Parallel Computation of Neural Network

Size: px
Start display at page:

Download "Parallel Computation of Neural Network"

Transcription

1 Parallel Computation of Neural Network Sungjoo Ha September 8th, 2016 Sungjoo Ha 1 / 46

2 Parallel Computation 뉴럴넷의재기의원동력은많은데이터와병렬연산 최근 ASIC 기반의구현으로연구가옮겨가고있으나여전히가장많이활용되는것은 GPGPU GPGPU 를활용한뉴럴넷연산에필요한내용을설명 Computational graph GPU-friendly 한뉴럴넷표현 FFN, convolution Optimized implementation examples Sungjoo Ha 2 / 46

3 Computational Graph 연산을추상적인 DAG 로표현 이를바탕으로 forward pass 와 backward pass 의연산을쉽게이해할수있음 Sungjoo Ha 3 / 46

4 Computational Graph Example Sungjoo Ha 4 / 46

5 Forward Pass Sungjoo Ha 5 / 46

6 Gradient Computation Sungjoo Ha 6 / 46

7 Derivatives 간단히말해서 gradient 는특정변수의값을조금바꾸면다른값이어떻게바뀔지를계산하는것 인접한노드사이의계산은간단 인접한노드가아닌사이의계산은변수가도달할수있는모든 path 의 gradient 를전부더하면됨 Sungjoo Ha 7 / 46

8 Combinatorial Explosion 뉴럴넷처럼이전층의가중치가다음층의모든가중치에영향을주는방식이면가능한 path 의수가폭발함 적당히항을모아서계산하면이를피할수있음 일종의동적계획법 Sungjoo Ha 8 / 46

9 Forward Mode Differentiation Sungjoo Ha 9 / 46

10 Reverse Mode Differentiation Sungjoo Ha 10 / 46

11 Backpropagation Backpropagation = reverse mode differentiation 노드와노드사이의편미분계산은미리할수있음 이를미리구현하므로써 automatic differentiation 을수행 Sungjoo Ha 11 / 46

12 Deep Learning Library 현대의딥러닝라이브러리들은사용자가생성할수있는변수의종류가정해져있고, 변수에가할수있는연산의미분도미리구현해둠 사용자는제공된타입의변수와연산으로뉴럴넷을생성하고이는암묵적으로 computational graph 를이룸 이렇게만들어진 computational graph 를활용하면 backpropagation 을통해 gradient 를쉽게구할수있음 여기에더해서각연산을 GPU 에적합한꼴로바꿔주는역할도수행함 Sungjoo Ha 12 / 46

13 SIMD Single instruction multiple data nvidia 는 SIMD 라는표현대신 SIMT (thread) 라는용어를활용 같은연산을여러데이터에적용하는것이가능하면큰속도향상을볼수있음 행렬곱셈 Element-wise function application Reduction Scan (prefix sum) Sungjoo Ha 13 / 46

14 Neural Network Implementation in GPU 뉴럴넷연산은대부분행렬곱셈혹은 element-wise function application 과 reduction, scan 연산등으로표현가능 자세한설명은뒤에이어짐 동시에여러데이터를행렬꼴로입력 (mini-batch) Sungjoo Ha 14 / 46

15 FFN Forward Pass in Matrix Form Sungjoo Ha 15 / 46

16 FFN Backpropagation in Matrix Form Sungjoo Ha 16 / 46

17 Remarks Backpropagation 을위해 forward pass 에계산한중간결과들을들고있어야함 Gradient 를효율적으로모으는것이 (reduction) 단순하지는않음 Multi-GPU 시스템이빛을발하기어려운이유 단순히 mini-batch 를여러기계에뿌리는것으로는큰이득을보기힘듦 Sungjoo Ha 17 / 46

18 Convolution 현대의뉴럴넷에서가장비싼연산은 convolution 여러층의 convolution 을중첩시키며 나이브한구현은매우느림 Sungjoo Ha 18 / 46

19 Convolution Implementation 행렬연산으로변환 나이브한구현은추가적인메모리가필요할수있으며충분한속도개선을얻기도힘듦 FFT/Winograd 기반의방법 Convolution theorem 을활용 Under suitable conditions the Fourier transform of a convolution is the pointwise product of Fourier transforms FFT 는 O(n 2 ) 를 O(n log n) 으로떨어뜨림 추가메모리공간을많이필요 Stride 등의구현이쉽지않음 직접계산 코너케이스를잘처리하기위해개별구현이필요 잘구현하면타겟패러미터공간에서는매우빠름 Alex Krizhevsky 의 2012 ImageNet 우승구현체인 cuda-convnet Sungjoo Ha 19 / 46

20 Convolution in Matrix Form Sungjoo Ha 20 / 46

21 Convolution in Matrix Form 입력데이터를중복하여사용해서행렬꼴로변환 필터행렬과중복데이터행렬의곱으로 convolution 을계산 Sungjoo Ha 21 / 46

22 Convolution and FFT Convolution theorem 을활용한고속연산 원래공간에서의 convolution 이변환된공간에서의 element-wise 곱셈에대응됨을활용 Sungjoo Ha 22 / 46

23 Polynomial Multiplication f(x) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 g(x) = b 0 + b 1 x + b 2 x 2 h(x) = f(x)g(x) = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + c 4 x 4 + c 5 x 5 c 0 = a 0 b 0 c 1 = a 0 b 1 + a 1 b 0 c 2 = a 0 b 2 + a 1 b 1 + a 2 b 0 c 3 = a 1 b 2 + a 2 b 1 + a 3 b 0 c 4 = a 2 b 2 + a 3 b 1 c 5 = a 3 b 2 Sungjoo Ha 23 / 46

24 1D Convolution c 0 = a 0 b 0 c 1 = a 0 b 1 + a 1 b 0 c 2 = a 0 b 2 + a 1 b 1 + a 2 b 0 c 3 = a 1 b 2 + a 2 b 1 + a 3 b 0 c 4 = a 2 b 2 + a 3 b 1 c 5 = a 3 b 2 Sungjoo Ha 24 / 46

25 Convolution and Polynomial Multiplication Convolution 은 polynomial multiplication 문제로치환됨 다항함수의곱을취한뒤각항의계수를구하는것과같음 만약 polynomial multiplication 을빠르게수행할수있다면 convolution 도빠르게수행할수있음 Sungjoo Ha 25 / 46

26 Polynomial Representation 다항함수를표현하는두가지방법 Coefficient representation f(x) = a 0 + a 1x + a 2x 2 + a 3x 3 각항의계수 a i 를알면해당함수를안다고할수있음 Point-value representation x i, f(x i) 값을 n 개알면 n 1 차다항식을유일하게한정할수있음 Sungjoo Ha 26 / 46

