74 연구논문 자동차부품의원격레이저용접기술 서정 * 이문용 ** 정병훈 ** 송문종 ** 강희신 * 김정오 * * 한국기계연구원레이저공정연구팀 ** ( 주 ) 성우하이텍기술연구소 Remote Welding of Automobile Components using CO 2 Laser and Scanner Jeong Suh*, Mun-Yong Lee**, Beong-Hun Jung**, Mun-Jong Song**, Hie-Sin Kang* and Jeong-O Kim* *Korea Institute of Machinery & Materials, Laser Application Team, Daejon 305-343, Korea **Technical Institute of Sungwoo Hitech Co., LTD, Busan 619-961, Korea *Corresponding author : jsuh@kimm.re.kr (Received June 17, 2008 ; Revised September 29, 2008 ; Accepted October 6, 2008) Abstract The laser welding of the car body and components has been spread in the automotive industry. The Nd:YAG laser welding system could be used in 3D welding with robot. However, this system cannot efficiently reduce the welding cycle time according to various welding sequences because the robot s moving time is same that of the resistant spot welding system. But the remote welding system with high power CO 2 laser and scanner makes it possible welding cycle time much faster than the robot laser welding system. In the CO 2 laser remote welding system, laser beam can be rapidly transferred to a workpiece by moving mirrors of scanner system. So, it makes reducing the cycle time of welding process and shaping various welding patterns easily. Therefore, in this paper, the characteristic of weld strength according to patterns of weld bead on CO 2 laser welding was investigated. Also, the relationship between shape of weld bead and value of tensile load was studied. Finally, the optimum remote welding condition for car bumper was investigated. Key Words : Remote laser welding, CO 2 laser, Scanner, Patterns of weld bead, Car bumper 1. 서론 자동차의경량화및고성능화를위한연구개발의가속화와병행하여차체의고강도화, 경량화, 생산성향상기술등이지속적으로연구개발되고있다. 따라서, 기존의저항점용접 (Spot 용접 ) 을기초로한자동차설계및생산방식의경제적 기술적한계를극복하고차체경량화, 안전도향상, 생산성향상을달성하기위하여 TB(Tailored Blank) 레이저용접및적용기술과 3차원레이저용접기술이자동차업계의핵심기술로대두되고있다 1-6). 선진국에서 1995 년에자동차차체부품양산에적용한레이저용접기술은다관절산업용로봇에 Nd:YAG 레이저헤드를장착하여용접플랜지면을용접하는기술이며, 기존의 Spot 용접에비교하여 45% 의용접시간단축으로생산성을향상시켰으며, 국내에서도이에대한연구결과가보고되고있다 7,8). 한편, Nd:YAG 레이저용접로봇시스템의투자비가기존의 Spot 용접시스템대비하여 6배이상고가의용접시스템이므로생산라인에적용이빠르게확대되지못하고있다. 이러한상황을극복하기위해선진레이저장비메이커에서개발된 CO 2 레이저원격용접시스템 (Remote Welding System, RWS) 은소재의용접표면으로부 506 Journal of KWJS, Vol. 26, No. 5, October, 2008
