터확보의제약으로인해충분한학습이어려운분야에우선적으로시도되고있다. 신호등이없는교차로, 비보호좌회전, 우회전, 램프진입등과같은경우들은차량주행시매우빈번하게발생하지만차량들의진입속도, 진행방향, 교통량등다양한변수들이매순간매우다양한경우의수로발생한다. 이러한상황들에서인간은오랜운전경험이나직관에의존해상황을판단하거나충돌위험이발생하더라도즉각적으로반응해위험상황을회피하기도한다. 하지만이러한과정을인간이일일이개입해규칙기반방식의인공지능으로구현하거나제한된데이터를통한학습만으로구현해내기는매우어렵다. 대신강화학습을적용하면이러한과정을매우효과적이면서도높은완성도로구현해내는것이가능하다. 수십, 수백만번의상황을재현해강화학습기반의인공지능이각상황에서다양한시도를하도록하는것이다. ( 그림 8 ) 과같이차량이램프에진입시진입차량과주변차량의상대속도, 거리, 진입속도등다양한변수들을매우미세하게조절해가며발생가능한다양한상황 Rule-based Approach - 주행과정중발생가능한다양한상황을정교하게규칙으로모델링 다양한상황을사전에예측해각상황별대응방법을사전에정의하고규칙으로모델링함. - 개발비용이높고모델검증에오랜시간이걸림. 차량관련전문가가중심이되어모델을구축하고지속적인업데이트를통해정교화 모델검증을위한오랜시간의반복실험소요, 오류발생시모델의수정, 재검증과정이동반됨 [ 예시적 ] 주행상황별규칙모델링및구현 / 테스트규칙정의모델링및구현 * 차간거리유지 전방차량간거리 3m 이상으로유지하며가속 / 감속 * 차선변경 차선변경시측후면차량및전방차량과거리 10m 이상확보후차선변경시도 테스트드라이브 vs. Deep Learning - 인간의주행과정을데이터화해인공지능이주행방법을학습 사람이운전을반복하며익숙해져가는과정과유사 인공지능이주행을지속할수록다양한상황에서의대응방법을학습하고터득함. 인간의주행과정딥러닝기반학습자율주행구현 Reinforcement Learning - 반복학습을통해인공지능이다양한주행상황별대응방법을스스로터득 수많은반복학습과정을통해최적의대응방법을스스로깨우침 학습과정에서일일이방법을정의할필요없이상황별달성목표와보상만정의함. [ 예시적 ] 신호등없는교차로주행방법학습 발생가능한다양한상황별시행착오를반복하며학습 7 규칙기반방식과딥러닝 / 강화학습기반방식비교 LG 경제연구원 7

11 들을구성한다. 초반시도에서는대부분의경우다른차량들과충돌해사고를낼것이다. 하지만이러한충돌과정을반복하면서인공지능은서서히충돌을회피하고위험상황을사전에방지하는방법을서서히터득하게된다. 물론이러한것을실제환경에서재현해실험하는것은거의불가능하기때문에매우정교하게구현된시뮬레이션환경에서상황을반복하게된다. 이러한강화학습기반의자율주행연구는폭스바겐, 포드등에서선행연구단계로진행되고있다. 다만, 안전성을최우선으로하는완성차업체의특성상기존방법과강화학습방법을서로병행하며보완해사고의위험을최소화하는방향으로연구를진행하고있다. 8 강화학습기반의지능형 / 자율주행기능구현 : 반복학습을통해스스로진입위치를판단 Source: VW Research (4) 사람처럼사고하는지능의적용 1 인간처럼생각하며주행하는자율주행지능의구현가능성 인공지능분야의다양한연구중최근딥마인드가발표한두편의연구는자율주행분야에향후적용된다면매우큰효과를거둘수있을것으로전망된다. 이들논문은관계형추론 (Relational Reasoning) 이가능한인공지능의구현에관한논문으로서인공지능학계에서는 2017년가장혁신적인논문들로꼽히고있다. 인공지능이인간의추론방식과유사하게추론하는것을구현하는것이가능하다는것을보여주는논문이다. 그중첫번째논문 5 에서는인공지능이주변상황들을각각개별적인정보로인식하고이해하는것을넘어각정보들사이의상대적관계를논 기존방식리적으로파악해낸다는것이다. 이러한관계형추론 1 방식이자율주행기능에적용되면자동차는차량주변의사물들을개별적으로인식하지않고각사물 2 들사이의상대적인관계를직관적으로인식해낼 20m 3 수있게된다. 마치사람이운전을할때와같이주 10m 변에존재하는차량들간의거리를각각개별적으로 5m 인식하지않고서로간의상대적거리와속도를종합적으로인지해주행하는것과마찬가지인것이다. - 전방차량들과의거리를또한차선변경, 교차로진입을할때주변차량들을개별적으로측정 ( 인식 ) - 측정된거리를일일이비교후따로따로인식하는것이아니라좌 / 우, 앞 / 뒤차량차선변경결정후변경차선선택과의거리 / 속도등의상대적관계를직관적으로파 5 A. Santoro, et al,, A simple neural network module for relational reasoning, vs. 9 관계형추론방법에기반한자율주행지능구현 관계형추론방식 전방차량과거리중거리가가장먼 1 차량의차선으로직관적으로변경결정 인간과같은판단 3 8 LG 경제연구원

12 악해가장최선의방법으로차량을제어하며주행하는것이가능할것이다. 만약이러한관계형인식이아니라면각차량과의거리, 속도등을모두개별적으로계산후모든가능조건을일일이비교해최선의방법을선택하는방식으로구현될것이다. 하지만관계형사고가가능한인공지능에서는인간과같은직관적인관계형사고에따라판단하고행동할수있게되는것이다 ( 그림 9 ). 딥마인드의또다른논문 6 에서는이러한관계형추론에서한발더나아가예측까지가능한인공지능을제안했다. 논문에서제안된인공지능은 ( 그림 10) 과같이사물의움직이는패턴을학습한다. 사물들이서로부딪히며움직이는각도, 속도가지속적으로변화하는패턴을학습하여향후의움직임을추론하는것이다. 논문에따르면약 6 프레임의움직임을학습해향후 200 프레임의향후움직임을예측했을때 150 프레임까지는실제와거의일치하는수준으로예측하는것으로나타났다. 이러한상대적인예측이가능한인공지능이자율주행에적용된다면현재와는전혀다른수준의자율주행지능이구현될수도있다. 현재의자율주행기술은주변차량들의속도, 거리등과같은정보를인식해주행기능을구현하지만이러한정보들은매순간의일시적인 (Snapshot) 정보에그친다. 하지만이와같은관계형사고에기반한예측이가능하다면마치사람처럼주변차량들을관찰하고향후움직임을예측해특정차량에대해미리주의를하거나위험차량을사전에회피하는것도가능해지는것이다. 즉차선을지속적으로매우급격하게변경하거나과속과급정지를반복하는차량이관찰된다면향후그차량의움직임을미리예측해사고를사전에방지하는것이가능할것이다 ( 그림 11 ). 실제움직임 예측 ( 추론 ) 된움직임 10 상호관계의관찰에기반한예측 / 추론 Source: N. Watters(2016) 6 주행상황 I 주행상황 Ⅱ 주행상황 Ⅲ 상대적예측추론지능에기반한 차량별주행패턴예측 - 지속적인과속, 급격한차선변경예측 위험차량 - 서행, 차선이탈가능성예측 주의차량 - 정속주행, 정상주행예측 두차량을가급적회피하며차량주행지속 11 예측추론에기반한자율주행지능 6 N. Watters, et al, Visual Interaction Networks, LG 경제연구원 9

13 2 주행지능의이식지능의이식 (Transferring Intelligence) 관련연구또한자율주행기술에적용가능한매우유망한최신기술이다. 이는유사한기능을수행하는인공지능이이미존재한다면기존의지능을새로운인공지능에이식해활용하는기술이다. 딥마인드등연구기관에서매우활발하게연구 7 가진행되는분야이기도하다. 인공지능이새로운영역에활용될때적용분야가서로다르더라도기존지식을최대한활용하기때문에단시간에성능을발휘하는것이가능하다. 이러한개념은자율주행기능구현시활용될수있는여지가매우크다. 차량주행환경은국가별, 지역별로주행법규및교통인프라가매우상이하기때문에하나의자율주행기술이모든국가에범용적으로적용되기는매우어렵다. 그렇기때문에자율주행기능이특정지역에국한하지않고어느국가나지역으로도쉽게확장가능하도록시스템을구현하는것이향후큰이슈로부상할가능성이높다. 이러한의미에서현재인공지능분야에서연구되고있는지능의이식관련연구는향후자율주행기술의확산에큰역할을할것으로전망된다. 실제폭스바겐의연구팀은자율주행기능을구현하는데지능의이식관련연구의적용을고려하고있다. 기본적으로자동차를주행하는방식은공용화한다. 차선유지, 서행, 급정지등과같은일반적으로모든나라에적용가능한주행기능은범용적인지능으로구현하는것이다. 이후각국가별차이가있는주행방식은개별적으로재학습과정을통해맞춤화한다. 교통신호, 주행우선순위, 표지판등이이에해당한다 ( 그림 12 ). 지능형 / 자율주행기능구현 ( 독일 ) 기본주행기능유지 + 미국 / 영국교통법규, 표지판등만재학습 12 지능이식을통한자율주행지능의국가별확장 Source: VW Research 참조 7 O. Vinyals, et al., Matching networks for one shot learning. Advances in Neural Information Processing Systems, 2016, G. Koch, Siamese neural networks for one-shot image recognition. Diss. University of Toronto, 2015, L. Bertinetto, et al., Learning feed-forward one-shot learners. Advances in Neural Information Processing Systems LG 경제연구원

14 3. 주요연구소및기업동향 (1) 학계연구학계에서도최근딥러닝관련연구를자율주행에적용하며다양한성과를발표하고있다. MIT의 Lex Fridman 교수는자율주행을위한딥러닝 ( Deep Learning for Self-driving Cars ) 이라는수업을개설하며관련연구를함께진행중이다. 딥러닝을기반으로차량의주행영상을분석해차선유지, 차간거리조정등의기능을구현하는프로젝트인 DeepTesla 8 와복잡한주변의차량흐름을스스로감지해차선을변경하는주행기술개발프로젝트인 DeepTraffic 9 을동시에진행중에있다. 특히 DeepTraffic의경우학생들이다양한자율주행기능을구현해서로경쟁할수있는환경을구축해놓았다. 동일한환경에서알고리즘을서로검증하고경쟁한다. 현재약 20,000건이상의알고리즘이등록되어있으며, 경쟁을통해알고리즘들이지속적으로고도화된다. UC 버클리의 DeepDrive 10 연구실또한딥러닝기술을자율주행기능에적용하려는대표적인연구실이다. 딥러닝기반의이미지인식, 강화학습, 지능이식 (Transfer Learning) 등을자율주행에적용해사물인식및주행알고리즘으로구현하고있다. 특히 DeepDrive 에는 Toyota, Ford, Honda, GM, 현대자동차등완성차제조사들이파트너로참여하고있다. 온라인교육에서도관련기술에대한교육및연구가활발히진행중에있다. 온라인공개교육 (MOOC) 기업인 Udacity는인공지능과자율주행분야에특화된교육과정을공개하며누구나쉽게딥러닝기반의자율주행기술을배우며연구할수있게하고있다. 구글의자율주행차개발초기부터프로젝트를리드하였던 Sebastian Thrun이 오픈소스로자율주행알고리즘구현환경공개 자율주행알고리즘구현 ( 차선변경, 차간거리유지, 충돌회피기능등 ) 자율주행알고리즘성능경쟁 13 MIT Self-driving Lab 의자율주행알고리즘구현환경 DeepTraffic Source: selfdriving.mit.edu LG 경제연구원 11