27 Polynomial Multiplication 두다항함수의곱셈을 coefficient representation 에서수행하면 O(n 2 ) 의연산이필요함 Point-value representation 에서는 O(n) (2n 1 개의위치에서 ) Coefficient representation 에서 point-value representation 으로의변환이싸다면 O(n 2 ) 을줄일수있음 변환코스트가실제로는 O(n log n) Sungjoo Ha 27 / 46

28 FFT Basic Idea 다항함수를홀수 / 짝수차수로분해 공통된부분계산을활용해서 divide-and-conquer A(x) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4 + a 5 x 5 + a 6 x 6 + a 7 x 7 A even (x) = a 0 + a 2 x + a 4 x 2 + a 6 x 3 A odd (x) = a 1 + a 3 x + a 5 x 2 + a 7 x 3 A(x) = A even (x 2 ) + xa odd (x 2 ) A( x) = A even (x 2 ) xa odd (x 2 ) x에 1, i를넣으면 n 2 다항식에서두점을계산하는것으로원래다항식의네점을얻을수있음 Sungjoo Ha 28 / 46

29 FFT 위의아이디어와비슷하게 1 의 n 제곱근을 x 에넣는식으로 divide-and-conquer f f t ( n, A [ 0 : n 1]) { i f ( n == 1) r e t u r n A [ 0 ] E [ 0 : n /2 1] = f f t ( n / 2, A [ 0 : n 2:2]) D[ 0 : n /2 1] = f f t ( n / 2, A [ 1 : n 1:2]) f o r k = 0 to n /2 1 { wk = exp (2 p i k / n ) Y [ k ] = E [ k ] + wk D[ k ] Y [ k + n / 2 ] = E [ k ] wk D[ k ] } } r e t u r n Y [ 0 : n 1] Sungjoo Ha 29 / 46

30 FFT Remarks 역변환도거의같은꼴 변환비용이 O(n log n), 변환공간에서의곱셈이 O(n), 역변환이 O(n log n) 으로총 O(n log n) 시간복잡도 CUDA 플랫폼에서는 cufft 등을이미제공 Sungjoo Ha 30 / 46

31 CUDA Execution Model Sungjoo Ha 31 / 46

32 CUDA Execution Model 쓰레드, 블럭, 그리드의계층구조 계산단위는워프라불리는 32 개의쓰레드 같은워프에속하는쓰레드는같은연산을수행 Branch 가생기면다른연산을중복해서수행 하나의블럭은같은 streaming processor 에서수행 I/O 를기다리는워프가생기면워프스케쥴러가다른워프를실행 Sungjoo Ha 32 / 46

33 CUDA Memory Model Sungjoo Ha 33 / 46

34 CUDA Memory Model 모든메모리자원은동적할당됨 쓰레드는레지스터에접근할수있음 할당된레지스터를모두사용하면 spilling 이일어나며 global memory 를활용 같은블럭에위치한쓰레드들은 shared memory 를공유 (L2 캐시와같은종류의메모리 ) 특별한명령을사용해서 synchronization 가능 모든블럭 / 그리드는 global memory 를공유 Global memory 는 synchronization 을할방법이없음 새로운 kernel 을호출해야함 Sungjoo Ha 34 / 46

35 CUDA Performance Optimization I/O 밴드위스를최대한활용 빠른속도의메모리를활용 Bank conflict를회피 동시실행쓰레드를최대한늘림 (thread occupancy)... Sungjoo Ha 35 / 46

36 Matrix Multiplication 행렬곱셈은나이브한구현과최적화된구현의차이가큼 Shared memory 를활용한 coalesced 메모리접근이필요함 Sungjoo Ha 36 / 46

37 Naive Matrix Multiplication 행렬 A 에접근하는쓰레드는 global memory 에있는같은데이터를여러차례접근 Sungjoo Ha 37 / 46

38 Coalesced Access of Tile A 미리행렬 A 의데이터를읽어서 shared memory 에저장한뒤이를재활용 Sungjoo Ha 38 / 46

39 Coalesced Access of Tile B 비슷한방식으로행렬 B 의데이터를읽어서 shared memory 에저장한뒤이를재활용 Sungjoo Ha 39 / 46

40 Matrix Multiplication Remarks Shared memory 를활용한접근으로거의두배가량의속도를낼수있음 추가적으로연산도중데이터를미리읽어오는방식의 double buffering 등을활용하여더큰개선을볼수있음 더효율적인방법으로구현된 cublas 를이미제공 Sungjoo Ha 40 / 46

41 Reduction 여러개의값을하나로합치는연산 i x i Sungjoo Ha 41 / 46

42 Parallel Reduction Shared memory 에데이터를넣고 하나의쓰레드가인덱스의두배씩뛰며 reduction 수행 O(log n) 만에 reduction 완료 Sungjoo Ha 42 / 46

43 Parallel Reduction 2 동시에 shared memory 에접근할때연속되지않은접근은 bank conflict 발생 데이터에접근하는순서를변경 Sungjoo Ha 43 / 46

44 Reduction Remarks 추가적으로최적화기법이더있음 First add during load Loop unrolling Sungjoo Ha 44 / 46

45 References Convolution and FFT, Wayne, spr05/cos423/lectures/05fft.pdf, 2005 Fast Implementation of DGEMM on Fermi GPU, Tan et al. International Conference for High Performance Computing, Networking, Storage and Analysis, 2011 Optimizing Parallel Reduction in CUDA, Harris Artificial Neural Networks: Matrix Form (Part 5), Dolhansky, artificial-neural-networks-matrix-form-part-5, 2014 cudnn: Efficient Primitives for Deep Learning, Chetlur et al. ArXiv Preprint, 2014 Sungjoo Ha 45 / 46

46 References Learning Semantic Image Representations at a Large Scale, Jia, Technical Report, 2014 Why GEMM is at the heart of deep learning, Warden, why-gemm-is-at-the-heart-of-deep-learning/, 2015 Calculus on Computational Graphs: Backpropagation, Olah, CUDA C Best Practices Guide 7.5, nvidia, 2015 Fast Algorithms for Convolutional Neural Networks, Lavin and Gray, ArXiv Preprint, 2015 Sungjoo Ha 46 / 46

CUDA Programming Tutorial 2 - Memory Management – Matrix Transpose

CUDA Programming Tutorial 2 - Memory Management – Matrix Transpose CUDA Programming Tutorial 2 Memory Management Matrix Transpose Sungjoo Ha April 20th, 2017 Sungjoo Ha 1 / 29 Memory Management 병렬연산장치를활용하기위해하드웨어구조의이해를바탕에둔메모리활용이필요 CUDA 프로그래밍을하며알아야하는두가지메모리특성을소개 전치행렬계산을예제로

