SEC wcdma full(05.9) 로 부터 update
|
|
- 영주 판
- 6 years ago
- Views:
Transcription
1 LTE 무선기술개요 이상근 청강문화산업대학이동통신전공 2014년2월 모든그림과수치는 3GPP 표준규격을준용하여재정리하였으며, 관련산업통계는 에서인용되었습니다. 1
2 LTE 기술의진화 2
3 이동통신기술의진화 1 세대 ( 아나로그 ) 2 세대 ( 디지털 ) 3 세대 (IMT2000), 3.5 세대, 3.9 세대이동통신 ( 고속데이터 ) 미국식아나로그 1993 년 1995년 2000년 2003년 2005년 TDMA IS95A cdma k EVDO Rev0 2.4M/150k data only EVDV 삼성전자주도 2006 년종료 EVDO RevA 3.2M/1.8M 2010 년 동기식, 미국식 IMT2000, 118 개국가, 311 개사업자, 약 5.5 억명 비동기식 IMT2000 (532 개사업자 )/197 개국 유선 / 무선분리기술, 산업, 서비스 EVDO RevB UMB ~300M 약1.8억명 263개사업자 /97개국 (506개사업자투자계획 ) 4 세대 ( 초고속데이터 ) 2014 년 유무선통합 IMT- Advanc ed 유럽식아나로그 GSM GPRS, EDGE WCDMA 384k HSDPA /HSUPA 14.4M/5M HSPA+ 21M/5M LTE-FDD TD-LTE LTE- Advanced 중국식 IMT 년 3 분기기준 세계인구 : 약 70 억명 이동통신가입자 : 약 66.5 억명 GSM+WCDMA+LTE 가입자 : 약 60 억명 WCDMA+LTE 가입자 : 약 14 억명 CDMA 기술 OFDM 기술 2014 년 1 월기준 TD-SCDMA 384k (~2Mbps) 178 사업자 /79 개국사업자 Mobile WiMAX ( 와이브로 ) e WiMAX- Evolution m 40M/10M 100M~1G 1) 동기식 ( 미국식 ) CDMA 의몰락, 비동기식 ( 유럽식 ) WCDMA 의확대 ( 이동통신기술의본질은규모의경쟁력 ) 2) CDMA 기술의종말 => OFDM 기술시대의개막 (CDMA 로서는 4G 에서요구하는수백 Mbps 불가능 ) 3) LTE 의규모의경쟁력과 Wimax( 와이브로 ) 의빠른상용화경쟁력에의한 4G 기술의경쟁 통합 3
4 HSPA / mobile Wimax 의진화 LTE 시대에도 WCDMA/HSDPA 기술은열심히진화하고있음 532 개사업자 HSPA 14Mbps (16QAM) 2013 년 12 월기준 314 개사업자 28M HSPA+ (16QAM,MIMO) 180 개사업자 21M HSPA+ 한국 (64QAM) 145 개사업자 42M HSPA+ (DC-HSPA+) 8 개사업자 DC : Dual Carrier 16QAM : 한번에 4bit 씩무선전송 64QAM : 한번에 6bit 씩무선전송, 잡음에매우취약 MIMO : 두개의송수신안테나에의한속도를두배로 Dual Carrier, 5MHz 대역 2 개를연동하여속도를두배로 178 개사업자 e Rel 년 11 월기준 스마트폰의급격한보급 => 3G 망의급격한포화 => LTE 시대의급격한도래 => 규모의경쟁력이없는와이브로의몰락 => TD-LTE 와의공생전략 (Rel 2.1, Rel 2.2) 16e+TD-LTE Rel m 16m+TD-LTE Rel 2.0 single mode Rel 2.2 Dual mode Dual mode 4
5 FDD & TDD 기술진화?? 주파수 주파수 주파수 수신 송신수신송신수신송신 송신수신송신수신송신 guard band less guard band 송신 Full Duplex FDD 시간 Half Duplex FDD 시간 Guard Time Guard Period TDD 시간 무선망설계용이 상하향비대칭구조구성불가능 Guard Band 에의한주파수효율성감소 대체적으로좁은대역폭, 비싼주파수경매비용 시간 Tx Rx FDD FDD DL/UL 주파수간격이좁아단말 Duplexer 구현이어려울때 기지국관점에서는 full duplex FDD, 단말관점에서 2 개이상의단말들이시분활하여 Half Duplex FDD 로동작가능 단말에서의 Duplex 제거가능 주파수 5 시간 Rx Tx Rx Tx Rx Tx Guard Band 불필요, 상하향비대칭구성용이에따른주파수효율성증대 대체적으로넓은대역폭, 싼주파수경매비용 무선망설계의민감성증대 ( 송, 수신신호충돌방지 ) 사업자간주파수간섭가능성민감 Time delay 에민감 ( 셀반경, 광중계기제약요소 ) TDD 주파수
6 LTE-FDD / LTE-TDD 1 세대 ( 아나로그 ) 2 세대 ( 디지털 ) 3 세대 (IMT2000), 3.5 세대, 3.9 세대이동통신 ( 고속데이터 ) 1993년 1995년 2000년 2003년 2005년 2010년 동기식, 미국식 IMT2000, FDD 4 세대 ( 초고속데이터 ) 2014 년 EVDV IS95A cdma k 삼성전자주도 2006 년종료 미국식아나로그 TDMA EVDO Rev0 2.4M/150k data only EVDO RevA 3.2M/1.8M 비동기식, 유럽식 IMT2000 EVDO RevB UMB ~300M ~300M IMT- Advanc ed 유럽식아나로그 GSM GPRS, EDGE WCDMA 384k HSDPA /HSUPA 14.4M/5M HSPA+ 21M/5M LTE-FDD TD-LTE LTE- Advanced UL Tx 5ms or 10ms DL Tx UL Tx DL Tx FDD 사업자 : 235 개 TDD only 사업자 : 15 개 FDD+TDD 사업자 : 13 개 중국식 IMT2000, 2009 년 1 월 TD-SCDMA 신규추가 ( 한국, 미국 ) IMT 개사업자, 45 개계획중 / 14 년 1 월기준 TDD GP Mobile WiMAX ( 와이브로 ) e WiMAX- Evolution m 40M/10M 100M~1G TDD 가주파수효율성이높은기술이라도기존통신방식이 FDD 이면 TDD 로의주파수구조변화불가 => FDD 로진화 기존 TDD 방식은계속 TDD 로진화, FDD 와 TDD 는하드웨어가완전히다른기술, 호환성불가 6 (176)