15 설립하였고자신이직접자율주행관련수업을진행하기도한다. 딥러닝기반의인식, 주행기술들에대한교육이진행되며연구자들은오픈소스를통해제공되는자율주행시뮬레이터를통해자신이개발한자율주행알고리즘을검증하고고도화한다. 교육과정에는벤츠, BMW, 맥라렌등다양한완성차업체들이참여하면서연구, 개발된자율주행기술을직접적으로활용하기위한활동도병행하고있다. (2) Startup 최근딥러닝분야의핵심기술을보유한연구자들이관련기술을자율주행에적용하기위해직접창업하며수많은 Startup들이출현하고있다. 딥러닝의자율주행기술의적용분야에따라크게시각인식지능기술 (Perception) 과주행학습기술분야로나눌수있다. 1 인식지능분야 (Perception) DeepScale은딥러닝기반의시각인식기술을자율주행분야에적용하고있는 Startup이다. 다양한기업들이유사한기능을구현하고있지만 DeepScale의차별성은딥러닝기술을고사양의딥러닝전용하드웨어가아닌현재범용적으로사용되고있는하드웨어 (Processor) 에서도자신들의기술이구동가능하도록하고있다. 딥러닝기반기술들은성능이뛰어나지만엄청난컴퓨팅파워를요구한다는점에서특화된전용하드웨어가필요하거나처리시간이오래걸리는단점이존재한다. 하지만 DeepScale은그러한단점을보완하면서도높은성능으로인식지능을구현해완성차업체들이기존부품을변경하거나추가하지않으면서도빠르게딥러닝을적용할수있게한다는것이다. 즉범용적으로활용중인기존하드웨어를유지하면서도새로운기술이적용가능하다는점에서기술을빠르게확산시킬수있는장점이있다. 창업이후 2년만에 AutoTech Ventures 등투자사들로부터투자를유치하며성장하고있다. 이스라엘의 Startup인 SAIPS는딥러닝기반의차량용시각인식에최적화된소프트웨어를구현한다. 단순히전방의차량, 보행자, 장애물을인식하는것과같은일시적 (Snapshot) 정보를인식하는것에그치지않고정보를지속적으로분석해패턴화한다. 이러한패턴정보를통해이상징후를사전에감지하거나차량들의향후움직임을예측해내기도한다. 시장내기술력을인정받은 SAIPS는일찍이 Ford 에인수되었다. Ford 는 2021년까지완전자율주행자동차의출시를목표로관련기술을자체개발과인수를통해확보하고있다. SAIPS의기술도적용되어향후시장에출시될것으로예상된다. 12 LG 경제연구원

16 2 주행학습분야앞서소개되었던 comma.ai는자동차가마치인간처럼운전을지속적으로반복하며학습하는과정을딥러닝으로구현해오픈파일럿 (OpenPilot) 이라는오픈소스로공개했다. 학습이없는초기상태에서는장애물과충돌하는등정상적인주행을하지못한다. 하지만운전자가차량을주행하면인공지능이운전자의주행하는과정을학습하며자율주행기능이점진적으로발전하게된다. 창업자인 George Hortz 11 에따르면약 10시간의주행학습과정을통해시내주행및고속도로주행에서차간거리유지, 정지등과같은주행기능을구현할수있었다고한다. 물론완벽한자율주행기능으로기술을발전시키기위해서는더욱방대한양의주행데이터가요구될것이다. 10시간동안의학습으로는기본적인주행기능만학습된것이지상용화수준의기술에는크게미치지못하기때문이다. 이를보완하기위해 comma.ai는주행데이터를수집하기위한방법으로스마트폰앱을배포하기시작했다. chffr 이라는앱으로서누구나자신의차량정면에스마트폰을거치하고앱을실행시키면차량주행영상및정보 ( 속도, GPS 등 ) 가 comma.ai로업로드된다. 주행정보를공유하는사람은 comma.ai에일정포인트가적립되며향후 comma.ai의서비스가본격상용화시활용할수있게된다. 단순한주행정보뿐만아닌더욱상세한차량정보수집을위해 comma.ai는 panda라는하드웨어도함께배포하고있다. 딥러닝기반의자율주행구현주행데이터확보자율주행시스템공개 - 범용센서만을활용하면서도딥러닝을통해자율주행기능구현 (OpenPilot) 4 명의개발자, 4 주만에자율주행구현 (Level3) 약 10 시간의주행과정을인공지능이학습 - comma.ai 의자율주행자동차 Acura ILX(2016 년식 ) 차량을자체개조 센서탑재, 차량제어기능개조 ( 핸들, 엔진 RPM 등 ) 및자율주행소프트웨어탑재 (Ubuntu OS 기반 ) - 주행학습데이터확보노력 160 만 km 수집 ( ) chffr: 주행영상데이터수집용앱 panda: 차량정보수집을위한 HW chffr App + panda HW - After-market 용 HW/SW Package 공개 (comma Neo) 자율주행소프트웨어 (OpenPilot) 와카메라등센서가탑재된하드웨어패키지 향후 $1000 이하의 Package 로상용화목표 스마트폰을차량에거치후앱실행 영상정보 +OBD 정보를 comma.ai 에전송 comma.ai Point 형식의보상받음 ( 향후 comma.ai 서비스정식출시시활용가능 ) Honda 계열 3 총차량과연동 약 10 분미만의수작업으로시스템설치가능 14 comma.ai 의자율주행시스템 11 세계최초로아이폰및소니플레이스테이션 3 해킹 ( 당시 17 세 ) 하였으며구글 / 페이스북등각각입사 1 개월만에퇴사후 Comma.ai 설립 (2015 년 ) LG 경제연구원 13

17 차량내 OBD(On Board Diagnostic) 12 에 panda 디바이스를삽입하고 chffr 앱을실행하면단순한주행영상뿐만아니라핸들의조향각도, 엔진 RPM, 엔진토크등의정보가함께공유되어더욱상세한차량의정보를 comma.ai에제공하게된다. 이를통해 comma.ai의자율주행인공지능은수많은사람들이업로드하는주행정보를종합적으로학습하게된다. 2017년 4월 comma.ai는이렇게수집된주행데이터가약 160만 Km(1Million miles) 에이른다고밝혔다. 엄청난거리의주행데이터가수집되고있을뿐만아니라수많은참여자들로부터다양한상황의주행정보가축적되고있다는점에서매우큰의미를갖는다. comma.ai는 LIDAR 등고가의특화센서를활용하는대신표준화된범용센서를활용해자율주행기술을구현한다. 저가의하드웨어를기반으로구현된자율주행패키지를약 $1000이하로상용화하는것을목표로하고있다. After-market 용으로판매해자율주행기능이탑재되지않은일반차량에 comma.ai의자율주행패키지를탑재하면자율주행기능이실행되는차량으로바뀔수있도록한다. 이미테스트용 시각인식지능 (Perception) 주행학습지능 (Driving) 기업명 핵심기술 URL DeepScale 딥러닝기반의인식기술을고성능의프로세서를사용하지않고현재상용화된범용프로세서기반으로구동 deepscale.ai CogniVue 기존대비전력소비가 100배이상효율적인딥러닝기반이미지인식전용하드웨어구현 - Freescale에인수 cognivue.com SAIPS 차량용시각인식기능에최적화된형태로딥러닝알고리즘구현 ( 인식률, 전력효율, 처리속도등최적화 ) - Ford에인수 saips.co.il DeepVision 딥러닝기반의인식지능전용하드웨어를구현해인식속도향상및전력효율성극대화 deepvision.io autox 카메라만을활용해자율주행기능구현, 딥러닝기반의비전분야의선도연구자인 Xiao 설립 (Princeton대교수 ) autox.ai comma.ai $1000이하의범용하드웨어활용해딥러닝기반의자율주행구현 (OpenPilot), After-market용패키지로상용화목표 comma.ai pilot automotive labs vector.ai aimotive oxbotica drive.ai argo.ai cruise 15 딥러닝기반의자율주행분야주요 Startup List 클라우드기반으로딥러닝기반의주행지능 (DriveNet) 을구현해배포, 차량들이클라우드를통해실시간으로최신의자율주행기능을수신받아주행함 자율주행시스템을기존판매된자동차에호환된형태로구현, 기존자동차에시스템을탑재하면자율주행기능이제공됨딥러닝을통해자율주행기능을 Full-Stack( 신호처리 / 분석 / 응용프로그램 ) 으로구현해시스템으로제공딥러닝에기반한범용자율주행시스템구현, 자율주행자동차외드론, 비행기등다양한교통수단에활용가능한형태로기술개발 pilotlab.co drive-vector. com aimotive.com oxbotica.ai 딥러닝기반의완전자율주행기능구현, 교통신호 / 표지판인식가능및밤 / 비 / 눈등다양한환경에서도안전한주행가능한수준으로구현 drive.ai 딥러닝및로보틱스역량을기반으로자율주행기술구현을목표, 구 argo.ai 글및우버의엔지니어가창업 - Ford 투자 (1조원) 기존상용차량에호환가능한자율주행시스템을구현... After getcruise.com Market 상용화목표 - GM에인수 (1조원) 독자적 OEM협업독자적 OEM협업 12 엔진 RPM, 배터리전압, 냉각수온도, 가속페달밟음정도, 연료소모량, 엔진토크등차량상태점검을필요한종합정보제공하는표준단자 14 LG 경제연구원

18 하드웨어가제한적으로배포되고있으며 Honda 계열의차량 3종 13 과호환되기때문에해당차종을가지고있는운전자는매우쉽게자신의차량에자율주행기능을탑재할수있다. 또다른스타트업인 Cruise 또한 comma.ai와같이 After-market 으로활용가능한자율주행패키지를개발하고있다. 이러한 After-market 에활용가능한자율주행기술은기존판매된차량에자율주행기술의적용이가능해기술의빠른확산과주행차량을통한데이터수집이동시에가능하다는점에서매우큰장점이있다. 이러한기술적, 사업적잠재력을일찍이인지한 GM은 Cruise를 1조원에인수 ( ) 하였다. (3) 주요혁신기업 1 Nvidia 컴퓨팅하드웨어제조사인 Nvidia는자사의 GPU 제조역량을활용해자율주행분야에진출하고있다. GPU는딥러닝기반의인공지능구현시컴퓨팅속도및성능향상을위해필수적으로활용되어야하는핵심하드웨어이다. GPU 시장을선도하고있는 Nvidia는이러한역량을기반으로자율주행시장에집중하며기술혁신을만들어가고있다. Nvidia는우선자사의 GPU를기반으로구현된자율주행기술을플랫폼으로공개해자율주행분야의생태계를구축하기시작했다. 실제 Nvidia는딥러닝기반의자율주행관련논문을발표 14 하고자사가개발한자율주행차량의데모를공개했다. 데모영상에서 Nvidia가개발한자율주행자동차는눈 / 비가내리거나어두운밤, 혹은비포장도로와같이주행이쉽지않은다양한환경에서도완벽하게주행한다. 이렇게개발된자율주행기술을 Nvidia는 DrivePX 라 Cloud 는자율주행자동차개발플랫폼으로공개하였다. 하드웨어에서부터소프트웨어전반을포괄하는이플랫폼에는자율주행기술구현을위한기능들이기본으로제공되어개발자들이매우쉽게자율주행기능을 Local 구현할수있게하고있다. 개발자들은 DrivePX가제 Devices 공하는기능을활용하기만하면전방차량감지, 차선유지등의기능을매우쉽게구현할수있다. 개발자 각차량에서수집된이미지 Upload 16 Nvidia 의자율주행개발플랫폼 (DrivePX) - 수집된정보기반으로 DrivePX 인공지능고도화 (Neural Network Update) - 정밀 / 정확도, 속도향상 Firmware Update or Next Version 반영 ) DrivePX 13 Civic(2016~2017), CR-V(2015~2016), Acura ILX (2016) 14 M. Bojarski, et al., End to End Learning for Self-Driving Cars, LG 경제연구원 15