More information

Ⅱ. Embedded GPU 모바일 프로세서의 발전방향은 저전력 고성능 컴퓨팅이다. 이 러한 목표를 달성하기 위해서 모바일 프로세서 기술은 멀티코 어 형태로 발전해 가고 있다. 예를 들어 NVIDIA의 최신 응용프 로세서인 Tegra3의 경우 쿼드코어 ARM Corte

Ⅱ. Embedded GPU 모바일 프로세서의 발전방향은 저전력 고성능 컴퓨팅이다. 이 러한 목표를 달성하기 위해서 모바일 프로세서 기술은 멀티코 어 형태로 발전해 가고 있다. 예를 들어 NVIDIA의 최신 응용프 로세서인 Tegra3의 경우 쿼드코어 ARM Corte 스마트폰을 위한 A/V 신호처리기술 편집위원 : 김홍국 (광주과학기술원) 스마트폰에서의 영상처리를 위한 GPU 활용 박인규, 최호열 인하대학교 요 약 본 기고에서는 최근 스마트폰에서 요구되는 다양한 멀티미 디어 어플리케이션을 embedded GPU(Graphics Processing Unit)를 이용하여 고속 병렬처리하기 위한 GPGPU (General- Purpose

More information

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5> 주간기술동향 2016. 5.18. 컴퓨터 비전과 인공지능 장혁 한국전자통신연구원 선임연구원 최근 많은 관심을 받고 있는 인공지능(Artificial Intelligence: AI)의 성과는 뇌의 작동 방식과 유사한 딥 러닝의 등장에 기인한 바가 크다. 이미 미국과 유럽 등 AI 선도국에서는 인공지능 연구에서 인간 뇌 이해의 중요성을 인식하고 관련 대형 프로젝트들을

More information

08이규형_ok.hwp

08이규형_ok.hwp (JBE Vol. 18, No. 2, March 2013) (Regular Paper) 18 2, 2013 3 (JBE Vol. 18, No. 2, March 2013) http://dx.doi.org/10.5909/jbe.2013.18.2.204 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) DVB-T GPU FFT a),

More information

3 : OpenCL Embedded GPU (Seung Heon Kang et al. : Parallelization of Feature Detection and Panorama Image Generation using OpenCL and Embedded GPU). e

3 : OpenCL Embedded GPU (Seung Heon Kang et al. : Parallelization of Feature Detection and Panorama Image Generation using OpenCL and Embedded GPU). e (JBE Vol. 19, No. 3, May 2014) (Special Paper) 19 3, 2014 5 (JBE Vol. 19, No. 3, May 2014) http://dx.doi.org/10.5909/jbe.2014.19.3.316 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) OpenCL Embedded GPU

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 System Software Experiment 1 Lecture 5 - Array Spring 2019 Hwansoo Han (hhan@skku.edu) Advanced Research on Compilers and Systems, ARCS LAB Sungkyunkwan University http://arcs.skku.edu/ 1 배열 (Array) 동일한타입의데이터가여러개저장되어있는저장장소

More information

Ch 1 머신러닝 개요.pptx

Ch 1 머신러닝 개요.pptx Chapter 1. < > :,, 2017. Slides Prepared by,, Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 1.1 3 1.2... 7 1.3 10 1.4 16 1.5 35 2 1 1.1 n,, n n Artificial

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2014 Nov.; 25(11), 11351141. http://dx.doi.org/10.5515/kjkiees.2014.25.11.1135 ISSN 1226-3133 (Print)ISSN 2288-226X (Online)

More information

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 비트연산자 1 1 비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2 진수법! 2, 10, 16, 8! 2 : 0~1 ( )! 10 : 0~9 ( )! 16 : 0~9, 9 a, b,

More information

Microsoft PowerPoint - 알고리즘_5주차_1차시.pptx

Microsoft PowerPoint - 알고리즘_5주차_1차시.pptx Basic Idea of External Sorting run 1 run 2 run 3 run 4 run 5 run 6 750 records 750 records 750 records 750 records 750 records 750 records run 1 run 2 run 3 1500 records 1500 records 1500 records run 1

More information

Introduction to Deep learning

Introduction to Deep learning Introduction to Deep learning Youngpyo Ryu 동국대학교수학과대학원응용수학석사재학 youngpyoryu@dongguk.edu 2018 년 6 월 30 일 Youngpyo Ryu (Dongguk Univ) 2018 Daegu University Bigdata Camp 2018 년 6 월 30 일 1 / 66 Overview 1 Neuron

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING

More information

Microsoft PowerPoint - AC3.pptx

Microsoft PowerPoint - AC3.pptx Chapter 3 Block Diagrams and Signal Flow Graphs Automatic Control Systems, 9th Edition Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois 1 Introduction In this chapter,

More information

(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345])

(Microsoft PowerPoint - Ch21_NumAnalysis.ppt [\310\243\310\257 \270\360\265\345]) 수치해석 161009 Ch21. Numerical Differentiation 21.1 소개및배경 (1/2) 미분 도함수 : 독립변수에대한종속변수의변화율 y = x f ( xi + x) f ( xi ) x dy dx f ( xi + x) f ( xi ) = lim = y = f ( xi ) x 0 x 차분근사 도함수 1 차도함수 : 곡선의한점에서접선의구배 21.1

More information

Chap 6: Graphs

Chap 6: Graphs 그래프표현법 인접행렬 (Adjacency Matrix) 인접리스트 (Adjacency List) 인접다중리스트 (Adjacency Multilist) 6 장. 그래프 (Page ) 인접행렬 (Adjacency Matrix) n 개의 vertex 를갖는그래프 G 의인접행렬의구성 A[n][n] (u, v) E(G) 이면, A[u][v] = Otherwise, A[u][v]

More information

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB> 주간기술동향 2016. 2. 24. 최신 ICT 이슈 인공지능 바둑 프로그램 경쟁, 구글이 페이스북에 리드 * 바둑은 경우의 수가 많아 컴퓨터가 인간을 넘어서기 어려움을 보여주는 사례로 꼽혀 왔 으며, 바로 그런 이유로 인공지능 개발에 매진하는 구글과 페이스북은 바둑 프로그램 개 발 경쟁을 벌여 왔으며, 프로 9 단에 도전장을 낸 구글이 일단 한발 앞서 가는

More information

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표

Vector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표 Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function

More information

Microsoft PowerPoint - CUDA_NeuralNet_정기철_발표자료.pptx

Microsoft PowerPoint - CUDA_NeuralNet_정기철_발표자료.pptx 정기철 (kcjung@ssu.ac.kr/ http://hci.ssu.ac.kr) 숭실대학교 IT대학미디어학부 (http://www.ssu.ac.kr/ http://media.ssu.ac.kr) VMD/NAMD Molecular Dynamics 일리노이주립대 가시분자동력학 (VMD)/ 나노분자동력학 (NAMD) 240X 속도향상 http://www.ks.uiuc.edu/research/vmd/projects/ece498/lecture/