자동차부품의원격레이저용접기술 75 터약 800mm 이상의초점거리를가지는레이저빔을스캐너 (scanner) 시스템을이용하여특정용접부로급속하게편향시키는장비이다. 스캐너장비는레이저빔을 800 800mm 2 의작업영역 (xy 축 ) 내 700m/min 이상의속도로이동시키는미러 (mirror) 와 0~245mm의 z축초점거리를최대 60m/min 속도로조절 (dynamic focusing) 하는리니어가이드 (linear guide) 축으로구성되어있다. 따라서, 용접부로의레이저빔이동시간을거의무시할수있어용접사이클타임을축소할뿐아니라소재변형을줄이기위한최적의용접시퀀스를얻어낼수있는장점을가진다 9,10). 저항점용접의경우, 부품전체용접시간에서로봇의이동시간은실제용접시간의대략 4배임에비해 CO 2 레이저원격용접시스템에서는이동시간이전체용접시간의 1/10 이라는점을감안할때그차이를짐작할수있다. 또한, CO 2 레이저원격용접시스템에서는로봇이구현하기어려운용접패턴을자유로이구현할수있어일반스티치 (stitch) 용접뿐만아니라다양한형태의패턴적용이가능하다. 따라서, 본연구에서는 CO 2 레이저원격용접시스템을이용하여용접패턴에따른용접특성을분석하고, 실제범퍼용접에적용하기위한최적용접조건을조사하고자하였다. 2. 실험 2.1 실험재료 여러가지용접비드패턴과용접특성을알아보기위해서 SPRC440 냉간압연강판 ( 두께 : 1.0mm) 을사용하였으며, 재료의화학적성분은 Table 1에나타나있다. SPRC440 은자동차차체부품제작에사용되는냉간압연양가공성고장력강판이다. 용접비드패턴형상은, O, C, S, N 의형태를가진다. 특히 패턴은스티치 (stitch) 패턴이라고하며, 기준이되는용접비드패턴으로서길이는 25mm로설정되었다.( 기존의 spot 용접너깃의면적과동일하게규정 ) 원격레이저용접적용대상품인자동차범퍼의재료는 SPFC780 이며, 두께는 1.2mm이다. Fig. 1 CO 2 laser remote welding system 2.2 실험장치및방법 용접실험에사용한원격레이저용접시스템은 Fig. 1 과같다. 사용된레이저는연속출력파의 CO 2 레이저이며최대출력은 6kW, 빔모드는다중모드 (multimode) 이다. 레이저빔초점은시험편의표면으로설정하고, 용접조건은출력 3kW, 용접속도 2.2, 2.4, 2.6, 2.8, 3.0m/min, 보호가스는사용하지않고겹치기용접하였다. Fig. 2와 3은레이저용접지그 (jig) 및용접비드패턴을보여주고있다. Fig. 3에서용접길이는 형스티치패턴의길이와동일하게비드길이는 25mm를유지하도록설정하였다. 용접비드패턴형상에따른인장실험을수행하였다. 인장시험편은 Fig. 4와같이 KS B0851 호의규격으로제작하였다. 인장실험은최대용량 250kN 인유압식만능재료시험기를사용하였으며, 하중속도 20mm/min 으로실험하였다. Fig. 2 Laser welding jig & fixture Table 1 Chemical composition of specimen(wt.%) Material C Si Mn P S SPRC440 0.08 0.02 1.38 0.017 0.003 Fig. 3 Patterns of laser welding bead 大韓熔接 接合學會誌第 26 卷第 5 號, 2008 年 10 月 507
76 서정 이문용 정병훈 송문종 강희신 김정오 용접비드패턴과용접속도에따른인장하중치를보여준다. 실험치는용접비드패턴과속도에따른동일시험편을 3개씩제작한결과이다. 인장실험결과, C, N 모양의비드는모두용접부에서파단이일어났으며, O 와 S 패턴은모재에서파단이일어났다. 인장하중치의비교로부터, 인장하중은 C 패턴이가장높고 O, S,, N순으로높게나타났다.( 용접속도 2.6m/min 기준 ) 인장하중따른각비드패턴의특징을보면 O, N 패턴의경우용접속도가빠를수록인장하중치가높아지 Fig. 4 Geometry of specimen for tensile load test 비드패턴 - O 3. 실험결과및고찰 Fig. 5는용접속도 2.6m/min 에서용접비드패턴의전면, 후면및파단형상을보여주고있다. Fig. 6은 전면비드후면비드파단부 는경향이있다. 그리고모든패턴에서공통적으로보여지는현상으로서, 용접속도의변함에따라인장하중치가크게영향을받지않는것을알수있다. 이는일정한면적에복잡한형상으로조밀하게레이저빔이조사되면서열전도가원활하지않게되어열의집중이잘됨에따라용접속도의작은변화에는용접강도에대한영향이적은것으로사료된다. 이는 O, C, N의비드패턴에서도유사한경향을보인다. Fig. 7은용접비드패턴의접합부단면형상과용접의시작부및종료부근방의조직사진을나타내며 Fig. 8 은접합시작부, 중앙부및종료부에서의접합폭을보여주고있다. Middle 부의높이만을비교하면 S 및 N 패턴의코너부의비드폭은 패턴의비드폭에비하 Section of bead Part of wele start Part of weld end C S N Fig. 5 Photograph of front bead, back bead and fracture of specimens 패턴별인장하중 1200 인장하중 (kgf) 1100 1000 900 800 - O C S N 700 2.2 2.4 2.6 2.8 3 용접속도 (m/min) Fig. 6 Tensile load for various weld bead shape and welding speed Fig. 7 Micro structure for each geometry of weld bead 508 Journal of KWJS, Vol. 26, No. 5, October, 2008