19 가일일이해당기능을구현하고데이터를확보해학습시키는과정이생략되고높은성능으로검증된기술을활용하면서개발시간을크게단축시킬수있게된다. 이러한딥러닝기반의플랫폼전략을통해 Nvidia는시장의기존강자들을제치고시장을장악해가고있다. Nvidia는자율주행분야의이미지인식칩시장의 80% 를장악하던 Mobileye 의시장을빠르게잠식하고있다. 실제지난 2016년 Tesla는자율주행칩파트너를 Mobileye 에서 Nvidia로전환하기시작하였으며 Nvidia는약 20개이상의완성차브랜드와협업을확대해나가고있다. 2 Tesla 전기차혁신기업인 Tesla는다음혁신을인공지능에기반한자율주행자동차에서만들어가고있다. Autopilot 이라불리는반자율주행 (Semi-Autonomous Driving) 기능을시장에안정적으로상용화시키며관련기술을빠르게발전시켜나가고있다. Tesla의 Autopilot 기능은일반적인차선유지, 차간거리조정등과같은기능보다더욱진화된차선변경, 자동차고입 / 출입등과같은기능들을포함하고있다. 무엇보다 Tesla의 Autopilot 은차량에서발생하는거의모든데이터를수집하고분석해인공지능으로구현했다는점에서향후더욱큰혁신이예상된다. Tesla의모든차량은 3G/LTE와같은통신망으로연결되어차량에서발생되는모든데이터가익명화되어수집된다. 2014년부터본격적으로수집된주행데이터는약 56억Km(35억 miles) 15 에이른다. 이중 Autopilot 을사용하며주행한거리는 2억Km(1.3억 miles) 에 Electric Vehicle Autopilot w/ Machine Learning 혁신적전기차제조 Semi-Autonomous Driving 방대한양의정밀주행데이터수집 ( 14~) - 14 년 10 월이후부터주행데이터본격수집 전체주행데이터 : 3.5B miles( 약 56 억 Km) 25M miles/day - Autopilot 주행데이터 2.6M miles/day, 1.3B miles( 약 2 억 Km) Miles Tesla 주행데이터 ( 약 2 억 Km) Google 자율주행 ( 약 240 만 Km w/ 23 대 ) 인공지능의학습을통한기능고도화 ( 14~) - 기계학습을통한기능고도화및정교화 각종상황별차량주행상태, 운전자반응등을수집, 축적 인공지능학습에수집된모든데이터를활용 - 딥러닝을활용한주행영상이미지학습 이미지인식정확도 / 속도향상및정교화 차량, 보행자, 장애물, 표지판정보의딥러닝학습에활용 1) 수집된데이터가클라우드에축적 2) 인공지능의학습에활용후 Autopilot 기능고도화 3) Software Update형태로기존판매된차량에반영 ( 주행을지속할수록자율주행기능이고도화됨 ) 17 Tesla Autopilot 의주행데이터학습기반의기능구현 년 12 월기준 (Tesla Electric Road Trip Site) 16 LG 경제연구원

20 해당한다. 약 8만여대에이르는자동차에서발생된정보가모두수집되면서다양한환경의주행정보를 Tesla의인공지능이학습하게된다. 이렇게학습된지능을기반으로 Tesla의 Autopilot 는시간이지날수록기능이고도화되고발전된기능은다시통신망을통해기존차량에소프트웨어업데이트형식으로반영되게된다. 즉 Tesla의차량의자율주행기능은차량이주행을하면할수록기능이점점진화하게되는것이다. Tesla는최근딥러닝기반의인공지능역량확보를위해더욱노력하고있다. 기존 Mobileye 에서 Nvidia로 Autopilot 전용하드웨어를교체하며딥러닝기반으로자율주행기능을고도화하고있다. 또한지난 6월에는딥러닝분야의핵심연구자인 Andrej Karpathy를 Tesla 인공지능연구소의책임자로영입했다. 인공지능분야의선도연구소인 OpenAI의연구자였던 Adnrej는딥마인드, 구글등에서딥러닝, 강화학습등과관련한혁신적연구를진행해왔다. Tesla가집중적으로확보하고있는딥러닝관련역량은기존확보된방대한차량주행데이터와결합되어향후혁신적인자율주행기술로구현될것으로전망된다. 4. 맺음말 딥러닝기술의발전으로인해자율주행기술의핵심이이동하고있다. 고가의특화센서와자동차분야의전문가가중심이되었던자율주행기술을인공지능분야의전문가들이저가의범용센서를활용하면서도구현가능하게된것이다. 인공지능역량을확보한신생 Startup 및연구소들이빠르게시장에진출하면서엄청난투자와연구기간을들여기술을구축해온거대 IT 기업및완성차제조사들의기술장벽이허물어지고있다. 자동차산업분야의전문성 (Domain Knowledge) 에기반해산업을주도했던기업들의주도권이새로운기술에기반한 Startup으로이동할가능성이높아지고있는것이다. 실제자동차산업보다일찍이딥러닝이적용되며기술적용이이루어진언어인식분야의경우기술구현의핵심이언어학자에서딥러닝전문가로빠르게대체되고있으며, 업계에서는 언어학자를 1명씩해고할때마다언어인식률이 1% 씩향상된다 라고까지이야기되고있다. 즉딥러닝기반의인공지능이기존산업내경쟁의핵심을변화시키고있으며자율주행기술분야도그패턴을따라갈가능성이커지고있다. 오랜시간동안산업내주도권을가졌던완성차제조사들도이러한기술패러다임변화에대응하기위해 2016년을전후해서부터빠르게딥러닝관련기술역량확보에나서고있다. GM, Ford등과같은기업들은약 1조원규모로딥러닝관련 Startup에투자하거나인수하였고, Toyota의경우실리콘밸리에인공지능전용연 LG 경제연구원 17

21 범용센서 GM Ford Daimler Toyota VW 주요완성차제조사들의딥러닝역량확보 - Startup 인수 (Cruise Automation, 1 조원, ) 및투자 (Nauto, ) - Startup 인수 (SAIPS, ) 및투자 (argo.ai, 1 조원, ) - Startup 투자 (Momenta, ) 및협력 (Bosch 와딥러닝기반자율주행택시개발, ) - 실리콘밸리 AI 연구센터설립 (1 조원, ) 및 AI 전문투자회사설립 (AI Ventures, ) - 연구소확장운영 (Stanford, MIT 협력목적, ) - 자체딥러닝연구소설립 / 강화 (Data Lab for AI, ) 및 AI Startup 투자프로그램운영 PSA - Startup 협력 (Aimotive, 딥러닝기반 Level 4 자율주행개발 ) 특화센서 Rule-based Modeling Deep Learning based * 기술적구현방법론의도식화 ( 기술수준및완성도관점의상대비교는아님 ) 18 자율주행기술구현의핵심이동 구소및투자회사를설립하기도했다 ( 그림 18). 주요완성차제조사들의이러한노력은혁신적인기술을기반으로새롭게등장하는 Startup들과다른완성차제조사들과의기술경쟁에대응하기위한것으로, 향후에는이러한기술확보경쟁은더욱치열하게전개될것이다. 딥러닝등최근의인공지능기술은기계학습과정에활용되는데이터에따라그성능이상당히좌우될수있기때문에방대한주행데이터를확보해자율주행지능을고도화시키는기업이향후경쟁을선도할가능성이높다. 방대한데이터가단순히많은양의데이터를의미하는것은아니다. 정상적인주행상황이지속되는많은양의데이터보다는비나눈이내리는상황과같이주변환경의인식이나차량제어가어려운상황의주행데이터가자율주행성능을더욱고도화시킬수있다. 따라서향후에는이러한다양성을갖는주행데이터를학습해수많은상황 (edge cases) 까지도대응할수있는자율주행기능을구현하는것이경쟁의핵심으로작용할것이다. 이미 comma.ai나 Tesla와같은기업들은기술구현초기부터데이터수집의중요성을인지하고적극적으로데이터를수집하고있다. 주요기업들이소수의테스트차량을통해주행데이터를수집하는것에비해이들기업들은수천, 수만대의차량및참여자를통해데이터를동시다발적으로수집하고있다. 이러한방식은후발주자가단기간에확보할수없는방대하면서도매우다양한주행데이터를확보할수있게한다. 안전성을최우선으로하는자동차산업의특성상딥러닝기술만으로상용화수준의자율주행기술을개 18 LG 경제연구원

22 발하기까지는상당한시간이필요할지도모른다. 실제자동차산업을이끌어온완성차제조사들은안전성등을이유로그동안새로운기술혁신에소극적으로대응해오기도했다. 하지만새로운기술패러다임에기반해빠르게출현하고있는신생기업들은자신들의기술을시장에우선출시해데이터를수집하며동시에완성도를높혀가는전략을펼치고있다. 기존완성차업체도기술상용화에대한전략적선택이필요한시점이다. 물론자율주행과관련해서는안전성이가장우선되어야하지만이제까지의방식처럼기술을완벽하게구현하고검증후시장에출시하기에는시간과비용이너무많이소요되기때문이다. 이는데이터를통해학습이지속될수록기능이향상되는딥러닝기반의인공지능의특성을잘활용하지못하는전략이기도하다. 따라서일부제한된기능을시작으로기술을빠르게시장에출시하면서가능한많은양의데이터를수집할수있는시스템을우선적으로구축하는것이더효과적인방법이될수있다. 이렇게수집되는데이터는현재구현되고있는기술의성능과안전성에대한검증뿐아니라더욱고도화된기능을구현해낼수있는선순환의기초가될수있기때문이다. LG 경제연구원 19

23 본보고서에게재된내용이 LG 경제연구원의공식견해는아닙니다. 본보고서의내용을인용할경우출처를명시하시기바랍니다.