7 국내의 LTE 주파수현황 (1) 10 년초 ) SKT 850M 회수재배치 LGT 850M, KTF 900M, SKT 2.1G 10 년중반 ) 본격적인스마트폰시대 세계적인 3G 망포화 10 년중반 ) SKT 2.1G 우월한 3G 통화용량 무제한데이터 10 년후반 ) KT 3G CCC 서비스 10 년후반 ) 3G 망포화에대하여당장사용이가능한 2.1G 10M 에대한무한경쟁 11 년초 ) KT 2G 1.8G 10M 반납 경매 11 년초반 ) 시설투자가용이한 2.1G 10M 에대한무한경쟁, KT 1.8G 10M 반납 11 년초중반 ) 유럽 LTE 주파수경매 1.8G LTE 대세 11 년중반 ) 2.1G 10M LGU+ 지정, 1.8G 10M 경매 11 년중반 ) 1.8G LTE 20M 대역폭 (150Mbps) 확보무한경쟁 SKT 획득 13 년초중반 ) 1.8G LTE 20M 대역폭을향한무한경쟁 피쳐폰시대 3G 망의포화 2010 년중반 스마트폰시대 869M 884M 894M 950M 960M 1840M 1860M 2011 년 8 월 LTE 10M 2011 년 8 월 1870M 2G 5M 2110M 2010 년 4 월 2120M 2010 년 4 월 2130M 2150M 2170M (11 년 8 월 ) LTE 10M 15M SKT 10M LGU+ LTE 10M KT WCDMA?? 10M KT LTE 하향링크 ( 기지국송신 ) 기준주파수표 10M 10M SKT LGU+ LTE PCS 30M SKT WCDMA 20M KT WCDMA 869M 894M 1840M 1860M 1870M 2130M 2150M 2170M 2300M 2330M 2360M 2011 년 8 월 2G 10M 2010 년 4 월 2472M 2575M 10M LGU+ LTE 30M SKT WiBro 30M KT WiBro 60M ISM band WLAN M 2330M 2360M 2412M 2472M 2412M 2615M TDD TDD TDD TDD??? 5M KT LTE 40M WiBro 스마트폰시대 피쳐폰시대 (2010 년초 ) TDD TDD TDD 25M SKT CDMA 20M KT PCS 10M LGU+ PCS 30M SKT WCDMA 20M KT WCDMA 30M SKT WiBro 30M KT WiBro 60M ISM band WLAN... 7
8 LTE 기지국용량증설 WCDMA 5Mhz freq 주파수 LTE 5Mhz 300 파 600 파 freq 10Mhz CDMA 의최대비효율성은통화용량증대에따라 FA 증설, 즉하드웨어투자가요구된다는점과주파수간이동이자유롭지않다는점 => 통화용량의불규칙분포와무관하게균등한 FA 증설 => 통화용량증대를위한과도한투자필요 1200 파 20Mhz LTE 최대효율성은통화용량증가에따른하드웨어증설이요구되지않는다는점 => 5MHz, 10MHz, 20MHz 동일한하드웨어형상 => 사업자의축복, 장비회사의불행 LTE-Advanced 20Mhz 20Mhz 주파수 1st 2nd 5th 8
9 LTE 연속된 20MHz 대역폭을향한경쟁 (2011 년 1.8GHz 경매의예 ) 최고 37Mbps SKT 2G 10M SKT LTE 5M LGU+ LTE 10M 800M 대역 최고 ( 동일한투자비로두배의속도와용량 ) 75Mbps 10M KT LTE ~11 년 10 월 20M KT PCS 1.8G 대역 10M LGU+ cdma+evd O 5M SKT 2G SKT LTE 10M LGU+ LTE 10M 10M KT LTE 11 년 11 월 ~ 20M KT PCS 10M LGU+ cdma+evd O 800M 대역 900M 대역 1.8G 대역 5M SKT 2G 최고 75Mbps SKT LTE 10M LGU+ LTE 10M 10M KT LTE 최고 150Mbps KT 2G => LTE 20M 10M LGU+ cdma+evd O 2011 년 7 월주파수경매 SKT worst, KT Best 상황?? 전세계이통사의로망 ~ 규모의경제를갖는연속된 20Mhz 5M SKT 2G SKT LTE 10M LGU+ LTE 10M KT LTE 10M 11 년 8 월 ~ 10M KT LTE 10M SKT LTE 10M LGU+ cdma+evd O LGU+ LTE 10M 800M 대역 900M 대역 1.8G 대역 2.1G 대역 9
10 LTE MC, CA 20MHz BW 속도 2 배, 용량 2 배 1 개 RU 1.8G 이통사의로망 ~ 규모의경제를갖는연속된 20Mhz FA1 20MHz FA2 MC (Multi Carrier) 속도 same, 용량 2배, 800M 2개 RU 1.8G 10MHz 10MHz CA (Carrier Aggregation) 속도 2배, 용량 2배, 800M 2개 RU 1.8G 10MHz 20Mhz 1FA 10MHz LTE 주파수대역연속된 20Mhz Best!! 분산된 10Mhz 대역을연동시켜마치한개의 20Mhz 처럼동작 Carrier Aggregation 3G HSDPA 에서의 5MHz 대역폭연동기술 DC-HSPA 10
11 채널결합에의한전송속도증가 LTE non-contiguous CA 20MHz 20MHz LTE contiguous CA 20MHz 20MHz HSPA+ Dual Carrier 5MHz 5MHz b,g,n,ac 20MHz n,ac Channel Bonding 40MHz ac Channel Bonding 80MHz ac Channel Bonding 160MHz ( 상용화??) 11