More information

31. 을전개한식에서 의계수는? 를전개한식이 일 때, 의값은? 을전개했을때, 의계수와상수항의합을구하면? 을전개했을때, 의 계수는? 를전개했을때, 상수항을 구하여라. 37

31. 을전개한식에서 의계수는? 를전개한식이 일 때, 의값은? 을전개했을때, 의계수와상수항의합을구하면? 을전개했을때, 의 계수는? 를전개했을때, 상수항을 구하여라. 37 21. 다음식의값이유리수가되도록유리수 의값을 정하면? 1 4 2 5 3 26. 을전개하면상수항을 제외한각항의계수의총합이 이다. 이때, 의값은? 1 2 3 4 5 22. 일때, 의값은? 1 2 3 4 5 27. 를전개하여간단히 하였을때, 의계수는? 1 2 3 4 5 23. 를전개하여 간단히하였을때, 상수항은? 1 2 3 4 5 28. 두자연수 와 를 로나누면나머지가각각

More information

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf

More information

02장.배열과 클래스

02장.배열과 클래스 ---------------- DATA STRUCTURES USING C ---------------- CHAPTER 배열과구조체 1/20 많은자료의처리? 배열 (array), 구조체 (struct) 성적처리프로그램에서 45 명의성적을저장하는방법 주소록프로그램에서친구들의다양한정보 ( 이름, 전화번호, 주소, 이메일등 ) 를통합하여저장하는방법 홍길동 이름 :

More information

체의원소를계수로가지는다항식환 Theorem 0.1. ( 나눗셈알고리듬 (Division Algorithm)) F 가체일때 F [x] 의두다항식 f(x) = a 0 + a 1 x + + a n x n, a n 0 F 와 g(x) = b 0 + b 1 x + + b m x

체의원소를계수로가지는다항식환 Theorem 0.1. ( 나눗셈알고리듬 (Division Algorithm)) F 가체일때 F [x] 의두다항식 f(x) = a 0 + a 1 x + + a n x n, a n 0 F 와 g(x) = b 0 + b 1 x + + b m x 체의원소를계수로가지는다항식환 Theorem 0.1. ( 나눗셈알고리듬 (Division Algorithm)) F 가체일때 F [x] 의두다항식 f(x) = a 0 + a 1 x + + a n x n, a n 0 F 와 g(x) = b 0 + b 1 x + + b m x m, b m 0 F, m > 0 에대해 f(x) = g(x)q(x) + r(x) 을만족하는

More information

1 1 장. 함수와극한 1.1 함수를표현하는네가지방법 1.2 수학적모형 : 필수함수의목록 1.3 기존함수로부터새로운함수구하기 1.4 접선문제와속도문제 1.5 함수의극한 1.6 극한법칙을이용한극한계산 1.7 극한의엄밀한정의 1.8 연속

1 1 장. 함수와극한 1.1 함수를표현하는네가지방법 1.2 수학적모형 : 필수함수의목록 1.3 기존함수로부터새로운함수구하기 1.4 접선문제와속도문제 1.5 함수의극한 1.6 극한법칙을이용한극한계산 1.7 극한의엄밀한정의 1.8 연속 1 1 장. 함수와극한 1.1 함수를표현하는네가지방법 1.2 수학적모형 : 필수함수의목록 1.3 기존함수로부터새로운함수구하기 1.4 접선문제와속도문제 1.5 함수의극한 1.6 극한법칙을이용한극한계산 1.7 극한의엄밀한정의 1.8 연속 2 1.1 함수를표현하는네가지방법 함수 f : D E 는집합 D 의각원소 x 에집합 E 에속하는단하나의원소 f(x) 를 대응시키는규칙이다.

More information

Microsoft PowerPoint - additional01.ppt [호환 모드]

Microsoft PowerPoint - additional01.ppt [호환 모드] 1.C 기반의 C++ part 1 함수 오버로딩 (overloading) 디폴트매개변수 (default parameter) 인-라인함수 (in-line function) 이름공간 (namespace) Jong Hyuk Park 함수 Jong Hyuk Park 함수오버로딩 (overloading) 함수오버로딩 (function overloading) C++ 언어에서는같은이름을가진여러개의함수를정의가능

More information

쉽게배우는알고리즘 6장. 해시테이블 테이블 Hash Table

쉽게배우는알고리즘 6장. 해시테이블 테이블 Hash Table 쉽게배우는알고리즘 6장. 해시테이블 테이블 Hash Table http://academy.hanb.co.kr 6장. 해시테이블 테이블 Hash Table 사실을많이아는것보다는이론적틀이중요하고, 기억력보다는생각하는법이더중요하다. - 제임스왓슨 - 2 - 학습목표 해시테이블의발생동기를이해한다. 해시테이블의원리를이해한다. 해시함수설계원리를이해한다. 충돌해결방법들과이들의장단점을이해한다.

More information

Microsoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx

Microsoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx 실습강의개요와인공지능, 기계학습, 신경망 < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 실습강의개요 노트북을꼭지참해야하는강좌 신경망소개 (2 주, 허민오 ) Python ( 프로그래밍언어 ) (2주, 김준호

More information

Microsoft PowerPoint - chap02-C프로그램시작하기.pptx

Microsoft PowerPoint - chap02-C프로그램시작하기.pptx #include int main(void) { int num; printf( Please enter an integer "); scanf("%d", &num); if ( num < 0 ) printf("is negative.\n"); printf("num = %d\n", num); return 0; } 1 학습목표 을 작성하면서 C 프로그램의

More information

1. 회사소개 및 연혁 - 회사소개 회사소개 회사연혁 대표이사: 한종열 관계사 설립일 : 03. 11. 05 자본금 : 11.5억원 인 원 : 18명 에스오넷 미도리야전기코리 아 미도리야전기(일본) 2008 2007 Cisco Premier Partner 취득 Cisco Physical Security ATP 취득(진행) 서울시 강남구 도심방범CCTV관제센터

More information

歯목차.PDF

歯목차.PDF A Study on The Effects of User Mental Images on Product Form -Concentrated on Implicit and Explicit Memory - 200012 1. 1-1. ---------------------------------------1 1-2. -----------------------------------2

More information

<4D F736F F F696E74202D203137C0E55FBFACBDC0B9AEC1A6BCD6B7E7BCC72E707074>

<4D F736F F F696E74202D203137C0E55FBFACBDC0B9AEC1A6BCD6B7E7BCC72E707074> SIMATIC S7 Siemens AG 2004. All rights reserved. Date: 22.03.2006 File: PRO1_17E.1 차례... 2 심벌리스트... 3 Ch3 Ex2: 프로젝트생성...... 4 Ch3 Ex3: S7 프로그램삽입... 5 Ch3 Ex4: 표준라이브러리에서블록복사... 6 Ch4 Ex1: 실제구성을 PG 로업로드하고이름변경......