Ch 1 머신러닝 개요.pptx

Ch 1 머신러닝 개요.pptx Chapter 1. < > :,, 2017. Slides Prepared by,, Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 1.1 3 1.2... 7 1.3 10 1.4 16 1.5 35 2 1 1.1 n,, n n Artificial

More information

이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론

이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론 이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론 2. 관련연구 2.1 MQTT 프로토콜 Fig. 1. Topic-based Publish/Subscribe Communication Model. Table 1. Delivery and Guarantee by MQTT QoS Level 2.1 MQTT-SN 프로토콜 Fig. 2. MQTT-SN

More information

ICT À¶ÇÕÃÖÁ¾

ICT À¶ÇÕÃÖÁ¾ Ver. 2012 T TA-11104-SA 4 21 21 42 65 91 103 124 140 161 187 Ver. 2012 ICT Standardization Strategy Map 4 Ver. 2012 Ver. 2012 5 ICT Standardization Strategy Map 6 Ver. 2012 Ver. 2012 7 ICT Standardization

More information

ICT EXPERT INTERVIEW ITS/ ICT? 차량과 인프라 간 통신(V2I) Nomadic 단말 통신(V2P) 차량 간 통신(V2V) IVN IVN [ 1] ITS/ ICT TTA Journal Vol.160 l 9

ICT EXPERT INTERVIEW ITS/ ICT? 차량과 인프라 간 통신(V2I) Nomadic 단말 통신(V2P) 차량 간 통신(V2V) IVN IVN [ 1] ITS/ ICT TTA Journal Vol.160 l 9 오늘날 자동차와 도로는 ICT 기술과 융합되어 눈부시게 발전하고 있습니다. 자동차는 ICT 기술과 접목되어 스마트 자동차로 변화하며 안전하고 편리하며 CO 2 방출을 줄이는 방향으로 기술개발을 추진하고 있으며 2020년경에는 자율 주행 서비스가 도입될 것으로 전망하고 있습니다. 또한, 도로도 ICT 기술과 접목되어 스마트 도로로 변화하며 안전하고 편리하며 연료

More information

임베디드2014(가을)

임베디드2014(가을) 2014 Autumn Vol.8 www.givet.re.kr 2014 Autumn News Letter 2014 Autumn Vol.8 News Letter CONTENTS GIVET Autumn 04 05 이천십사년 가을호 뉴스레터 FOCUS_ 2014년 기업지원사업 성과 기업지원성과 1 2013 경북디지털기기부품산업 패키지역량강화사업 사업기간 : 2013년

More information

<C3E6B3B2B1B3C0B0313832C8A32DC5BEC0E7BFEB28C0DBB0D4292D332E706466>

<C3E6B3B2B1B3C0B0313832C8A32DC5BEC0E7BFEB28C0DBB0D4292D332E706466> 11-8140242-000001-08 2013-927 2013 182 2013 182 Contents 02 16 08 10 12 18 53 25 32 63 Summer 2 0 1 3 68 40 51 57 65 72 81 90 97 103 109 94 116 123 130 140 144 148 118 154 158 163 1 2 3 4 5 8 SUMMER

More information

<464B4949B8AEC6F7C6AE2DC0AFBAF1C4F5C5CDBDBABBEABEF7C8AD28C3D6C1BE5FBCD5BFACB1B8BFF8BCF6C1A4292E687770>

<464B4949B8AEC6F7C6AE2DC0AFBAF1C4F5C5CDBDBABBEABEF7C8AD28C3D6C1BE5FBCD5BFACB1B8BFF8BCF6C1A4292E687770> 국내 유비쿼터스 사업추진 현황 본 보고서의 내용과 관련하여 문의사항이 있으시면 아래로 연락주시기 바랍니다. TEL: 780-0204 FAX: 782-1266 E-mail: minbp@fkii.org lhj280@fkii.org 목 차 - 3 - 표/그림 목차 - 4 - - 1 - - 2 - - 3 - - 4 - 1) 유비쿼터스 컴퓨팅프론티어사업단 조위덕 단장

More information

제1강 인공지능 개념과 역사

제1강 인공지능 개념과 역사 인공지능개념과역사 < 인공지능입문 > 강의노트 장병탁서울대학교컴퓨터공학부 & 인지과학 / 뇌과학협동과정 http://bi.snu.ac.kr/~btzhang/ Version: 20180302 목차 인공지능의개념........ 3 연구분야............ 4 역사...... 6 패러다임........ 7 응용사례.......... 8 Reading Assignments.........

More information

보험판매와 고객보호의 원칙

보험판매와 고객보호의 원칙 ..... 61),,,, IT,.,. 2020-2040. IT...... 1 10.. (No Fault). (No Fault). (No Fault). * /. (2016.12.08), (2016.12.24), (2016.12.26) - 243 - 10 2 (2016).... 1),,.,,,.,. 2) (National Highway Traffic Safety

More information

PERFORMANCE technology the all-new bmw 5 series. dynamic 06 business 14 comfort 20 safety 22 model LineuP 24 TecHnicaL data 26 bmw service 28 bmw kore

PERFORMANCE technology the all-new bmw 5 series. dynamic 06 business 14 comfort 20 safety 22 model LineuP 24 TecHnicaL data 26 bmw service 28 bmw kore sheer Driving Pleasure sheer Driving Pleasure the all-new bmw 5 series. bmw080269-2200bmw www.bmw.co.krbmwwww.facebook.com/bmwkorea bmw www.instagram.com/bmw_korea bmw www.youtube.com/bmwkorea 080269-33001677-77

More information

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf

More information

Ⅰ. 자율주행차의핵심기술로주목받는자동차용센서개황및산업동향 1. 현실로다가오는자율주행 ( 무인차 ) 개발동향과시장전망 1-1. 자율주행차시장전망과주요국별정책및개발동향 1) 주요국별정책및 R&D 동향 (1) 유럽 (2) 영국 (3) 독일 (4) 미국 (5) 일본 (6) 싱

Ⅰ. 자율주행차의핵심기술로주목받는자동차용센서개황및산업동향 1. 현실로다가오는자율주행 ( 무인차 ) 개발동향과시장전망 1-1. 자율주행차시장전망과주요국별정책및개발동향 1) 주요국별정책및 R&D 동향 (1) 유럽 (2) 영국 (3) 독일 (4) 미국 (5) 일본 (6) 싱 Ⅰ. 자율주행차의핵심기술로주목받는자동차용센서개황및산업동향 1. 현실로다가오는자율주행 ( 무인차 ) 개발동향과시장전망 1-1. 자율주행차시장전망과주요국별정책및개발동향 1) 주요국별정책및 R&D 동향 (1) 유럽 (2) 영국 (3) 독일 (4) 미국 (5) 일본 (6) 싱가포르 (7) 한국 2) 자율주행차시장규모전망 3) 자율주행차상용화시기전망 (1) 2025

More information

(1) 개념 (2) 미래형자동차의 Tipping Point 시점 (3) 변화전망 3.1) IT 플랫폼으로의진화와상용화시점 3.2) 플랫폼으로의자동차가치 (4) 주요이슈및트렌드 4.1) ADAS(Advanced Driver Assistance System) 4.1.1)

(1) 개념 (2) 미래형자동차의 Tipping Point 시점 (3) 변화전망 3.1) IT 플랫폼으로의진화와상용화시점 3.2) 플랫폼으로의자동차가치 (4) 주요이슈및트렌드 4.1) ADAS(Advanced Driver Assistance System) 4.1.1) 미래형자동차분야별세부시장동향과주요기술개발동향및사례분석 [ 목차 ] Ⅰ. 미래형자동차산업의시장동향과전망 1. 국내외자동차시장동향 1) 국내자동차시장동향 (1) 시장현황 (2) R&D 투자동향 2.1) R&D 지원비중현황 2.2) 미래형자동차민간 R&D 투자현황 2.3) 국내업체의동력원별 R&D 투자현황 2.3.1) 전기자동차개발및상용화현황 2.3.2) 하이브리드차개발및상용화현황

More information

[NO_11] 의과대학 소식지_OK(P)

[NO_11] 의과대학 소식지_OK(P) 진 의학 지식과 매칭이 되어, 인류의 의학지식의 수준을 높 여가는 것이다. 하지만 딥러닝은 블랙박스와 같은 속성을 가지고 있어서, 우리는 단지 결과만을 알 수 있기 때문에 이런 식의 의학지 식의 확장으로 이어지기는 힘들 수 있다는 것을 의미한다. 이것은 실제로 의학에서는 인공지능을 사용하게 될 때 여러 가지 문제를 만들 수 있다. 뿐만 아니라, 인간이 이해

More information

Microsoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx

Microsoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx 실습강의개요와인공지능, 기계학습, 신경망 < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 실습강의개요 노트북을꼭지참해야하는강좌 신경망소개 (2 주, 허민오 ) Python ( 프로그래밍언어 ) (2주, 김준호

More information

Microsoft Word - 20160119172619993.doc

Microsoft Word - 20160119172619993.doc 반도체 in 2016 CES 메모리 반도체 응용처 확대 가능성 확인 2016년 CES 전시 주요 기술과 Device 모두 향후 메모리 반도체 수요 견인 가능성 충분 반도체 Analyst 박영주 02-6114-2951 young.park@hdsrc.com RA 주영돈 02-6114-2923 ydjoo89@hdsrc.com VR 시장의 성장 개시.. IT 기기의

More information

표지 모았어요

표지 모았어요 From Bridgestone 4 BRIDGESTONE Magazine Contents On Bridgestone 04 10 12 24 46 48 52 54 56 57 60 Motoring 14 18 20 26 28 32 59 62 Travel / Lifestyle 34 38 44 Section 08 58 63 6 BRIDGESTONE Magazine News

More information

슬라이드 1

슬라이드 1 공학컴퓨터활용입문 메카트로닉스시스템 메카트로닉스시스템정의 메카트로닉스시스템예 메카트로닉스시스템이란? 메카트로닉스정의 메카트로닉스란용어는메카틱스 ( 기계역학 ) 와일렉트로닉스 ( 전자 ) 의합성어로서 1960 년대말경일본 (Yaskawa Electoric Co.) 에서만들어져 1980 년전후로정착된신조어이며현재는일반적인용어임. 따라서, 메카트로닉스란기계기술과전자제어및정보처리기술을응용하여,

More information

2

2 kakao 2018 8 Investor Relations 2 목차 3 4 전국민의카카오 41,488 41,915 42,080 42,431 42,746 43,044 43,201 43,526 43,577 2Q16 3Q16 4Q16 1Q17 2Q17 3Q17 4Q17 1Q18 2Q18 5 6 ü ü ü ü 7 8 AI Kakao I Inside Kakao I Open

More information

(연합뉴스) 마이더스

(연합뉴스) 마이더스 106 Midas 2011 06 브라질은 2014년 월드컵과 2016년 올림픽 개최, 고속철도 건설, 2007년 발견된 대형 심해유전 개발에 대비한 사회간접자본 확충 움직임이 활발하다. 리오데자네이로에 건설 중인 월드컵 경기장. EPA_ 연합뉴스 수요 파급효과가 큰 SOC 시설 확충 움직임이 활발해 우 입 쿼터 할당 등의 수입 규제 강화에도 적극적이다. 리

More information

자연언어처리

자연언어처리 제 7 장파싱 파싱의개요 파싱 (Parsing) 입력문장의구조를분석하는과정 문법 (grammar) 언어에서허용되는문장의구조를정의하는체계 파싱기법 (parsing techniques) 문장의구조를문법에따라분석하는과정 차트파싱 (Chart Parsing) 2 문장의구조와트리 문장 : John ate the apple. Tree Representation List

More information

보고싶었던 Deep Learning과 OpenCV를이용한이미지처리과정에대해공부를해볼수있으며더나아가 Deep Learning기술을이용하여논문을작성하는데많은도움을받을수있으며아직배우는단계에있는저에게는기존의연구를따라해보는것만으로도큰발전이있다고생각했습니다. 그래서이번 DSP스마

보고싶었던 Deep Learning과 OpenCV를이용한이미지처리과정에대해공부를해볼수있으며더나아가 Deep Learning기술을이용하여논문을작성하는데많은도움을받을수있으며아직배우는단계에있는저에게는기존의연구를따라해보는것만으로도큰발전이있다고생각했습니다. 그래서이번 DSP스마 특성화사업참가결과보고서 작성일 2017 12.22 학과전자공학과 참가활동명 EATED 30 프로그램지도교수최욱 연구주제명 Machine Learning 을이용한얼굴학습 학번 201301165 성명조원 I. OBJECTIVES 사람들은새로운사람들을보고인식을하는데걸리는시간은 1초채되지않다고합니다. 뿐만아니라사람들의얼굴을인식하는인식률은무려 97.5% 정도의매우높은정확도를가지고있습니다.