12 와이파이부반송파의확장 (channel bonding) [54M] 20MHz 11g) 48 data_sc + 4 Pilot_SC [65M] [150M] 20MHz,40MHz 11n) 52 data_sc+4 Pilot_SC, 108data_SC+6 Pilot_SC [433M] 80MHz 11ac) 234 data SC + 8 Pilot SC 12
13 이동통신주파수대역의확장 2.1GHz 로전세계통일된 3G 와달리주파수대역이분산된 LTE 에서는동일주파수대역에서의로밍이중요한이슈 LTE 주파수대역의경쟁력 1) 규모의경제 ( 단말수급, 로밍 ) 2) 연속된 20MHz 대역폭 기지국기준 - 송신주파수 ( 수신주파수 ) G 2.6G 700M 800M AWS 2.1G 1.9G 850M 900M FDD 주파수대역별 LTE 사업자수 (14 년 1 월기준 /263 개상용망 ) 758M (698M) 783M( 728M) 803M (748M) 864M (819M) 894M (849M) 950M (905M) 960M (915M) 1810M (1715M) 1840M (1745M) 1880M (1785M) 2110M (1920M) 2170M (1980M) 2200M (2010M) 2575M 2615M 2620M (2500M) 2660M (2540M)?? KT LTE 5M SKT 2G 5M SKT LTE 10M LGU+ 10M 2640M (2520M) KT LTE 10M SKT LTE 20M KT LTE 10M?????? KT LTE 10M SKT LTE 10M LGU+ 3G 10M LGU+ LTE 10M SKT 3G 30M KT 3G 20M??? (TDD)?? LGU+ LTE 20M 국내 LTE 주파수대역확장 (2013 년 8 월기준 ) 13
14 전세계 3G, 4G 상용서비스주파수대역 (2011년2월기준 ) 출시된단말의 90% 이상 2.1G 지원 3G 는전세계대부분 2.1GHz 로통일, 로밍용이 850M+900M+2.1GTriband 819model AWS band 2.1G UL/DL M UL/DL 850M UL/DL 800M UL/DL 900M UL/DL 900M UL/DL 1.7G UL 1.7G UL 1.7G UL/DL 1.9G UL/DL AWS band (USA only) 2.1G DL 1125model 526model 2183model 전세계 WCDMA 주파수도입현황 전세계파편화된 LTE 주파수대역, 로밍의어려움, 단말수급의어려움, 1.8G UL/DL 약 35% 1.9G UL/DL 2.1G DL 2.1G UL/DL 전세계 LTE 주파수도입현황 (FDD 기준 ) G TDD 1.8G 2.6G 700M 800M AWS 2.1G 1.9G 850M 900M FDD 주파수대역별 LTE 사업자수 (14 년 1 월기준 /263 개 ) 2.6G UL/DL 약 30% 2.6G TDD 3.5G TDD 상세주파수구조 => 3GPP TS TDD 사업자수 2.3G 13 개 2.6G 13 개 3.5G 3 개 1.9G 1 개 < 휴대단말모델별주파수대역지원의예 > Iphone5 (A1429) : 3G(850M,900M,1.9G,2.1G), GSM/EDGE(850M,900M,1.8G,1.9G), LTE(2.1G,1.8G,850M) Ipad3 (AT&T) : 3G(850M,900M,1.9G,2.1G), GSM/EDGE(850M,900M,1.8G,1.9G), LTE(AWS,700M) 갤럭시S3 ( 국내향 ) : 3G(1.9G,2.1G), GSM/EDGE(900M,1.8G,1.9G), LTE(2.1G,1.8G,850M) 갤럭시S3 ( 캐나다 Talus) : 3G(850M,1.9G,2.1G), GSM/EDGE(900M,1.8G,1.9G), LTE(700M,1.7G) 14
15 OFDM 기술의개요 15
16 무선데이터고속화에따른반사파문제점 심볼의폭 심볼의폭 저속데이터 고속데이터 직접파 반사파 접심볼간간섭 보통 직접파 반사파 매우심각!! 앞뒤심볼이완전히겹쳐뭐가뭔지도체모르겠네 이통신의핵심기술은고속데이터를위한사파처리기술 이통신전파의 99% 는사파 데이터가고속화될수록사파에의여접비트 ( 심볼 ) 간간섭의급격한가 => 고속화의기술장벽 사파를제한으로처리는 CDMA 기술의한계 새로운이통신기술의 => 사파에강한 OFDM 기술의탄생 => CDMA 기술의종말 (HSDPA/HSUPA) CDMA : 사파각각에대한별처리 ( 제한수의사파에대여만처리가능 ) OFDM : 고속의데이터를저속의데이터로병렬전, 병렬전되는저속데이터들에대여도일정시간내에서의모든사파에대여는일괄처리 ( 무시 ) 16
17 ISI 문제점 (Inter Symbol Interference ) T s signal x(t) y(t) If T d <Ts (low rate) channel h(t) Convolution y(t)=x(t)*h(t) If T d >Ts (high rate) T d time y(t) ISI 수신신호 = 신신호와특성의콘볼류션 의 delay spread 시간보 symbol duration 이을경우 ISI 발생 17
18 MCM 과 OFDM 의비교 T 주파수 성 f1 Serial to Parall el f2 Parall el to Serial RF f0 f1 f2 fk 주파수 fk 신 접주파수신호가간섭을기위여간격을 화 하.. 1) 송파간 2) 송파간의간 화 주파수 성우수 FT DFT FFT FT,DFT,FFT 주파수 T f0 f1 f2 f1000-2/t -1/T 1/T 2/T 주파수 IFT,IDFT,IFFT 1/T 2/T 18