More information

<30362DB1E8BFB5C5C22E687770>

<30362DB1E8BFB5C5C22E687770> ISSN 1598-17 (Print) ISSN 2287-1136 (Online) http://www.jksii.or.kr GP-GPU 의캐시메모리를활용하기위한병렬블록 LU 분해프로그램의구현 Implementation of parallel blocked LU decomposition program for utilizing cache memory on GP-GPUs

More information

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구 Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현

More information

슬라이드 제목 없음

슬라이드 제목 없음 2006-09-27 경북대학교컴퓨터공학과 1 제 5 장서브넷팅과슈퍼넷팅 서브넷팅 (subnetting) 슈퍼넷팅 (Supernetting) 2006-09-27 경북대학교컴퓨터공학과 2 서브넷팅과슈퍼넷팅 서브넷팅 (subnetting) 하나의네트워크를여러개의서브넷 (subnet) 으로분할 슈퍼넷팅 (supernetting) 여러개의서브넷주소를결합 The idea

More information

PowerPoint Template

PowerPoint Template JavaScript 회원정보 입력양식만들기 HTML & JavaScript Contents 1. Form 객체 2. 일반적인입력양식 3. 선택입력양식 4. 회원정보입력양식만들기 2 Form 객체 Form 객체 입력양식의틀이되는 태그에접근할수있도록지원 Document 객체의하위에위치 속성들은모두 태그의속성들의정보에관련된것

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 11 곡선과곡면 01 Spline 곡선 02 Spline 곡면 03 Subdivision 곡면 C n 연속성 C 0 연속성 C 1 연속성 2 C 2 연속성 01 Spline 곡선 1. Cardinal Spline Curve 2. Hermite Spline Curve 3. Bezier Spline Curve 4. Catmull-Rom Spline Curve 5.

More information

산선생의 집입니다. 환영해요

산선생의 집입니다. 환영해요 Biped Walking Robot Biped Walking Robot Simulation Program Down(Visual Studio 6.0 ) ). Version.,. Biped Walking Robot - Project Degree of Freedom : 12(,,, 12) :,, : Link. Kinematics. 1. Z (~ Diablo Set

More information

Delving Deeper into Convolutional Networks for Learning Video Representations - Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arXiv:

Delving Deeper into Convolutional Networks for Learning Video Representations  -   Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville  arXiv: Delving Deeper into Convolutional Networks for Learning Video Representations Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arxiv: 1511.06432 Il Gu Yi DeepLAB in Modu Labs. June 13, 2016 Il Gu Yi

More information

Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology Vol.7, No.11, November (2017), pp

Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology Vol.7, No.11, November (2017), pp Vol.7, No.11, November (2017), pp. 71-79 http://dx.doi.org/10.14257/ajmahs.2017.11.59 이기종컴퓨팅을활용한환율예측뉴럴네트워크구현 한성현 1), 이광엽 2) Implementation of Exchange Rate Forecasting Neural Network Using Heterogeneous

More information

설계란 무엇인가?

설계란 무엇인가? 금오공과대학교 C++ 프로그래밍 jhhwang@kumoh.ac.kr 컴퓨터공학과 황준하 6 강. 함수와배열, 포인터, 참조목차 함수와포인터 주소값의매개변수전달 주소의반환 함수와배열 배열의매개변수전달 함수와참조 참조에의한매개변수전달 참조의반환 프로그래밍연습 1 /15 6 강. 함수와배열, 포인터, 참조함수와포인터 C++ 매개변수전달방법 값에의한전달 : 변수값,

More information

기업은행현황-표지-5도

기업은행현황-표지-5도 2 0 5 2005 Total Financial Network Bank Industrial Bank of Korea Contents 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

More information

Microsoft PowerPoint - ch07 - 포인터 pm0415

Microsoft PowerPoint - ch07 - 포인터 pm0415 2015-1 프로그래밍언어 7. 포인터 (Pointer), 동적메모리할당 2015 년 4 월 4 일 교수김영탁 영남대학교공과대학정보통신공학과 (Tel : +82-53-810-2497; Fax : +82-53-810-4742 http://antl.yu.ac.kr/; E-mail : ytkim@yu.ac.kr) Outline 포인터 (pointer) 란? 간접참조연산자

More information

목 차 1. 연구 목적 2. 컴퓨팅 파워와 병렬 컴퓨팅 3. AlphaGo의 계산량 분석 4. 결 론

목 차 1. 연구 목적 2. 컴퓨팅 파워와 병렬 컴퓨팅 3. AlphaGo의 계산량 분석 4. 결 론 인공지능 컴퓨팅 환경 확보 방안 및 전략 2016. 08. 25. 2016 정보과학회 HPC연구회 하계 워크샵 추형석 소프트웨어정책연구소 선임연구원 신기술확산연구팀 목 차 1. 연구 목적 2. 컴퓨팅 파워와 병렬 컴퓨팅 3. AlphaGo의 계산량 분석 4. 결 론 1. 연구목적 배경및필요성 컴퓨팅환경확보는인공지능연구를위해선결되어야하는과제 인공지능연구에왜 컴퓨팅파워

More information

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019)   ISSN (Special Paper) 24 2, 2019 3 (JBE Vol. 24, No. 2, March 2019) https://doi.org/10.5909/jbe.2019.24.2.234 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) SIFT a), a), a), a) SIFT Image Feature Extraction

More information

adfasdfasfdasfasfadf

adfasdfasfdasfasfadf C 4.5 Source code Pt.3 ISL / 강한솔 2019-04-10 Index Tree structure Build.h Tree.h St-thresh.h 2 Tree structure *Concpets : Node, Branch, Leaf, Subtree, Attribute, Attribute Value, Class Play, Don't Play.