More information

기술과미래05내지

기술과미래05내지 human+tech 01 글 노성호편집장 noho@pouvoir.co.kr/ 박지연기자hidypark@pouvoir.co.kr/ 송경모경제학박사 kyungmo.song@pouvoir.co.kr contents 용어설명_ 트라이버전스() 하드웨어, 소프트웨어, 네트워크서비스가융합되는현상을말한다. PC 기반의인터넷, TV 기반의미디어, 휴대폰기반의커뮤니케이션이하나로합쳐지는것이대표적이다.

More information

[Brochure] KOR_TunA

[Brochure] KOR_TunA LG CNS LG CNS APM (TunA) LG CNS APM (TunA) 어플리케이션의 성능 개선을 위한 직관적이고 심플한 APM 솔루션 APM 이란? Application Performance Management 란? 사용자 관점 그리고 비즈니스 관점에서 실제 서비스되고 있는 어플리케이션의 성능 관리 체계입니다. 이를 위해서는 신속한 장애 지점 파악 /

More information

서현수

서현수 Introduction to TIZEN SDK UI Builder S-Core 서현수 2015.10.28 CONTENTS TIZEN APP 이란? TIZEN SDK UI Builder 소개 TIZEN APP 개발방법 UI Builder 기능 UI Builder 사용방법 실전, TIZEN APP 개발시작하기 마침 TIZEN APP? TIZEN APP 이란? Mobile,

More information

제 KI011호사업장 : 서울특별시구로구디지털로26길 87 ( 구로동 ) 02. 공산품및소비제품 생활용품검사검사종류검사품목검사방법 안전확인대상생활용품 생활 휴대용레이저용품 안전확인대상생활용품의안전기준부속서 46 ( 국가기술표준원고시제 호 (

제 KI011호사업장 : 서울특별시구로구디지털로26길 87 ( 구로동 ) 02. 공산품및소비제품 생활용품검사검사종류검사품목검사방법 안전확인대상생활용품 생활 휴대용레이저용품 안전확인대상생활용품의안전기준부속서 46 ( 국가기술표준원고시제 호 ( 제 KI011호사업장 : 서울특별시구로구디지털로26길 87 ( 구로동 ) 02. 공산품및소비제품 02.003 생활용품검사 안전확인대상생활용품 생활 휴대용레이저용품 안전확인대상생활용품의안전기준부속서 46 ( 국가기술표준원고시제 2017-032 호 (2017.2.8.)) 03. 재료및부품 03.001 자동차부품검사 기능안전심사 ISO 26262-2 : 2011

More information

Microsoft PowerPoint Android-SDK설치.HelloAndroid(1.0h).pptx

Microsoft PowerPoint Android-SDK설치.HelloAndroid(1.0h).pptx To be an Android Expert 문양세강원대학교 IT 대학컴퓨터학부 Eclipse (IDE) JDK Android SDK with ADT IDE: Integrated Development Environment JDK: Java Development Kit (Java SDK) ADT: Android Development Tools 2 JDK 설치 Eclipse

More information

Prologue 01 마그네슘 합금의 장점 및 적용 분야 02 다이캐스팅 이란? 1. About 장원테크 01 Company Overview 02 사업영역 핵심기술력 04 국내 사업장 05 베트남 법인 06 업계 Top Tier 고객사 확보 2. Cash-Cow 모바일

Prologue 01 마그네슘 합금의 장점 및 적용 분야 02 다이캐스팅 이란? 1. About 장원테크 01 Company Overview 02 사업영역 핵심기술력 04 국내 사업장 05 베트남 법인 06 업계 Top Tier 고객사 확보 2. Cash-Cow 모바일 Prologue 01 마그네슘 합금의 장점 및 적용 분야 02 다이캐스팅 이란? 1. About 장원테크 01 Company Overview 02 사업영역 핵심기술력 04 국내 사업장 05 베트남 법인 06 업계 Top Tier 고객사 확보 2. Cash-Cow 모바일 부품 01 Products 02 시장점유율 베트남법인 성장 본격화 04 우호적인 업황 3.

More information

선진사례집(0529)

선진사례집(0529) Contents Contents 1 8 9 10 2 11 선진사례집(0529) 2012.5.29 13:30 페이지12 MAC-3 추진내용 GPS로부터 자동차의 주행 스피드를 계산하여 교통 정보 수집 일본 노무라연구소는 스마트폰형 내비게이션 서비스인 전력안내!내비 를 활용하여 2011년 일본 대지진시 도로교통 체증 피해 최소화 - 교통 체증 감소 효과 및

More information

À̵¿·Îº¿ÀÇ ÀÎÅͳݱâ¹Ý ¿ø°ÝÁ¦¾î½Ã ½Ã°£Áö¿¬¿¡_.hwp

À̵¿·Îº¿ÀÇ ÀÎÅͳݱâ¹Ý ¿ø°ÝÁ¦¾î½Ã ½Ã°£Áö¿¬¿¡_.hwp l Y ( X g, Y g ) r v L v v R L θ X ( X c, Yc) W (a) (b) DC 12V 9A Battery 전원부 DC-DC Converter +12V, -12V DC-DC Converter 5V DC-AC Inverter AC 220V DC-DC Converter 3.3V Motor Driver 80196kc,PWM Main

More information

자율주행자동차및전기자동차동향보고서 목차 제 1 부자동운전시스템의시장전망 1. 자동운전용센서의레벨별탑재개수예측 2. 자동차제조사의자동운전시스템투입계획 (2017~2030 년 ) 3. 세그먼트별자동운전시스템의보급예측 4. 자동운전시스템의에어리어별시장규모예측 4-1 일본 4

자율주행자동차및전기자동차동향보고서 목차 제 1 부자동운전시스템의시장전망 1. 자동운전용센서의레벨별탑재개수예측 2. 자동차제조사의자동운전시스템투입계획 (2017~2030 년 ) 3. 세그먼트별자동운전시스템의보급예측 4. 자동운전시스템의에어리어별시장규모예측 4-1 일본 4 자율주행자동차및전기자동차동향보고서 목차 제 1 부자동운전시스템의시장전망 1. 자동운전용센서의레벨별탑재개수예측 2. 자동차제조사의자동운전시스템투입계획 (2017~2030 년 ) 3. 세그먼트별자동운전시스템의보급예측 4. 자동운전시스템의에어리어별시장규모예측 4-1 일본 4-2 북미 4-3 유럽 4-4 기타 5. 자동운전시스템의레벨별총시장규모예측 5-1 단기시장규모예측

More information

consulting

consulting CONSULTING 전략 컨설팅 클라우드 마이그레이션 애플리케이션 마이그레이션 데이터 마이그레이션 HELPING YOU ADOPT CLOUD. 클라우드로 가기로 결정했다면 누구와 함께 갈지를 선택해야 합니다. 처음부터 끝까지 믿을만한 파트너를 찾는다면 베스핀글로벌이 정답입니다. 전략 컨설팅 다양한 클라우드 공급자가 존재하고, 클라우드 공급자마다 다른 장단점을

More information

[한반도]한국의 ICT 현주소(송부)

[한반도]한국의 ICT 현주소(송부) ICT 2016. 5. 3 SKT KT LGU+ ( ) ( ) ( ) 18,000 15939 16141 16602 17164 17137 18,000 21990 23856 23811 23422 22281 12,000 10905 11450 11000 10795 13,500 13,425 9,000 9185 9,000 8,850 6,000 4,500 4,275 3,000-0

More information

2009방송통신산업동향.hwp

2009방송통신산업동향.hwp 제 1 절인터넷포털 53) 목차 1. 163. 163. 166 2. 168 176 1. 시장동향 가. 시장규모. 2008 2009. PWC 2008 / 15.6% 599. 2009 1.9% 587. *, (02) 570-4112, byjung@kisdi.re.kr 163 제 3 장 인터넷콘텐츠 < 표 3-1> 세계온라인광고시장규모추이 ( :, %) 2007

More information

2016년 신호등 10월호 내지.indd

2016년 신호등 10월호 내지.indd www.koroad.or.kr E-book 10 2016. Vol. 434 62 C o n t e n t s 50 58 46 24 04 20 46 06 08, 3 3 10 12,! 16 18 24, 28, 30 34 234 38? 40 2017 LPG 44 Car? 50 KoROAD(1) 2016 54 KoROAD(2), 58, 60, 62 KoROAD 68

More information

04 Çмú_±â¼ú±â»ç

04 Çмú_±â¼ú±â»ç 42 s p x f p (x) f (x) VOL. 46 NO. 12 2013. 12 43 p j (x) r j n c f max f min v max, j j c j (x) j f (x) v j (x) f (x) v(x) f d (x) f (x) f (x) v(x) v(x) r f 44 r f X(x) Y (x) (x, y) (x, y) f (x, y) VOL.

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Chapter 1. 머신러닝개요 < 기계학습개론 > 강의서울대학교컴퓨터공학부장병탁 교재 : 장교수의딥러닝, 홍릉과학출판사, 2017. Slides Prepared by 장병탁, 김준호, 이상우 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University

More information

슬라이드 1

슬라이드 1 4. Mobile Service Technology Mobile Computing Lecture 2012. 10. 5 안병익 (biahn99@gmail.com) 강의블로그 : Mobilecom.tistory.com 2 Mobile Service in Korea 3 Mobile Service Mobility 4 Mobile Service in Korea 5 Mobile

More information

경북자동차부품관련연구소의효율적 운영방안

경북자동차부품관련연구소의효율적 운영방안 2009-046 경북자동차부품관련연구소의효율적 운영방안 차례 표차례 그림차례 요약 1. 연구배경및목적,,, IT. 3,.,.. 2. 국내 지역자동차산업현황 2007 20.3 GDP 2.5%. 9%, 12%, 13%, 07 409, 285 5, 147 2.9. 8.6%, 7.0%, 4.5%, i . ( ) ( ) ( ) 4,577 277,319 38,865,170

More information

- 1 - - 2 - - 3 - - 4 - - 5 - - 6 - 주행방향 900 Φ100 재귀반사체 지주 주행방향 1100 120 40 200 740 900 120 45 원형재귀반사체 Φ100 검정색바탕도색 흰색합성수지지주 - 7 - 옹벽 900mm 900mm 노면 옹벽 900mm 900mm 노면 - 8 - - 9 - - 10 - - 11 - - 12 - 0.9

More information

<C0CCBCF8BFE42DB1B3C1A4BFCFB7E12DB1E8B9CCBCB12DC0DBBCBAC0DAB0CBC1F5BFCFB7E12DB8D3B8AEB8BBB3BBBACEC0DAB0CBC1F52E687770>

<C0CCBCF8BFE42DB1B3C1A4BFCFB7E12DB1E8B9CCBCB12DC0DBBCBAC0DAB0CBC1F5BFCFB7E12DB8D3B8AEB8BBB3BBBACEC0DAB0CBC1F52E687770> 사회복지용 지능로봇 기술동향 머 리 말 목 차 제1장 서 론 1 제2장 기술의 특징 3 제3장 사회복지용 지능 로봇산업의 기술 수요 전망 11 제4장 사회복지용 지능 로봇의 기술 동향 32 제5장 결론 및 정책 제언 103 참고문헌 109 표 목차 그림 목차 제1장 서 론 1. 목적 및 필요성 2. 분석내용 및 범위 제2장 기술의 특징 1. 지능형 로봇기술의