19 OFDM subcarrier 의직교성 use r 0rthogonal : 호간성이없 Frequency of subcarrier Division Multiplexing A 19
20 OFDM 기술의기본원리 FT,DFT,FFT 저속, 반사파강함 time IFT,IDFT,IFFT frequency IFFT FFT 고속, 반사파취약 f0 f0 고속데이터의복원 Serial to Parall el f1 Parall el to Serial RF RF Parall el to Serial f1 Serial to Parall el fk 신 고속의데이터는사파에매우취약 고속의데이터를사파에강한저속으로변환여병렬전 수신 수신 fk 저속의병렬데이터를합치여고속의데이터를복원 f k = f 0 + k / T Orthogonal 의근간 OFDM f0 f1 f2 f4 접 subcarrier 최대값과최값이서로교차 20
21 delay spread 대응하는 GI & CP 수신세기 시간 셀내를무작위로돌아녀 ~ 10usec 무작위로돌아다니면서유효반사파가최대어느만큼늦게착하는지를조사하였더니... 40us (25ksps) 불확실성구간 사용하지말자 GI(Guard Interval) 10usec CP 정의어떤곳에선반사파가 10us 넘어 ISI 증가하면?? 40us (25ksps) 불확실성구간 사용하지말자 CP(Cyclic Prefix) 20usec CP 정의 여유롭게심볼 50% 를 CP 로정의하면... 심볼에너지는남는게없네?? CP 크기는 OFDM 하드웨어규격을결정하는민감한요소 21
22 심볼내 Guard Interval 의비율결정 Guard Interval 1) 절대값 : 셀반경에비례 2) 상대값 ( 심볼내차지하는비율 ) : 경제성, 부반송파수, 성능등에비례 성능민감코스트증가부반송파수증가, 피크파워증가스펙트럼마스크우수 성능둔감코스트감소부반송파수감소, 피크파워감소스펙트럼마스크불량주파수퍼짐... 6%(-0.25dB) LTE 11%(-0.5dB) 와이브로 20%(-1dB) 와이파이 심볼에서의 CP 비율 symbol CP 22
23 Cyclic Prefix RF BW 100Kbps 심볼폭의역수 10usec 10Mbps 100Khz 간격 F0(100.0Mhz) BPSK 기준 Serial to Parallel F1(100.1Mhz) Parallel to Serial RF 10Mhz BW 2usec 100Kbps 유심볼폭의역수 8usec F99(109.9Mhz) 10Mbps 125Khz 간격 FFT 구성의예 (Guard Time 제외 ) Serial to Parallel Parallel to Serial RF 12.5Mhz BW FFT 구성의예 (20% Guard Interval 포 ) Guard Interval 값은 OFDM 시스템대분의 RF 현상에대한영향을미침 - RF BW, ACLR, PAPR, subcarrier tone 수, subcarrier 간격, 전류모 충분히큰 GI 값은사파에많은내성을여만 RF BW, PAPR, 모뎀복잡도, 전류모등의가를으로유발시킴 너무작은 GI 값은 RF BW, PAPR, 모뎀복잡도, 전류모등의가를할수있만사파에대한내성이 23
24 셀반경 / subcarrier 개수 / ACLR 의상관관계 10Mbps GI=2usec 10Mbps GI=5usec 10Mbps GI=5usec GI => 20% GI => 20% GI => 38% 2u GI 8u 100kbps 10usec 5u GI 20u 25usec 40kbps 5u GI 8u 13usec 77kbps 10Mbps 125kHz 10Mbps 50kHz 7.7Mbps 125kHz Mhz Mhz Mhz low ACPR high ACPR low ACPR 셀경 Guard Interval 송파간송파개수 셀경 Guard Interval 송파간송파개수 24 전류모 전송속도 A
25 물리계층정보전송의단위 TB(Transport Block) : 물리계층에서정보전송이이루어지는기본단위 ( 묶음 ) 인터리빙 ( 집합에러를분산에러로변환 ) 이이루어지는단위 무선구간에러발생시 (CRC 확인에의하여 ) 재전송 (H-ARQ에의하여 ) 이이루어지는단위 TB size : 1개의 TB 에포함되는비트수, 채널코딩율에따라가변 TTI (Transmission Time Interval) : 1개의 TB 가전송되는시간 짧을수록무선구간 fast fading 에의한에러발생신속대처에유리 출력최소화가능 용량증대 짧을수록프레임단위의오버헤드부담증가, TCP/IP 오버헤드압축프로토콜필요 PDCP CDMA 20msec, WCDMA 5msec, HSDPA 2msec, LTE 1msec Subframe : 물리계층에서의프레임구조단위, 1개의 TB 와동일, LTE 1msec Slot : RF 구간을통하여실제전송이이루어질수있는최소단위, 1개의 RB에해당, LTE 에서는 0.5msec TB(Transport Block), Subframe 25
26 LTE Cyclic Prefix lengths (LTE-FDD Type1) subframe 1msec 1slot 0.5msec frame 10msec TDD Type 2 p /20M 1200 /20M 2400 /20M 15kHz MBMS 15kHz 7.5kHz normal extended MBMS 71.9u 71.4u 5.2u 66.7u 4.7u 66.7u 4.7u 66.7u 4.7u 66.7u 4.7u 66.7u 4.7u 66.7u 4.7u 66.7u 1/66.7us 83.4u Tcp Tcp OFDM 더큰셀반경 => 1) 주파수퍼짐 or 2) 속도저하 or 3) 복잡도증가 셀반경에따른 CP 값의정의, 초기동기시 SSC 에서알려줌 Normal 첫번째심볼의 Tcp 값이다른것은특별한의미가없음 (slot 시간에일치 ) 26 symbol FFT inteval 16.7u 66.7u 16.7u 66.7u 16.7u 66.7u 16.7u 66.7u 16.7u 66.7u 16.7u 66.7u 1/66.7us 166.6u 33.3u 133.3u 33.3u 133.3u 33.3u 133.3u 1/133.3us Tcp 복잡도그대로, 속도저하 (1/7 저하 ) 속도그대로, 복잡도증가