More information

AORUS 노트북을 구매 하신 것을 축하 드립니다. 이 설명서는 당신이 새로 구매한 노트북을 처음 세팅 하는데 도움을 줄 것입니다. 마지 막 제품의 스펙은 당신 의 구매 시점에 따라 다를 수 있습니다. 이는 어로스사가 사전 서면의 통보 없이 변경할 수 있는 권리를 가지

AORUS 노트북을 구매 하신 것을 축하 드립니다. 이 설명서는 당신이 새로 구매한 노트북을 처음 세팅 하는데 도움을 줄 것입니다. 마지 막 제품의 스펙은 당신 의 구매 시점에 따라 다를 수 있습니다. 이는 어로스사가 사전 서면의 통보 없이 변경할 수 있는 권리를 가지 AORUS 노트북을 구매 하신 것을 축하 드립니다. 이 설명서는 당신이 새로 구매한 노트북을 처음 세팅 하는데 도움을 줄 것입니다. 마지 막 제품의 스펙은 당신 의 구매 시점에 따라 다를 수 있습니다. 이는 어로스사가 사전 서면의 통보 없이 변경할 수 있는 권리를 가지고 있습니다. 보다 더 자세한 정보가 필요 하시면 저의 웹사이트http://www.aorus.com

More information

목차 포인터의개요 배열과포인터 포인터의구조 실무응용예제 C 2

목차 포인터의개요 배열과포인터 포인터의구조 실무응용예제 C 2 제 8 장. 포인터 목차 포인터의개요 배열과포인터 포인터의구조 실무응용예제 C 2 포인터의개요 포인터란? 주소를변수로다루기위한주소변수 메모리의기억공간을변수로써사용하는것 포인터변수란데이터변수가저장되는주소의값을 변수로취급하기위한변수 C 3 포인터의개요 포인터변수및초기화 * 변수데이터의데이터형과같은데이터형을포인터 변수의데이터형으로선언 일반변수와포인터변수를구별하기위해

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Visual Search At SK-Planet sk-planet Machine Intelligence Lab. 나상일 1. 개발배경 2. 첫접근방법 3. 개선된방법 A. Visual recognition technology B. Guided search C. Retrieval system 개발배경 개발배경 상품검색을좀더쉽게 Key-word 트렌치코트버튺벨트

More information

01( ) CSTV18-16.hwp

01( ) CSTV18-16.hwp ISSN 2383-630X(Print) / ISSN 2383-6296(Online) Journal of KIISE, Vol. 46, No. 3, pp. 219-227, 2019. 3 https://doi.org/10.5626/jok.2019.46.3.219 ARM 기반 IoT 장치에서효율적인딥러닝수행을위한 BLAS 및신경망라이브러리의성능및에너지비교 (Performance

More information

Oracle Database 10g: Self-Managing Database DB TSC

Oracle Database 10g: Self-Managing Database DB TSC Oracle Database 10g: Self-Managing Database DB TSC Agenda Overview System Resource Application & SQL Storage Space Backup & Recovery ½ Cost ? 6% 12 % 6% 6% 55% : IOUG 2001 DBA Survey ? 6% & 12 % 6% 6%

More information

13김상민_ok.hwp

13김상민_ok.hwp 3 : HEVC GPU (Sangmin Kim et al. : Adaptive Search Range Decision for Accelerating GPU-based Integer-pel Motion Estimation in HEVC Encoders) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September

More information

Microsoft PowerPoint - hw8.ppt [호환 모드]

Microsoft PowerPoint - hw8.ppt [호환 모드] 8.1 데이터경로와제어장치 Chapter 8 데이터경로와제어장치 많은순차회로의설계는다음의두부분으로구성 datapath: data의이동및연산을위한장치 control unit에상태신호제공 control ol unit: datapath th 에서적절한순서로 data 이동및연산을수행할수있도록제어신호제공. 먼저, datapath를설계 다음에, control unit

More information

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018)   ISSN (Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.246 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) CNN a), a), a) CNN-Based Hand Gesture Recognition

More information

C# Programming Guide - Types

C# Programming Guide - Types C# Programming Guide - Types 최도경 lifeisforu@wemade.com 이문서는 MSDN 의 Types 를요약하고보충한것입니다. http://msdn.microsoft.com/enus/library/ms173104(v=vs.100).aspx Types, Variables, and Values C# 은 type 에민감한언어이다. 모든

More information

초보자를 위한 분산 캐시 활용 전략

초보자를 위한 분산 캐시 활용 전략 초보자를위한분산캐시활용전략 강대명 charsyam@naver.com 우리가꿈꾸는서비스 우리가꿈꾸는서비스 우리가꿈꾸는서비스 우리가꿈꾸는서비스 그러나현실은? 서비스에필요한것은? 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 적절한기능 서비스안정성 트위터에매일고래만보이면? 트위터에매일고래만보이면?

More information

JVM 메모리구조

JVM 메모리구조 조명이정도면괜찮조! 주제 JVM 메모리구조 설미라자료조사, 자료작성, PPT 작성, 보고서작성. 발표. 조장. 최지성자료조사, 자료작성, PPT 작성, 보고서작성. 발표. 조원 이용열자료조사, 자료작성, PPT 작성, 보고서작성. 이윤경 자료조사, 자료작성, PPT작성, 보고서작성. 이수은 자료조사, 자료작성, PPT작성, 보고서작성. 발표일 2013. 05.

More information

Chapter 연습문제답안. y *sin-*cos*^ep-*/sqrt. y [ ; sinpi/ ; sin*pi ; ] 혹은 [ sinpi/ sin*pi ]. a ais[- ] b et.,., sin. c.. a A는주어진행렬 M의 번째열만을표시하는새로운행렬을나타낸다.

Chapter 연습문제답안. y *sin-*cos*^ep-*/sqrt. y [ ; sinpi/ ; sin*pi ; ] 혹은 [ sinpi/ sin*pi ]. a ais[- ] b et.,., sin. c.. a A는주어진행렬 M의 번째열만을표시하는새로운행렬을나타낸다. IT CookBook, MATLAB 으로배우는공학수치해석 ] : 핵심개념부터응용까지 [ 연습문제답안이용안내 ] 본연습문제답안의저작권은한빛아카데미 주 에있습니다. 이자료를무단으로전제하거나배포할경우저작권법 조에의거하여최고 년이하의징역또는 천만원이하의벌금에처할수있고이를병과 倂科 할수도있습니다. - - Chapter 연습문제답안. y *sin-*cos*^ep-*/sqrt.