More information

Drucker Innovation_CEO과정

Drucker Innovation_CEO과정 ! 피터드러커의 혁신과 기업가정신 허연 경희대학교 경영대학원 Doing Better Problem Solving Doing Different Opportunity ! Drucker, Management Challenges for the 21st Century, 1999! Drucker, Management: Tasks, Responsibilities,

More information

2007

2007 Eugene Research 산업분석 2016. 03. 21 IT 알파고가던져준 IT 산업의성장로드맵 반도체 / 디스플레이담당이정 Tel. 02)368-6124 / jeonglee@eugenefn.com Junior Analyst 노경탁 Tel. 02)368-6647 / kyoungkt@eugenefn.com Overweight( 유지 ) Recommendations

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

HTML5* Web Development to the next level HTML5 ~= HTML + CSS + JS API

HTML5* Web Development to the next level HTML5 ~= HTML + CSS + JS API WAC 2.0 & Hybrid Web App 권정혁 ( @xguru ) 1 HTML5* Web Development to the next level HTML5 ~= HTML + CSS + JS API Mobile Web App needs Device APIs Camera Filesystem Acclerometer Web Browser Contacts Messaging

More information

, Analyst, , Table of contents 2

, Analyst, , Table of contents 2 _ 3 November 2016 World Auto WatchWatch, Analyst, 3774 3763, inwoo.park@miraeasset.com , Analyst, 3774 3763, inwoo.park@miraeasset.com Table of contents 2 , Analyst, 3774 3763, inwoo.park@miraeasset.com

More information

RVC Robot Vaccum Cleaner

RVC Robot Vaccum Cleaner RVC Robot Vacuum 200810048 정재근 200811445 이성현 200811414 김연준 200812423 김준식 Statement of purpose Robot Vacuum (RVC) - An RVC automatically cleans and mops household surface. - It goes straight forward while

More information

KAKAO AI REPORT Vol.01

KAKAO AI REPORT Vol.01 KAKAO AI REPORT Vol.01 2017.03 import kakao.ai.dataset.daisy import kakao.ai.image import kakao.ai.classifier import mxnet as mx def Conv(data, num_filter, kernel=(1, 1), stride=(1, 1), pad=(0, 0), name=none,

More information

Cloud Friendly System Architecture

Cloud Friendly System Architecture -Service Clients Administrator 1. -Service 구성도 : ( 좌측참고 ) LB(LoadBlancer) 2. -Service 개요 ucloud Virtual Router F/W Monitoring 개념 특징 적용가능분야 Server, WAS, DB 로구성되어 web service 를클라우드환경에서제공하기위한 service architecture

More information

Reinforcement Learning & AlphaGo

Reinforcement Learning & AlphaGo Gait recognition using a Discriminative Feature Learning Approach for Human identification 딥러닝기술및응용딥러닝을활용한개인연구주제발표 이장우 wkddn1108@kist.re.kr 2018.12.07 Overview 연구배경 관련연구 제안하는방법 Reference 2 I. 연구배경 Reinforcement

More information

, Analyst, 3774 1785, Figure 1 ecall * PSAP (Public Safety Answering Points) : 응급 콜센터 개념 MSD (Minimum Set of Data) : 사고 시간, 장소, 운

, Analyst, 3774 1785, Figure 1 ecall * PSAP (Public Safety Answering Points) : 응급 콜센터 개념 MSD (Minimum Set of Data) : 사고 시간, 장소, 운 Sector comment Korea / Telecommunication 27 May 2016 OVERWEIGHT Stocks under coverage Company Rating Price Target price * 아래의 리스트를 클릭하시면 전체 리포트를 다운 받으실 수 있습니다 사물인터넷(1) IoT 기기의 보급 2015.12.11 사물인터넷(2) IoT

More information

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5> 주간기술동향 2016. 5.18. 컴퓨터 비전과 인공지능 장혁 한국전자통신연구원 선임연구원 최근 많은 관심을 받고 있는 인공지능(Artificial Intelligence: AI)의 성과는 뇌의 작동 방식과 유사한 딥 러닝의 등장에 기인한 바가 크다. 이미 미국과 유럽 등 AI 선도국에서는 인공지능 연구에서 인간 뇌 이해의 중요성을 인식하고 관련 대형 프로젝트들을

More information

기업분석(Update)

기업분석(Update) 1.. Quantitative Analyst 이창환 91-73 ch.lee@ibks.com Sector Monitor: 업종별수익률 : Cyclical 업종이 Defensive 업종대비아웃퍼폼 이익모멘텀 : 1개월전대비 EPS 전망치변화율은업종전반적으로 (+) 를기록. ERR 역시전반적으로 (+) 를기록한가운데 와, 업종이두드러짐. 개월선행 EPS 전망치는,,

More information

목 차 국문요약 ⅰ ABSTRACT ⅲ 그림목차 ⅴ 표목차 ⅵ 1 1 3 4 4 5 6 9 11 11 13 16 32 32 3.1.1 초고층건축물의정의 32 3.1.2 대상모델개요 32 3.1.3 대상모델의모델링 35 3.1.4 CFD 해석의경계조건 38 3.1.5 CFD 시뮬레이션 42 53 3.2.1 적용프로그램 54 3.2.2 풍압의적용 54 3.2.3

More information

W7_Business_ 제품설계

W7_Business_ 제품설계 6가지 테마와 24단계 창업 프로그램 벤처창업 (START-UP) Week 7: 스타트업 바이블 Step 20, 21, 22, 23 ; 어떤 과정을 거쳐 제품을 기획하고 설계할까? Hansoo Kim, Ph.D YUST MIS / E-Biz Research Center / BNC ?????,!????,? (Linchpin,, )?? ),, SASA : :,,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 03 모델변환과시점변환 01 기하변환 02 계층구조 Modeling 03 Camera 시점변환 기하변환 (Geometric Transformation) 1. 이동 (Translation) 2. 회전 (Rotation) 3. 크기조절 (Scale) 4. 전단 (Shear) 5. 복합변환 6. 반사변환 7. 구조변형변환 2 기하변환 (Geometric Transformation)

More information

핵 1 학년 2 학년 3 학년합계 문학과예술 역사와철학 사회와이념 선택 학점계 학년 2 학년 3 학년합계비고 14 (15) 13 (14) 27 (29) 2

핵 1 학년 2 학년 3 학년합계 문학과예술 역사와철학 사회와이념 선택 학점계 학년 2 학년 3 학년합계비고 14 (15) 13 (14) 27 (29) 2 1 학년 2 학년 3 학년 합계 6 5 11 5 5 16 문학과예술 핵 역사와철학 사회와이념 선택 4 4 1 1 3 3 6 11 학점계 12 12 24 5 1 6 3 3 6 36 ㆍ제 2 외국어이수규정 이수규정 또는 영역에서 과목 학점 이수하고 수량적석과추론 과학적사고와실험 에서 과목 학점 이수해도됨 외국어및고전어 중급이상외국어및고전어과목명 핵 1 학년 2

More information

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB> 최신 ICT 이슈 최신 ICT 이슈 알파고의 심층강화학습을 뒷받침한 H/W 와 S/W 환경의 진화 * 알파고의 놀라운 점은 바둑의 기본규칙조차 입력하지 않았지만 승리 방식을 스스로 알아 냈다는 것이며, 알파고의 핵심기술인 심층강화학습이 급속도로 발전한 배경에는 하드웨 어의 진화와 함께 오픈소스화를 통해 발전하는 AI 관련 소프트웨어들이 자리하고 있음 2014

More information

이슈분석 Ⅰ. 기술개요및현황 1. 기술개요 정의 스마트자동차는기계중심의자동차기술에전기 전자, 정보통신기술을융 복합하여교통사고를획기적으로저감하고, 탑승자의만족을극대화시키는자동차임 - 차량센서및소프트웨어, 운전자 - 자동차인터페이스 (HMI 1) ), 자동차 - 주변환경및

이슈분석 Ⅰ. 기술개요및현황 1. 기술개요 정의 스마트자동차는기계중심의자동차기술에전기 전자, 정보통신기술을융 복합하여교통사고를획기적으로저감하고, 탑승자의만족을극대화시키는자동차임 - 차량센서및소프트웨어, 운전자 - 자동차인터페이스 (HMI 1) ), 자동차 - 주변환경및 스마트자동차기술현황및대외기술경쟁력분석 기술평가부곽병근연구원장병호연구원 Ⅰ. 기술개요및현황 Ⅲ. 결론및시사점 Ⅱ. 대외기술경쟁력분석 최근자동차운전자의편의기술에대한요구가증가하고자동차에대한안전규제가강화되면서, 자동차를기존의기계적인차량보조시스템보다능동적으로제어할수있는기술이개발되고있다. 스마트자동차는기계중심의자동차기술에전기 전자, 정보통신기술을융 복합한자동차로, 완성차업체,

More information

오토 2, 3월호 내지최종

오토 2, 3월호 내지최종 Industry Insight 인사이드 블루투스 자동차와 블루투스의 공존법칙 운전 중 휴대전화 사용을 금지하는 법률이 세계적으로 확산되고 있으며, 블루투스(Bluetooth) 기반의 핸즈프리 기능을 이용하는 것이 이에 대한 확실한 대안으로 자리잡았다. 그러나 차기 무선 멀티미디어 스트리밍에 관해서는 어떤 일이 일어날 지 아무도 알 수 없다. 글 윤 범 진 기자

More information

Microsoft Word - PLC제어응용-2차시.doc

Microsoft Word - PLC제어응용-2차시.doc 과정명 PLC 제어응용차시명 2 차시. 접점명령 학습목표 1. 연산개시명령 (LOAD, LOAD NOT) 에대하여설명할수있다. 2. 직렬접속명령 (AND, AND NOT) 에대하여설명할수있다. 3. 병렬접속명령 (OR, OR NOT) 에대하여설명할수있다. 4.PLC의접점명령을가지고간단한프로그램을작성할수있다. 학습내용 1. 연산개시명령 1) 연산개시명령 (LOAD,

More information

TGDPX white paper

TGDPX white paper White Paper DDoS 공격 대응의 새로운 패러다임 AhnLab TrusGuard DPX Revision Version: AhnLab TrusGuard DPX White Paper ver. 1.0 Release Date: April, 2010 AhnLab, Inc. 6th Fl., CCMM Bldg. 12 Yeouido-dong, Yeongdeungpo-gu,

More information

CR2006-41.hwp

CR2006-41.hwp 연구책임자 가나다 순 머 리 말 2006년 12월 한국교육학술정보원 원장 - i - - ii - - iii - 평가 영역 1. 교육계획 2. 수업 3. 인적자원 4. 물적자원 5. 경영과 행정 6. 교육성과 평가 부문 부문 배점 비율(%) 점수(점) 영역 배점 1.1 교육목표 3 15 45점 1.2 교육과정 6 30 (9%) 2.1 수업설계 6 30 2.2

More information

클라우드컴퓨팅확산에따른국내경제시사점 클라우드컴퓨팅확산에따른국내경제시사점 * 1) IT,,,, Salesforce.com SaaS (, ), PaaS ( ), IaaS (, IT ), IT, SW ICT, ICT IT ICT,, ICT, *, (TEL)

클라우드컴퓨팅확산에따른국내경제시사점 클라우드컴퓨팅확산에따른국내경제시사점 * 1) IT,,,, Salesforce.com SaaS (, ), PaaS ( ), IaaS (, IT ), IT, SW ICT, ICT IT ICT,, ICT, *, (TEL) 클라우드컴퓨팅확산에따른국내경제시사점 클라우드컴퓨팅확산에따른국내경제시사점 * 1) IT,,,, Salesforce.com SaaS (, ), PaaS ( ), IaaS (, IT ), IT, SW ICT, ICT IT ICT,, ICT, *, (TEL) 02-570-4352 (e-mail) jjoon75@kisdi.re.kr 1 The Monthly Focus.