27 와이파이부반송파구조의예 g 의예 52 subcarrier (48 traffic + 4 pilot), 심볼주기 4usec, GI 0.8usec subcarrier 간격 = 1/(4us-0.8us) = 312.5kHz 대역폭 = khz x 52 subchannel = MHz modulation symbol rate = 1/4usec = 250 ksps for max throughput, 64QAM modulation, 3/4 convolutional coding 최대전송속도 = 250Ksps x 6bit/symbol x 3/4ChannnelCoding x 48개 _data_sc = 54Mbps GI 800ns 4us 250ksps(1125kbps) 유심볼폭의역수 54Mbps 312.5khz 간격 3.2us F0 F1 48 subcarrier / 16.25Mhz 27
28 와이파이최고전송속도 안테나개수 MCS 변조방식 코딩비율 20 MHz 채널 40 MHz 채널 80 MHz 채널 800 ns GI 400 ns GI 800 ns GI 400 ns GI 800 ns GI 400 ns GI 0 BPSK 1/ QPSK 1/ QPSK 3/ QAM 1/ QAM 3/ QAM 2/ QAM 3/ QAM 5/ QAM 3/ QAM 5/6 N/A N/A QAM 5/6 N/A N/A QAM 5/ MCS 9 256QAM 변조는 ac 에서만지원됨, MCS 0~7 은 n, ac 동시지원 1.3Gbps = 250ksps/SC x 8bit/symbol x 234SC(80MHz) x 5/6CC x 3x3MIMO 28
29 LTE 셀간간 제어 29
30 무선데이터폭증에대응하는기지국형상의변화 sector sector sector sector sector sector 4 FA sector sector sector sector sector sector 6 FA sector sector sector 5 FA sector sector sector 4 FA 1 FA omni 1FA/omni sector sector sector 1 FA 1FA/3Sector 3 FA sector sector sector 2 FA 1 FA 4FA/3Sector 3 FA sector sector sector 2 FA 1 FA 6FA/3Sector cell split 1/2/3/4 FA 1/2/3/4 FA 1/2/3/4 FA 1/2/3/4 FA 1/2/3/4 FA 30
31 셀분할을위한기지국집중화 (CCC,SCAN) 기존기지국은 too heavy => 부동산확보의어려움 => 셀분활의어려움 => 기지국의 RF 와디지털부를분리하여 RF 만전진배치 => CCC, SCAN DU RU Digital RF CDMA 에서는셀경계에서양쪽기지국신호를취하는소프트핸드오버기술로서셀간간섭제거 => 용량저하 => LTE 에서는허용불가 => 셀간간섭증가 DU RU DU 집화에의한 Cell split DU DU DU DU DU 광케이블 RU RU LTE 기술의최대난제인셀간간섭문제점증가.. RU RU RU DU 광케이블 RU RU Warp,A-SCAN (CS, JT) DU : Digital Unit RU : RF Unit 효율적셀간간섭문제점해결 RU RU RU LTE 셀간간섭해결의궁극적방식은 CoMP (LTE-A), 너무먼훗날?? 유사품?? 유사기술?? => Warp, A-SCAN SKT LTE SCAN 31
32 JT(Joint Transmission) 에의한셀간간섭제어 DU pool RU RU 셀간간섭 RU RU RU PCI 256 PCI 48 PCI 184 PCI 450 PCI 120 DU pool JT(Joint Transmission) 셀간간섭제어셀경계에서의동일한정보전송, 인접셀간동일 PCI 할당, 독립적셀용량 RU RU RU RU RU PCI 256 PCI 256 PCI 184 PCI 184 PCI 120 고속으로진행하는 KTX, 지하철구간등에서과도한핸드오버및셀간간섭최소화를위하여적용 Joint Transmission, Copy mode, Combined mode... 구현의이슈 32 중계기에의한셀간간섭제어
33 CS (Coordinated Scheduling) / ICIC (Inter Cell Interference Coordination) RNTP for DL, HII & OI fo UL X2 높은출력, 내가사용하는부반송파영역을인접셀에서사용하지않록, 또는낮은출력으로만사용하록협의 터페이스 낮은출력으로인접셀에영향없음, 동일부반송파영역을양쪽에서사용하록협의 출력 기지국간셀경계에서상호간섭이최소화되도록상하향링크오버로드정보를교환 ( 동작은구현의이슈 ) RNTP(Relative Narrowband Transmit Power) : PRB ( 또는 subband) 단위의 tx power overload 정보, 1초에수회이내 HII (High Interference Indicator) : PRB ( 또는 subband) 단위의 rx overload 정보 OI(Overload Indicator) : rx interference high/medium/low 정보 FFR 은 static ICIC, hard freq reuse, ICIC 는 semi-static ICIC, soft freq reuse 33