More information

<C7A5C1F620BEE7BDC4>

<C7A5C1F620BEE7BDC4> 연세대학교 상경대학 경제연구소 Economic Research Institute Yonsei Universit 서울시 서대문구 연세로 50 50 Yonsei-ro, Seodaemun-gS gu, Seoul, Korea TEL: (+82-2) 2123-4065 FAX: (+82- -2) 364-9149 E-mail: yeri4065@yonsei.ac. kr http://yeri.yonsei.ac.kr/new

More information

PART 8 12 16 21 25 28

PART 8 12 16 21 25 28 PART 8 12 16 21 25 28 PART 34 38 43 46 51 55 60 64 PART 70 75 79 84 89 94 99 104 PART 110 115 120 124 129 134 139 144 PART 150 155 159 PART 8 1 9 10 11 12 2 13 14 15 16 3 17 18 19 20 21 4 22 23 24 25 5

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 03 모델변환과시점변환 01 기하변환 02 계층구조 Modeling 03 Camera 시점변환 기하변환 (Geometric Transformation) 1. 이동 (Translation) 2. 회전 (Rotation) 3. 크기조절 (Scale) 4. 전단 (Shear) 5. 복합변환 6. 반사변환 7. 구조변형변환 2 기하변환 (Geometric Transformation)

More information

슬라이드 1

슬라이드 1 -Part3- 제 4 장동적메모리할당과가변인 자 학습목차 4.1 동적메모리할당 4.1 동적메모리할당 4.1 동적메모리할당 배울내용 1 프로세스의메모리공간 2 동적메모리할당의필요성 4.1 동적메모리할당 (1/6) 프로세스의메모리구조 코드영역 : 프로그램실행코드, 함수들이저장되는영역 스택영역 : 매개변수, 지역변수, 중괄호 ( 블록 ) 내부에정의된변수들이저장되는영역

More information

4장. 순차자료구조

4장. 순차자료구조 순차자료구조방식 자바로배우는쉬운자료구조 이장에서다룰내용 1 선형리스트 2 선형리스트의구현 3 다항식의순차자료구조표현 4 행렬의순차자료구조표현 2 선형리스트 (1) 리스트 (List) 자료를나열한목록 ( 집합 ) 리스트의예 3 선형리스트 (2) 선형리스트 (Linear List) 순서리스트 (Ordered List) 자료들간에순서를갖는리스트 선형리스트의예 4

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

Microsoft PowerPoint - 05-chap03-ArrayAndPointer.ppt

Microsoft PowerPoint - 05-chap03-ArrayAndPointer.ppt 배열이란? Chapter. 배열구조체포인터 같은형의변수를여러개만드는경우에사용 int A, A, A, A,, A; int A[]; 4 5 6 반복코드등에서배열을사용하면효율적인프로그래밍이가능 예 ) 최대값을구하는프로그램 : 만약배열이없었다면? tmp=score[]; for(i=;i tmp ) tmp = score[i]; Today...

More information

2005 7

2005 7 2005 7 ii 1 3 1...................... 3 2...................... 4 3.................... 6 4............................. 8 2 11 1........................... 11 2.................... 13 3......................

More information

Microsoft PowerPoint - o8.pptx

Microsoft PowerPoint - o8.pptx 메모리보호 (Memory Protection) 메모리보호를위해 page table entry에 protection bit와 valid bit 추가 Protection bits read-write / read-only / executable-only 정의 page 단위의 memory protection 제공 Valid bit (or valid-invalid bit)

More information

예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = B = >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = >> tf = (A==B) % A

예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = B = >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = >> tf = (A==B) % A 예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = 1 2 3 4 5 6 7 8 9 B = 8 7 6 5 4 3 2 1 0 >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = 0 0 0 0 1 1 1 1 1 >> tf = (A==B) % A 의원소와 B 의원소가똑같은경우를찾을때 tf = 0 0 0 0 0 0 0 0 0 >> tf

More information

À¯Çõ Ãâ·Â

À¯Çõ Ãâ·Â Network Virtualization Techniques for Future Internet Services in cloud computing are based on network virtualization that provides both flexibility and network isolation. Network virtualization consists

More information

슬라이드 1

슬라이드 1 CHAP 2: 순환 (Recursion) 순환 (recursion) 이란? 알고리즘이나함수가수행도중에자기자신을다시호출하여문제를해결하는기법 정의자체가순환적으로 되어있는경우에적합한방법 순환 (recursion) 의예 팩토리얼값구하기 피보나치수열 1 n! n*( n 1)! fib( n) 0 1 fib( n 2) n n 0 ` 1 fib( n 1) if n 0 if

More information

09권오설_ok.hwp

09권오설_ok.hwp (JBE Vol. 19, No. 5, September 2014) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September 2014) http://dx.doi.org/10.5909/jbe.2014.19.5.656 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) Reduction

More information

제 3강 역함수의 미분과 로피탈의 정리

제 3강 역함수의 미분과 로피탈의 정리 제 3 강역함수의미분과로피탈의정리 역함수의미분 : 두실수 a b 와폐구갂 [ ab, ] 에서 -이고연속인함수 f 가 ( a, b) 미분가능하다고가정하자. 만일 f '( ) 0 이면역함수 f 은실수 f( ) 에서미분가능하고 ( f )'( f ( )) 이다. f '( ) 에서 증명 : 폐구갂 [ ab, ] 에서 -이고연속인함수 f 는증가함수이거나감소함수이다 (

More information

Chapter 4. LISTS

Chapter 4. LISTS C 언어에서리스트구현 리스트의생성 struct node { int data; struct node *link; ; struct node *ptr = NULL; ptr = (struct node *) malloc(sizeof(struct node)); Self-referential structure NULL: defined in stdio.h(k&r C) or

More information

CUDA 를게임프로젝트에적용하기 유영천 - 모여서각자코딩하는모임

CUDA 를게임프로젝트에적용하기 유영천 - 모여서각자코딩하는모임 CUDA 를게임프로젝트에적용하기 유영천 - 모여서각자코딩하는모임 https://megayuchi.com tw: @dgtman GPGPU(General-Purpose computing on GPU GPU 를사용하여 CPU 가전통적으로취급했던응용프로그램들의계산을수행하는기술 GPU 코어 1 개의효율은 CPU 코어 1 개에비해많이떨어지지만코어의개수가엄청나게많다. 많은수의코어를사용하면산술술연산성능

More information

19_9_767.hwp

19_9_767.hwp (Regular Paper) 19 6, 2014 11 (JBE Vol. 19, No. 6, November 2014) http://dx.doi.org/10.5909/jbe.2014.19.6.866 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) RGB-Depth - a), a), b), a) Real-Virtual Fusion

More information

설계란 무엇인가?

설계란 무엇인가? 금오공과대학교 C++ 프로그래밍 jhhwang@kumoh.ac.kr 컴퓨터공학과 황준하 5 강. 배열, 포인터, 참조목차 배열 포인터 C++ 메모리구조 주소연산자 포인터 포인터연산 배열과포인터 메모리동적할당 문자열 참조 1 /20 5 강. 배열, 포인터, 참조배열 배열 같은타입의변수여러개를하나의변수명으로처리 int Ary[10]; 총 10 개의변수 : Ary[0]~Ary[9]

More information

PowerPoint Presentation

PowerPoint Presentation 5 불대수 IT CookBook, 디지털논리회로 - 2 - 학습목표 기본논리식의표현방법을알아본다. 불대수의법칙을알아본다. 논리회로를논리식으로논리식을논리회로로표현하는방법을알아본다. 곱의합 (SOP) 과합의곱 (POS), 최소항 (minterm) 과최대항 (mxterm) 에대해알아본다. 01. 기본논리식의표현 02. 불대수법칙 03. 논리회로의논리식변환 04.