More information

딥러닝 첫걸음

딥러닝 첫걸음 딥러닝첫걸음 4. 신경망과분류 (MultiClass) 다범주분류신경망 Categorization( 분류 ): 예측대상 = 범주 이진분류 : 예측대상범주가 2 가지인경우 출력층 node 1 개다층신경망분석 (3 장의내용 ) 다범주분류 : 예측대상범주가 3 가지이상인경우 출력층 node 2 개이상다층신경망분석 비용함수 : Softmax 함수사용 다범주분류신경망

More information

Event_POR_Template

Event_POR_Template GTCX KOREA 2016 스폰서쉽안내 GPU TECHNOLOGY CONFERENCE GPU Technology Conference( 이하 GTC) 는 GPU 개발자및생태계전체를대상으로개최되는매우크고중요한행사입니다. 올해 NVIDIA 본사주최로실리콘밸리에서개최된 GTC 2016 에서는 600 개가넘는세션을통해컴퓨팅에지대한영향을준딥러닝의발전에대해조명했습니다.

More information

기획 1 서울공대생에게 물었다 글 재료공학부 1, 이윤구 재료공학부 1, 김유리 전기정보공학부 1, 전세환 편집 재료공학부 3, 오수봉 이번 서울공대생에게 물었다! 코너는 특별히 설문조사 형식으로 진행해 보려고 해 요. 설문조사에는 서울대학교 공대 재학생 121명, 비

기획 1 서울공대생에게 물었다 글 재료공학부 1, 이윤구 재료공학부 1, 김유리 전기정보공학부 1, 전세환 편집 재료공학부 3, 오수봉 이번 서울공대생에게 물었다! 코너는 특별히 설문조사 형식으로 진행해 보려고 해 요. 설문조사에는 서울대학교 공대 재학생 121명, 비 2015 autumn 공대상상 예비 서울공대생을 위한 서울대 공대 이야기 Vol. 13 Contents 02 기획 서울공대생에게 물었다 극한직업 공캠 촬영 편 Fashion in SNU - 단체복 편 서울대 식당, 어디까지 먹어 봤니? 12 기획 연재 기계항공공학부 기계항공공학부를 소개합니다 STEP 01 기계항공공학부에 대한 궁금증 STEP 02 동문 인터뷰

More information

- i - - ii - - iii - - iv - - v - - 1 - 정책 비전차원 조직관리차원 측정 감시차원 정보보호 윤리적 차원 인식차원 - 2 - - 3 - - 4 - < 표 1> 정보보호산업과다른 IT 산업의성장률 (2001~2007) 비교 자료출처 : ETRI 2002 정보통신기술산업전망 (2002년~2006년) < 표 2> 세계정보보호시장전망

More information

[서비스] 1. 오프닝 네트워킹 파티 (전체 공통) (1/13(월) 밤 9시) FAST TRACK ASIA와 CAMP에 대해 소개하고, 3개 코스의 전체 참가자들의 소개 및 네트워킹을 진행합니다. 2. 패스트트랙아시아 파트너 CEO들과의 네트워킹 파티 (전체 공통) (

[서비스] 1. 오프닝 네트워킹 파티 (전체 공통) (1/13(월) 밤 9시) FAST TRACK ASIA와 CAMP에 대해 소개하고, 3개 코스의 전체 참가자들의 소개 및 네트워킹을 진행합니다. 2. 패스트트랙아시아 파트너 CEO들과의 네트워킹 파티 (전체 공통) ( 대학생 대상 CAMP 일정표 (6주, 12개 강의 + 6개 서비스) [강의] 1. 사업계획서 작성의 모든 것 (1/14(화) 오전 10시) 사업계획서 작성에 필요한 실무 지식과 유의해야 할 점들을 설명하고, 샘플 사업계획서들을 살펴봅니다. 2. 운명을 함께 할 공동창업자 및 초기 핵심멤버를 구하는데 고려해야 할 점들 (1/16(목) 오전 10시) 공동창업자와

More information

3. 제정조례안 : 붙임 4. 예산수반사항 : 없음 5. 관계법령발췌서 : 붙임 - 2 -

3. 제정조례안 : 붙임 4. 예산수반사항 : 없음 5. 관계법령발췌서 : 붙임 - 2 - 안양시도로조명시설설치및관리에관한조례안 1. 제정이유 2. 주요내용 - 1 - 3. 제정조례안 : 붙임 4. 예산수반사항 : 없음 5. 관계법령발췌서 : 붙임 - 2 - 안양시도로조명시설설치및관리에관한조례안 - 3 - ➃ - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - 별표 1 도로및교통의종류에따른도로조명등급 ( 제 6 조관련 ),,.,,,,,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Deep Learning 작업환경조성 & 사용법 ISL 안재원 Ubuntu 설치 작업환경조성 접속방법 사용예시 2 - ISO file Download www.ubuntu.com Ubuntu 설치 3 - Make Booting USB Ubuntu 설치 http://www.pendrivelinux.com/universal-usb-installer-easy-as-1-2-3/

More information

2016년 신호등 4월호 내지A.indd

2016년 신호등 4월호 내지A.indd www.koroad.or.kr E-book 04 2016. Vol. 428 30 C o n t e n t s 08 50 24 46 04 20 46,, 06 24 50!! 08? 28, 54 KoROAD(1)! 12 30 58 KoROAD(2) (School Zone) 16 60 34 18 62 38, 64 KoROAD, 40 11 (IBA) 4!, 68. 428

More information

슬라이드 1

슬라이드 1 마이크로컨트롤러 2 (MicroController2) 2 강 ATmega128 의 external interrupt 이귀형교수님 학습목표 interrupt 란무엇인가? 기본개념을알아본다. interrupt 중에서가장사용하기쉬운 external interrupt 의사용방법을학습한다. 1. Interrupt 는왜필요할까? 함수동작을추가하여실행시키려면? //***

More information

Microsoft PowerPoint SDK설치.HelloAndroid(1.5h).pptx

Microsoft PowerPoint SDK설치.HelloAndroid(1.5h).pptx To be an Android Expert 문양세강원대학교 IT 대학컴퓨터학부 개발환경구조및설치순서 JDK 설치 Eclipse 설치 안드로이드 SDK 설치 ADT(Androd Development Tools) 설치 AVD(Android Virtual Device) 생성 Hello Android! 2 Eclipse (IDE) JDK Android SDK with

More information

슬라이드 1

슬라이드 1 강력한성능! 인터넷 / 업무용데스크탑 PC NX-H Series Desktop PC NX1- H700/H800/H900 NX2- H700/H800/H900 NX1-H Series 사양 Series 제품설명 ( 모델명 ) NX1-H Series, 슬림타입 기본형모델중보급형모델고급형모델 NX1-H800:112SN NX1-H800:324SN NX1-H800:534MS

More information

<B3EDB4DC28B1E8BCAEC7F6292E687770>

<B3EDB4DC28B1E8BCAEC7F6292E687770> 1) 초고를읽고소중한조언을주신여러분들게감사드린다. 소중한조언들에도불구하고이글이포함하는오류는전적으로저자개인의것임을밝혀둔다. 2) 대표적인학자가 Asia's Next Giant: South Korea and Late Industrialization, 1990 을저술한 MIT 의 A. Amsden 교수이다. - 1 - - 2 - 3) 계량방법론은회귀분석 (regression)

More information

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB> 주간기술동향 2016. 2. 24. 최신 ICT 이슈 인공지능 바둑 프로그램 경쟁, 구글이 페이스북에 리드 * 바둑은 경우의 수가 많아 컴퓨터가 인간을 넘어서기 어려움을 보여주는 사례로 꼽혀 왔 으며, 바로 그런 이유로 인공지능 개발에 매진하는 구글과 페이스북은 바둑 프로그램 개 발 경쟁을 벌여 왔으며, 프로 9 단에 도전장을 낸 구글이 일단 한발 앞서 가는

More information

KD2002-27-02.hwp

KD2002-27-02.hwp 개인의 지식창출시스템 구축을 위한 개념화 모델 16) 요 약 정보의 홍수를 이루고 있는 지식 정보사회에서 자신에게 가장 적합한 정보를 신속하게 받아들이 고, 이를 유의미한 지식으로 변형하여 적절한 상황에 활용할 수 있는 지식창출 능력은 매우 중요하 다. 현재까지 지식의 속성이나 인지활동은 여러 학자들에 의해 다양한 접근방법으로 연구되어 왔으 나, 이러한 연구들을

More information

..,. Job Flow,. PC,.., (Drag & Drop),.,. PC,, Windows PC Mac,.,.,. NAS(Network Attached Storage),,,., Amazon Web Services*.,, (redundancy), SSL.,. * A

..,. Job Flow,. PC,.., (Drag & Drop),.,. PC,, Windows PC Mac,.,.,. NAS(Network Attached Storage),,,., Amazon Web Services*.,, (redundancy), SSL.,. * A ..,. Job Flow,. PC,.., (Drag & Drop),.,. PC,, Windows PC Mac,.,.,. NAS(Network Attached Storage),,,., Amazon Web Services*.,, (redundancy), SSL.,. * Amazon Web Services, Inc.. ID Microsoft Office 365*

More information

[Summary] 첨단운전자지원시스템 (ADAS) 는차량내카메라와센서를통해운전자의안전운행과편의등을지원하는시스템 경보를통해안전운전을지원하는단계에서충돌방지를위해자동차스스로제어하는시스템으로발전하고있음 준중형급차량으로 ADAS가확대적용되는등 ADAS 기술이대중화대고있음 또한국

[Summary] 첨단운전자지원시스템 (ADAS) 는차량내카메라와센서를통해운전자의안전운행과편의등을지원하는시스템 경보를통해안전운전을지원하는단계에서충돌방지를위해자동차스스로제어하는시스템으로발전하고있음 준중형급차량으로 ADAS가확대적용되는등 ADAS 기술이대중화대고있음 또한국 2016. 10. 17 (16-78 호 ) : 첨단운전자보조시스템 (ADAS) 의성장과보험시장영향 첨단운전자지원시스템 (ADAS) 개요 첨단운전자지원시스템시장현황 보험시장영향 [Summary] 첨단운전자지원시스템 (ADAS) 는차량내카메라와센서를통해운전자의안전운행과편의등을지원하는시스템 경보를통해안전운전을지원하는단계에서충돌방지를위해자동차스스로제어하는시스템으로발전하고있음

More information

슬라이드 1

슬라이드 1 스마트공장설계, 운영을위한 공장 CPS 기술 성균관대학교공과대학 노상도 (sdnoh@skku.edu) 스마트공장 (Smart Factory) 전통제조업에 ICT 결합 공장설비와제품, 공정이지능화되어서로연결 생산정보와지식이실시간으로공유, 활용되어생산최적화 상 하위공장들이연결, 협업적운영으로개인 맞춤형제품생산이 가능한네트워크생산 (Roland Berger, INDUSTRY

More information

THE TITLE

THE TITLE Android System & Launcher Team 8 목차 Android 1) Android Feature 2) Android Architecture 3) Android 개발방법 4) Android Booting Process Dalvik 1) Dalvik VM 2) Dalvik VM Instance Application 1) Application Package

More information

Data Industry White Paper

Data Industry White Paper 2017 2017 Data Industry White Paper 2017 1 3 1 2 3 Interview 1 ICT 1 Recommendation System * 98 2017 Artificial 3 Neural NetworkArtificial IntelligenceAI 2 AlphaGo 1 33 Search Algorithm Deep Learning IBM