34 중계기에의한셀간간섭제어 MHU delay delay delay 고속전철 / 지하철... 구간 Maximum Round Trip delay RACH 최대허용 RTD Format 0 : 100us, 셀반경 15km 이하 Format 1 : 520us, 셀반경 72km 이하 Format 2 : 200us, 셀반경 22km 이하 A ROU B ROU C ROU 수신세기 PCI 256 PCI 256 PCI 256 시간차 <4.7usec(normal CP) A B B C 시간 또는 Joint Transmission 일반적인 delay spread signal 의수신세기는약하게도달, but 광중계기접경의경우 공중전파전파는 3usec/km, 광케이블은 5usec/km & 꼬불꼬불 If B,C 시간차 >CP(4.7usec) 심각한 ISI 발생 가장먼광중계기를기준으로광중계기간인위적시간지연설정, 양쪽중계기로부터도착하는신호의시간차가 CP 값이내가되도록 Normal CP 4.7usec 광케이블 940m, 공중전파전파 1.4km 에해당, 양쪽신호의시간차가이값이상이면 Extended mode CP 또는광중계기간인위적시간지연 (time advance) 설정필요 단말입장에서는인위적시간지연에의하여기지국과매우먼 ~ 거리로인식 RACH format 재설정필요 Ex) 모든 ROU 시간지연동일한 50usec( 광케이블 10km) 설정 전파전파약 15km 효과 PRACH format 1 or 2 34
35 LTE-TDD 구조와동작 35
36 LTE-FDD / LTE-TDD (1) 1200 /20M 15kHz 1ms, 정보전송의최소단위 10ms, 메시지전송의최소단위 Tx Tx Tx Tx Tx Tx Tx Tx Tx Tx Tx Tx Tx Tx Tx 10/20Mhz 보호대역 Tx Rx Rx Rx Rx Rx Rx Rx Rx Rx Rx Rx Rx Rx Rx 10/20Mhz LTE-FDD Tx Rx Rx Tx off Rx Rx Rx Tx off Rx Rx Rx Tx off 10/20Mhz TDD config 0 Tx Rx Tx Tx off Rx Rx Tx Tx off Rx Rx Tx Tx off TDD config 1 Tx Tx Tx Tx off Rx Tx Tx Tx Tx Tx Tx Tx Tx LTE-TDD TDD config 5 TDD config : 송수신절체 100회 or 200회 / 초, 송수신비대칭구조, 6단계로정의 off 36
37 LTE TDD DL/UL configurations (TD-LTE Type2) (15-455) DL subframe DwPTS GP UpPTSUL subframe UL subframe PUCCH PUCCH subcarrier PCFICH, PDCCH, HICH RS, BCH, PDSCH SSS PCFICH, PDCCH, HICH PSS DL data GP S-RACH, SRS RS, PUSCH, RACH PUCCH SRS RS, PUSCH, RACH PUCCH DwPTS GP UpPTS LTE-FDD slot 과완전하게동일한내부구조 1msec subframe Special Subframe Special subframe 5msec swithing (200 회 /sec) TDD config 0 ( 2:3 ) 1 ( 3:2 ) 2 ( 4:1 ) 6 ( 5:5 ) 10msec radio frame DL UL DL UL DL UL DL UL DL UL DL UL DL UL DL UL DL DL DL FDD Type1 프레임구조 10msec swithing (100 회 /sec) 3 ( 7:3 ) 4 ( 8:2 ) 5 ( 9:1 ) DL UL DL DL DL UL UL GP : Guard Period, Guard Time (for TDD) DL DL DwPTS, UpPTS 를 DL, UL 에포함시키면비대칭비율다소변경됨에유의 5ms or 10ms GI : Guard Interval (for OFDM symbol) DL Tx DL Tx TD-LTE 용어는 TD-SCDMA 로부터시작되었기에기존의 3GPP 용어와표현방법이다소다름에유의 UL Tx UL Tx DL,UL subframe 간의세부동작절차는 PDCCH DCI 설명페이지를참조 GP 37
38 LTE TDD Special Subframe 구조 Wibro TDD DwPTS(Downlink Pilot Time Slot) : DL 제어신호와 DL 데이터전송 (PSS, RS, control, data) - control : PCFICH, PDCCH, HICH UpPTS(Uplink Pilot Time Slot) : UL sounding reference signal 전송, 짧은셀 (up to 1.4km) 에서의랜덤엑세스시도 (S-RACH) GP (Guard Period) : 지연되어도착하는송신신호에의한수신신호의손상을방지하기위한보호대역 파라미터 DwPTS GP UpPTS UL Tx 설정범위 (format) 3 ~ 12 심볼 (213 ~ 852usec) 1 ~ 10 개심볼 (71~710usec), 최대셀반경 100km 지원 1 ~ 2 개심볼 (71~142usec) 5ms or 10ms DL Tx UL Tx DL Tx TD-LTE config format 커버리지..... CP mode Normal Extended 커버리지 GP 상하향비율상하향절체속도 38