More information

딥러닝 첫걸음

딥러닝 첫걸음 딥러닝첫걸음 4. 신경망과분류 (MultiClass) 다범주분류신경망 Categorization( 분류 ): 예측대상 = 범주 이진분류 : 예측대상범주가 2 가지인경우 출력층 node 1 개다층신경망분석 (3 장의내용 ) 다범주분류 : 예측대상범주가 3 가지이상인경우 출력층 node 2 개이상다층신경망분석 비용함수 : Softmax 함수사용 다범주분류신경망

More information

1. 서 론

1. 서 론 두 장의 영상을 이용한 저조도 환경에서의 실용적 계산 사진 기법과 Mosaic 에의 응용 Practical Computational Photography with A Pair of Images under Low Illumination and Its Application to Mosaic 안택현 O, 홍기상 포항공과대학교 정보통신학과 O, 포항공과대학교 전자전기공학과

More information

Microsoft PowerPoint - chap06-2pointer.ppt

Microsoft PowerPoint - chap06-2pointer.ppt 2010-1 학기프로그래밍입문 (1) chapter 06-2 참고자료 포인터 박종혁 Tel: 970-6702 Email: jhpark1@snut.ac.kr 한빛미디어 출처 : 뇌를자극하는 C프로그래밍, 한빛미디어 -1- 포인터의정의와사용 변수를선언하는것은메모리에기억공간을할당하는것이며할당된이후에는변수명으로그기억공간을사용한다. 할당된기억공간을사용하는방법에는변수명외에메모리의실제주소값을사용하는것이다.

More information

슬라이드 1

슬라이드 1 빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들

More information

Probability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi

Probability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi Probability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi 머신러닝의학습방법들 - Gradient descent based learning - Probability theory based learning - Information theory based learning - Distance

More information

04_오픈지엘API.key

04_오픈지엘API.key 4. API. API. API..,.. 1 ,, ISO/IEC JTC1/SC24, Working Group ISO " (Architecture) " (API, Application Program Interface) " (Metafile and Interface) " (Language Binding) " (Validation Testing and Registration)"

More information

BMP 파일 처리

BMP 파일 처리 BMP 파일처리 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 영상반전프로그램제작 2 Inverting images out = 255 - in 3 /* 이프로그램은 8bit gray-scale 영상을입력으로사용하여반전한후동일포맷의영상으로저장한다. */ #include #include #define WIDTHBYTES(bytes)

More information

PowerPoint Presentation

PowerPoint Presentation Chapter 3 컴퓨터구조 하드웨어연결그림 본체 메인보드 입력장치 CPU RAM PS2 랜카드 키보드마우스 ALU 캐쉬메모리 레지스터 시리얼포트패러렐포트 PCI 사운드카드 스캐너마이크웹캠 DMA BIOS EIDE 버스 SATA PCI express AGP USB 그래픽카드 GPU HDMI 출력장치 스피커 헤드폰 파워서플라이 모니터 FDD HDD ODD SSD

More information

슬라이드 1

슬라이드 1 1 장수치미분 1.1 소개및배경 1. 고정확도미분공식 1.3 Richardson 외삽법 1.4 부등간격의미분 1.5 오차가있는데이터의도함수와적분 1.6 MATLAB 을이용한수치미분 1.1 소개및배경 (1/4) 미분이란무엇인가? 도함수 : 독립변수에대한종속변수의변화율 y f( xi + x) f( xi) dy f( x = i + x) f( xi) = lim =

More information

JAVA PROGRAMMING 실습 08.다형성

JAVA PROGRAMMING 실습 08.다형성 2015 학년도 2 학기 1. 추상메소드 선언은되어있으나코드구현되어있지않은메소드 abstract 키워드사용 메소드타입, 이름, 매개변수리스트만선언 public abstract String getname(); public abstract void setname(string s); 2. 추상클래스 abstract 키워드로선언한클래스 종류 추상메소드를포함하는클래스

More information

<30312DC2F7BCBCB4EBC4C4C7BBC6C32DBED5BACEBAD0283130B1C731C8A3292E687770>

<30312DC2F7BCBCB4EBC4C4C7BBC6C32DBED5BACEBAD0283130B1C731C8A3292E687770> 디바이스 소셜리티에서의 GPGPU 자원 공유를 위한 오프로딩 프레임워크 Offloading Framework for Sharing GPGPU Resources in Device Sociality 마정현, 박세진, 박찬익 Jeonghyeon Ma, Sejin Park, Chanik Park (790-784) 경북 포항시 남구 효자동 산 31번지 포항공과대학교

More information

임베디드시스템설계강의자료 6 system call 2/2 (2014 년도 1 학기 ) 김영진 아주대학교전자공학과

임베디드시스템설계강의자료 6 system call 2/2 (2014 년도 1 학기 ) 김영진 아주대학교전자공학과 임베디드시스템설계강의자료 6 system call 2/2 (2014 년도 1 학기 ) 김영진 아주대학교전자공학과 System call table and linkage v Ref. http://www.ibm.com/developerworks/linux/library/l-system-calls/ - 2 - Young-Jin Kim SYSCALL_DEFINE 함수

More information

Microsoft PowerPoint - e pptx

Microsoft PowerPoint - e pptx Import/Export Data Using VBA Objectives Referencing Excel Cells in VBA Importing Data from Excel to VBA Using VBA to Modify Contents of Cells 새서브프로시저작성하기 프로시저실행하고결과확인하기 VBA 코드이해하기 Referencing Excel Cells

More information

Microsoft PowerPoint - ch09 - 연결형리스트, Stack, Queue와 응용 pm0100

Microsoft PowerPoint - ch09 - 연결형리스트, Stack, Queue와 응용 pm0100 2015-1 프로그래밍언어 9. 연결형리스트, Stack, Queue 2015 년 5 월 4 일 교수김영탁 영남대학교공과대학정보통신공학과 (Tel : +82-53-810-2497; Fax : +82-53-810-4742 http://antl.yu.ac.kr/; E-mail : ytkim@yu.ac.kr) 연결리스트 (Linked List) 연결리스트연산 Stack

More information

3 : (Won Jang et al.: Musical Instrument Conversion based Music Ensemble Application Development for Smartphone) (Special Paper) 22 2, (JBE Vol

3 : (Won Jang et al.: Musical Instrument Conversion based Music Ensemble Application Development for Smartphone) (Special Paper) 22 2, (JBE Vol 3 (Special Paper) 22 2, 2017 3 (JBE Vol. 22, No. 2, March 2017) https//doi.org/10.5909/jbe.2017.22.2.173 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a), a), a) Musical Instrument Conversion based

More information

DW 개요.PDF

DW 개요.PDF Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.

More information