More information

4 차산업혁명과지식서비스 l 저자 l 한형상 / 한국산업기술평가관리원지식서비스 PD 김 현 / 한국전자통신연구원 IoT 연구본부장 SUMMARY 4차산업혁명의성격은초연결 초융합 초지능의세키워드로요약된다. 초연결은사람, 사물등객체간의상호연결성이확장됨을말하며이는곧실시간데이

4 차산업혁명과지식서비스 l 저자 l 한형상 / 한국산업기술평가관리원지식서비스 PD 김 현 / 한국전자통신연구원 IoT 연구본부장 SUMMARY 4차산업혁명의성격은초연결 초융합 초지능의세키워드로요약된다. 초연결은사람, 사물등객체간의상호연결성이확장됨을말하며이는곧실시간데이 4 차산업혁명과지식서비스 l 저자 l 한형상 / 한국산업기술평가관리원지식서비스 PD 김 현 / 한국전자통신연구원 IoT 연구본부장 SUMMARY 4차산업혁명의성격은초연결 초융합 초지능의세키워드로요약된다. 초연결은사람, 사물등객체간의상호연결성이확장됨을말하며이는곧실시간데이터공유가질적 양적으로크게확대됨을의미한다. 초융합은초연결환경의조성으로이전에는생각할수없었던異種기술

More information

2 Journal of Disaster Prevention

2 Journal of Disaster Prevention VOL.13 No.4 2011 08 JOURNAL OF DISASTER PREVENTION CONTENTS XXXXXX XXXXXX 2 Journal of Disaster Prevention 3 XXXXXXXXXXXXXXX XXXXXXXXXXXXXX 4 Journal of Disaster Prevention 5 6 Journal of Disaster Prevention

More information

CODE (%) 538 211 392,92 43. 212HEV, 213PHEV EV FCEV LG 5191 1 253,818 33.9 211 GM Volt 1233,, xev 247,253 46.6 HL (, 51%, LG 49%), 2 SK 9677 EV, BlueO

CODE (%) 538 211 392,92 43. 212HEV, 213PHEV EV FCEV LG 5191 1 253,818 33.9 211 GM Volt 1233,, xev 247,253 46.6 HL (, 51%, LG 49%), 2 SK 9677 EV, BlueO Issue (2) 3772-1543 kdjsteel@goodi.com 3 :,, 211 ( ), GreenCar Player 18 5 CODE (%) 538 211 392,92 43. 212HEV, 213PHEV EV FCEV LG 5191 1 253,818 33.9 211 GM Volt 1233,, xev 247,253 46.6 HL (, 51%, LG 49%),

More information

<4D6963726F736F667420576F7264202D204D61726B65742049737375655F20C7C9C5D7C5A92C20C0CCB9CC20BBFDC8B020BCD320C0CFBBF3C0D4B4CFB4D95F31323232>

<4D6963726F736F667420576F7264202D204D61726B65742049737375655F20C7C9C5D7C5A92C20C0CCB9CC20BBFDC8B020BCD320C0CFBBF3C0D4B4CFB4D95F31323232> 포트폴리오전략팀 김철영 02-6114-1664 cy.kim@hdsrc.com 2016 유망 이슈 Vol Ⅳ 핀테크(Fintech) - 이미 생활 속 일상입니다. SUMMARY 핀테크(Fintech), 2016년에도 금융, 인터넷 관련 산업의 최대 화두가 될 것으로 전망, 핀테크 관련 주요 키워드로 간편결제, 삼성페이, 인터넷뱅크 등 제시 글로벌 스마트폰 보급의

More information

wtu05_ÃÖÁ¾

wtu05_ÃÖÁ¾ 한 눈에 보는 이달의 주요 글로벌 IT 트렌드 IDG World Tech Update May C o n t e n t s Cover Story 아이패드, 태블릿 컴퓨팅 시대를 열다 Monthly News Brief 이달의 주요 글로벌 IT 뉴스 IDG Insight 개발자 관점에서 본 윈도우 폰 7 vs. 아이폰 클라우드 컴퓨팅, 불만 검증 단계 돌입 기업의

More information

Microsoft Word - 아이오이닉.doc_WBeuqC7MfTAVFRUsMicv

Microsoft Word - 아이오이닉.doc_WBeuqC7MfTAVFRUsMicv Issue & Pitch 자동차/부품 (Overweight) 현대차 HEV 아이오닉 공개 전에 보는 Appetizer Jan. 216 6 자동차/부품 문용권 ykmoon@ktb.co.kr 자동차/철강 김재현 alexjh87@ktb.co.kr Issue 현대차는 16년 1월 6일 미디어를 대상으로 '아이오닉'을 최초 공개 할 예정. 이에 따라 주요 시장 HEV

More information

Windows 8에서 BioStar 1 설치하기

Windows 8에서 BioStar 1 설치하기 / 콘텐츠 테이블... PC에 BioStar 1 설치 방법... Microsoft SQL Server 2012 Express 설치하기... Running SQL 2012 Express Studio... DBSetup.exe 설정하기... BioStar 서버와 클라이언트 시작하기... 1 1 2 2 6 7 1/11 BioStar 1, Windows 8 BioStar

More information

hwp

hwp 100% Concentration rate (%) 95% 90% 85% 80% 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 Time (min) Control box of RS485 Driving part Control trigger Control box of driving car Diaphragm Lens of camera Illumination

More information

170918_hjk_datayanolja_v1.0.1.

170918_hjk_datayanolja_v1.0.1. 모 금융회사 오픈소스 및 머신러닝 도입 이야기 김 형 준 2 0 발표자소개 1 인터넷폐쇄망에서분석시스템구축 (feat. 엔지니어가없을때 ) 2 분석보고서자동화 3 Machine Learning 삽질기 ( 분석 & 개발 ) 3 0 발표자소개 1 인터넷폐쇄망에서분석시스템구축 (feat. 엔지니어가없을때 ) 2 분석보고서자동화하기 3 Machine Learning

More information

<B3EDB9AEC0DBBCBAB9FD2E687770>

<B3EDB9AEC0DBBCBAB9FD2E687770> (1) 주제 의식의 원칙 논문은 주제 의식이 잘 드러나야 한다. 주제 의식은 논문을 쓰는 사람의 의도나 글의 목적 과 밀접한 관련이 있다. (2) 협력의 원칙 독자는 필자를 이해하려고 마음먹은 사람이다. 따라서 필자는 독자가 이해할 수 있는 말이 나 표현을 사용하여 독자의 노력에 협력해야 한다는 것이다. (3) 논리적 엄격성의 원칙 감정이나 독단적인 선언이

More information

SuaKITBrochure_v2.2_KO

SuaKITBrochure_v2.2_KO SuaKIT Deep Learning S/W Library for Machine Vision http://www.sualab.com sales@sualab.com 영업문의 02-6264-0362 일반문의 02-6264-0366 S UAL AB IN TROD UCTION S U A L A B INT RO DUCT IO N 수아랩 솔루션 고객사 수아랩은 딥러닝과

More information

2 D drive L L 8 4 CONTENTS Mercedes-Benz Truck Magazine no.26 cover story Winter Vol T F

2 D drive L L 8 4 CONTENTS Mercedes-Benz Truck Magazine no.26 cover story Winter Vol T F Mercedes-Benz Truck Magazine 2016 Winter - vol.26 Mercedes-Benz Truck Magazine - vol.26-2016. Winter 2 D drive 06 3551L 8 4 3551L 8 4 CONTENTS Mercedes-Benz Truck Magazine no.26 cover story 50 30 26 2016

More information

EndNote X2 초급 분당차병원도서실사서최근영 ( )

EndNote X2 초급 분당차병원도서실사서최근영 ( ) EndNote X2 초급 2008. 9. 25. 사서최근영 (031-780-5040) EndNote Thomson ISI Research Soft의 bibliographic management Software 2008년 9월현재 X2 Version 사용 참고문헌 (Reference), Image, Fulltext File 등 DB 구축 참고문헌 (Reference),

More information

ㅇ / (, / ) 1 AI (20 ) % 80 N/A N/A 2 AI 10 N/A N/A 3 % % / 93% (, MS ) 80%(, ) fps 30 N/A N/A 6 2 N/A N/A 1 AI 6 SW 2 7 SW (BM) : ( ),

ㅇ / (, / ) 1 AI (20 ) % 80 N/A N/A 2 AI 10 N/A N/A 3 % % / 93% (, MS ) 80%(, ) fps 30 N/A N/A 6 2 N/A N/A 1 AI 6 SW 2 7 SW (BM) : ( ), AI AI ㅇ (AI) ㅇ R&D ㅇ AI (SW) ㅇ : AI AI (TRL : [] 3 [] 7) AI ㅇ / (, / ) 1 AI (20 ) % 80 N/A N/A 2 AI 10 N/A N/A 3 % 95 90 4 % 90 85 5 / 93% (, MS ) 80%(, ) fps 30 N/A N/A 6 2 N/A N/A 1 AI 6 SW 2 7 SW (BM)

More information

Ⅰ. 스마트퍼스널모빌리티 ( 개인형이동수단 ) 주요분야별개발동향과시장전망 1. 스마트퍼스널모빌리티의최근동향과산업현황 1-1. 스마트퍼스널모빌리티개관및최근동향 1-2. 스마트퍼스널모빌리티산업현황 1) 글로벌스마트퍼스널모빌리티시장동향과전망 (1) 전동입식이륜차 (2) 전기

Ⅰ. 스마트퍼스널모빌리티 ( 개인형이동수단 ) 주요분야별개발동향과시장전망 1. 스마트퍼스널모빌리티의최근동향과산업현황 1-1. 스마트퍼스널모빌리티개관및최근동향 1-2. 스마트퍼스널모빌리티산업현황 1) 글로벌스마트퍼스널모빌리티시장동향과전망 (1) 전동입식이륜차 (2) 전기 Ⅰ. 스마트퍼스널모빌리티 ( 개인형이동수단 ) 주요분야별개발동향과시장전망 1. 스마트퍼스널모빌리티의최근동향과산업현황 1-1. 스마트퍼스널모빌리티개관및최근동향 1-2. 스마트퍼스널모빌리티산업현황 1) 글로벌스마트퍼스널모빌리티시장동향과전망 (1) 전동입식이륜차 (2) 전기자전거 (3) 초소형전기차 2) 국내스마트퍼스널모빌리티시장및개발동향 3) 스마트퍼스널모빌리티의인증동향

More information

지난 10월 6일과 12일

지난 10월 6일과 12일 글로벌 정보통신(ICT) 방송 동향리포트 제 98호 l Ver. 2013. 05. 02 2013년 글로벌 주요 IT 사업자들의 M&A 현황 2013년 초, 글로벌 주요 IT 사업자들의 M&A 진행 현황 Google, Amazon, Facebook, Twitter 등 글로벌 주요 IT 사업자들의 M&A가 2013년 상반기 활발히 진행되고 있음 - 2013년 4월

More information

KRnet 2017 G2-2

KRnet 2017 G2-2 [G2-2] 자율주행을위한인공지능기술 2017 년 6 월엑셈 CTO 박재호 (jaypark@ex-em.com) 제약 LIMITATION 2 미연방고속도로교통안전국 (NHTSA) 의 자율주행차량 5 단계 0 단계자동화없음 1 단계특정기능에만초점을맞춘자동화 2 단계결합된기능자동화 3 단계제한된자율주행자동화 언론에서이야기하는자율주행차량 4 단계는완전자율주행자동화

More information