39 TDD Special Subframe format - coverage Normal mode Extended mode format DwPTS GP UpPTS DwPTS GP UpPTS 0 3sym 10sym(714us) 3sym 8sym 1 9sym 4sym(285us) 8sym 3sym 1sym 2 10sym 3sym(214us) 1sym 9sym 2sym 3 11sym 2sym(143us) 10sym 1sym 4 12sym 1sym(71us) 3sym 7sym 5 3sym 9sym(643us) 8sym 2sym 2sym 6 9sym 3sym(214us) 2sym 9sym 1sym 7 10sym 2 sym(143us) 8 11sym 1sym(71us) subframe 14symbol/1msec 12symbol/1msec 단위 : 심볼 (sym) - normal mode 71.4usec/sym - extended mode 83.4usec/sym TDD Tx기준 3.3usec/km Rx기준 Tx,Rx 시간차 GP format max coverage(km) / normal mode 기준 39
40 TD-LTE versus LTE-FDD 비교항목 프레임구조 CP mode LTE-FDD 대비 TD-LTE 의 Phy,MAC 특징 TDD configuration 에따른 6 종류의프레임구조 Normal, Extended mode FDD 와동일 coverage 100% 시간점유인 FDD 에비하여 Tx 시간점유비율만큼커러리지축소, 특히 UL 에서 Random Access 매우작은셀에서효율적인 S-RACH 추가 (preamble format 4) S-RACH Ack/Nack HARQ 4 프레임뒤고정된위치에서피드백되는 FDD 에비하여 4~7 피드백프레임위치가변 - 8 번째프레임에서재전송되는 FDD 와달리 10~16 번째뒤의프레임에서재전송 - FDD 8 개동시 HARQ 프로세스, TDD config 에따라프로세스개수가변 수신 주파수 주파수 송신수신송신수신송신 guard band 송신 Full Duplex FDD 시간 guard time TDD 시간 40
41 LTE-TDD (2) 1) 6개의설정모드 (cofig) 에의한절체속도 (100 or 200회 / 초 ) 및상하향비율결정 2) FDD 대비커버리지축소 특히상향링크, 음성, 평균 5dB, 약 35% 축소 항상송신하는 FDD 대비송수신절체에따른평균출력감소 FDD 와동일한기지국에설치시 (cosite) 의문제점, (if not, no problem) FDD 와동일한커버리지용도보다는 capacity offload 용도선호 3) 와이파이와비슷한인빌딩에서의간단접속기능추가 (S-RACH) 4) 송수신실시간응답의어려움으로 FDD 대비약간의성능저하 (HARQ 성능저하 ) 5) 모든기지국송수신동기필수, 전파전달시간지연에민감 ( 특히광케이블 ) 공중전파는직진 3.3us/km, 광케이블은꼬불꼬불 5us/km 6) LTE-FDD, 와이브로와의셀간간섭민감 국내와이브로 DL:UL = 29:18 7) 보호대역불필요, 송수신비대칭설정에의한주파수효율성증대 41
42 LTE-TDD coverage 200mw 출력 200mw 70mw 출력 -4.7dB 평균출력 LTE-FDD 시간 시간 LTE-TDD (DL:UL=2:1 기준 ) RF frame Tx Rx Tx Rx Tx 2 1 Normal TTI UL TTI bundling TDD UL coverage -4.7dB FDD UL coverage TDD UL coverage -2dB FDD UL coverage -4.7 = 10log(1/3) 낮은 rate 전송에서유효 (VoLTE ) 42
43 LTE-TDD HARQ 절차 8parallel HARQ HARQ0 HARQ1 TB TB TB TB TB TB TB TB TB 4msec 후 ACK/NACK 응답 TB TB TB HARQ7 LTE-FDD 4~7parallel HARQ HARQ0 TB TB TB TB TB TB HARQ1 HARQN TB TB TB TB TB TB 4~13msec 후 ACK/NACK 응답 TDD config 에따른가변 LTE-TDD Longer latency than FDD HARQ 성능저하 43
44 TDD Config 별 DL,UL,Spec Subframe 의연동 TDD config Tx/Rx 스위칭 Subframe 순서 회 DL 4 Sp 6 UL 4 UL 7 UL 6 DL 4 Sp 6 UL 4 UL 7 UL 6 /sec 1 DL 7 Sp 6 UL 4 UL 6 DL 4 DL 7 Sp 6 UL 4 UL 6 DL 4 2 DL 7 Sp 6 UL 6 DL 4 DL 8 DL 7 Sp 6 UL 6 DL 4 DL 8 6 DL 4 Sp 7 UL 4 UL 6 UL 6 DL 7 Sp 7 UL 4 UL 7 DL 회 DL 12 Sp 11 UL 6 UL 6 UL 6 DL 7 DL 6 DL 6 DL 5 DL 5 /sec 4 DL 12 Sp 11 UL 6 UL 6 DL 8 DL 7 DL 7 DL 6 DL 5 DL 4 5 DL 7 Sp 11 UL 6 DL 9 DL 8 DL 7 DL 6 DL 5 DL 4 DL 13 UL 6 : UL subframe 이며이에대한응답는 6 번째뒤 DL subframe 또는 specical frame 의 DwPTS 에서이루어짐 DL 4 : DL subframe 이며이에대한응답과 DCI0 에대한 UL RB 지정이 4 번째뒤 UL subframe 에서이루어짐, Sp 6 : Special subframe 의 DwPTS 에서 DL data 송신이이루어지고이에대한응답과 DCI0 에대한 UL RB 지정이 6 번째뒤 UL subframe 에서이루어짐 DL subframe DwPTS GP UpPTSUL subframe UL subframe subcarrier PCFICH, PDCCH, HICH RS, BCH, PDSCH SSS PCFICH, PDCCH, HICH PSS DL data GP S-RACH, SRS PUCCH RS, PUSCH, RACH PUCCH SRS PUCCH RS, PUSCH, RACH PUCCH Special subframe 44