자동차부품의원격레이저용접기술 77 여현저하게증가하고있으며, C와 O패턴의비드폭은오히려좁은형상이었다. 코너부에서의비드폭증가는용접시열전도의방향이코너부내측으로중첩됨에따라용융지의온도가증가하고, 높은온도에서레이저빔의흡수율이증가하기때문에용융지의폭이더욱증가했기때문으로고려된다. 시작부와종료부의미세조직사진에서는현저한조직상의차이는발견할수없으나 종료부의입계가다소조대화된것을관찰할수있다. 이또한시작부와종료부의열전도속도차이에따른온도상승과레이저빔의흡수율증가에기인한것으로고려할수있다. 그림 8에서전체비드폭은 N 패턴이가장높았으며 S,, O, C의순으로낮아졌다. Fig. 6의인장하중결과와비교하면비드의폭과반비례인결과를보였는데비드폭의크기, 즉이음부의너비가좁은 C 및 O 패턴이오히려높은인장하중을나타내는것은응력집중을완화시키고하중분산효과가큰형상을가지고있다는결론을얻을수있다. Fig. 9는 RWS 레이저용접시스템을사용하여자동차범퍼를용접하는장면을보여주고있다. (a) 는실제용접플라즈마가발생되는장면이며, 용접된범퍼는 (c) 와같다. 범퍼의용접부는 (b) 와같이양호함을알수있으며, 내부결함이전무하였다. 4. 결론 (a) (b) (c) Fig. 9 Remote laser welding for car bumper. (a) welding scene with RWS, (b) bead and cross section of welding result, (c) the car bumper 후 기 본연구는성장동력사업 ( 원격레이저용접로봇및응용기술개발 ) 지원하에수행되었습니다. 자동차차체부품소재로널리쓰이는 SPRC440 에대해 CO 2 레이저와스캐너시스템을이용하여다양한패턴의비드를적용해용접한후접합강도평가를수행하였다. C 형상이가장양호한패턴임을알수있었으며, RWS 장비를사용하여자동차범퍼용접실험을통해최적용접조건을도출하였으며, 생산성향상을확보할수있었다. Joining width, mm 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 - O C S N End Middle Start Geometry of weld bead Fig. 8 Joining width for each geometry of weld bead 참고문헌 1. Z. Abermen : Doors and Hoods Laser Welding Replace Gluing or Spot Welding, 25th ISATA Symposium, No. 921025, Florence Italy, 1992 2. N. T. Williams and W. Waddell : High Speed Resistance Seam Welding of Uncoated and Coated Steels, Technical Steel Research Commission of the European Communcations, Report No. EUR 1150 EN, 1988 3. T. Eimermann : Hem Flange Laser Welding, 25th ISATA Symposium, No. 921089, Florence Italy, 1992 4. F. Coste et al : A Rapid Seam Tracking Device for YAG and CO 2 High Speed Laser Welding, Proc. ICALEO (1998) 217-223 5. LIA Handbook of laser materials processing, Laser Institute of America, Magnolia Publishing Inc., 162-166, 2001 6. F. Coste et al : A Rapid Seam Tracking Device for YAG and CO 2 High Speed Laser Welding, Proc. ICALEO (1998) F217-223 7.B.H, Jung, M.R. Lee, J. Suh and H.S, Kang : Development of 3D Laser Welding Technology for 大韓熔接 接合學會誌第 26 卷第 5 號, 2008 年 10 月 509
78 서정 이문용 정병훈 송문종 강희신 김정오 Automobile Body, Proceedings of the 2005 Spring Annual Meeting of the Korean Welding Society (2005) 103-105 (in Korean) 8. H.S. Kang, J. Suh and T,D, Cho : Research on Industrial Robot Application Technology for Laser Welding of Car Body, Proceedings of the 2008 Spring Annual Meeting of the Korean Welding & Joining Society (2008) 23 (in Korean) 9. M. Grupp, T. Seefeild and F. Vollertsen : Laser Beam Welding with Scanner, WLT 2003 (2003) 375-379 10. Steffen Neumann, Claus Thomy, Thomas Seefeld and Frank Vollertsen : Distortion Minimization and Shielding gas flow Optimization in CO 2 Laser Remote Welding of Steel, BIAS Bremen Institute, 2006 11. M.J. Song, B.H. Jung, M.Y. Lee and J. Suh : High-speed laser welding technology of RWS for development of car bumper, Lasers in Manufacturing 2007 (2007) 63-66 510 Journal of KWJS, Vol. 26, No. 5, October, 2008