45 LTE-TDD 셀구성의예 LTE-TDD LTE-FDD <14년1월기준 > FDD 사업자 : 235개 TDD only 사업자 : 15개 FDD+TDD 사업자 : 13개 LTE-FDD 기지국에 cosite 망구성 backhaul LTE-FDD LTE-FDD 망의 backhaul 용도 LTE-TDD LTE-TDD LTE-FDD 망의 offload 용도 ( 차이나보마일홍콩 ) 더촘촘한셀간간격으로 LTE-TDD 혼자만으로무선망구성 ( 중국차이나모바일, 인도바르티 ) 45
46 LTE-FDD, LTE-TDD 셀간간섭 UL FDD 간섭 2570M DL / UL TDD 간섭 2620M DL FDD freq +40dBm 간섭 1-30dBm -90dBm 간섭 1 간섭 2 TDD/Tx FDD +20dBm FDD/Rx FDD/UL TDD FDD/DL -100dBm -40dBm +40dBm 간섭 2 FDD -80dBm +20dBm FDD TDD/Rx 46
47 LTE-TDD 셀간간섭 Cell-A Cell-B DL UL DL UL 간섭 간섭 DL UL DL UL 셀간비대칭비율일치필수 eimta(r12) +40dBm -30dBm -90dBm TDD-A TDD TDD-B Cell-A Cell-B DL UL DL UL 간섭 간섭 DL UL DL UL TDD 기지국간시간동기필수 GPS, IEEE
48 FDD/TDD 주파수대역 UL TDD DL TDD UL TDD DL TDD 대역의탄생 Guard Band for FDD 30MHz Guard Band for FDD 60MHz UL TDD DL UL TDD DL 700MHz 대역 2GHz 대역더높은주파수대역에서의 TDD 대역의탄생 A 사업자 20MHz B 사업자 20MHz C 사업자 20MHz D 사업자 60MHz A 사업자 20MHz B 사업자 20MHz C 사업자 20MHz UL UL UL TDD DL DL DL 경매비용 2000 억원?? 경매비용 9000 억원?? FDD / TDD 주파수경매의예 48
49 LTE-TDD 주파수대역 Ban LTE-TDD Band d 번호 1~32 LTE-FDD Band ~ 1902MHz ~ 2025MHz ~ 1910MHz ~ 1990MHz 비고 ~ 1930MHz US PCS-FDD GB ~ 2620MHz 2.6G LTE-FDD GB 제 4 이동통신사예상 차이나모바일 ~ 1920MHz 차이나모바일 ~ 2400MHz 국내와이브로, 차이나모바일 ~ 2690MHz 미국클리어와이어 ~ 3600MHz ~ 3800MHz ~ 803MHz 아나로그 TV 유휴대 역 49 LTE-FDD 대비 LTE-TDD 산업의경쟁력?? UL FDD 2570M 2575M DL / UL TDD 2615M 2620M DL FDD 국내 2.6G 대역 LTE-FDD, LTE-TDD 공존 2.3G, 2.6G 에몰려있는 TDD 사업자 주파수경매비용저렴, TDD 사업자넓은주파수대역확보 LTE-TDD CA 활성화예상 북유럽의경우경매제도에기인하여 TDD 주파수가 FDD 대비더높았던경우도있음 freq
50 TTA LTE - - Feb. 14, 2014! Prof. Tae-Won Ban ( Dept. of Information & Communication Engineering Gyeongsang National University 1
51 Contents Fundamentals of OFDM OFDM Principles OFDM Parameters in LTE Fundamentals of MIMO Downlink Physical Layer Frame and Slot Structure Physical Channels Physical Signals Uplink Physical Layer Key Features Physical Channel Physical Signals 2
52 Fundamentals of OFDM 3
53 <latexit sha1_base64="zvy66vfrg4oxlkkiufubj8xjkpk=">aaacsxicfvhbihnbeo2ml13jlaupvjsgbre2tgtrfvkm6imv4grgxxamjt2dmkkz3t1jd41kgmbp8wt8vfav/aq7kycbxbcg6cm5vvtvqaru0mey/u4f167fulmze6t/+87de/chew8+uqkyaqaiuiu9s7gdjq1muakcs9ic14mc0yr/tdjpv4j1sjafsc6baz4zmurb0vozwasodduoxavntx58eeutyt1+ajzggevsezmdnmvojtezgi906uti7pb6hc0gw3audkgvgvegdf/+iv2czpz65/g8ejugg0jx56jxwcjrueupflt9uhjqcphzdcipddfgwnot2tj9z8xpwlj/dnkovvjrco1crrofqtku3gvtrf7t9i+26ihhw <latexit sha1_base64="ppipigxd+f5krc83en/+x06/r3a=">aaacthicfzhdatrafmdnuz/q+rvtl70zxapbwsupyr2rfuqfn2if1y426tkzpcmons9mjtjlio/j03hr38jhcjis0m3ba8n8+j9zodp/k2vorivjq160cefuvfubd/ophz1+8nswtf3fqspqmfdflznmxajneiaooq5tbycinmnpfnhc5e+/g7fmyc9uqsetpjssyjs4im0gx5cjufc2lqyhpqn9fqpzjvmm3cy/bpjcn//pkfucsrih5/5bh1jwen7hbdcmx3eb+dyk <latexit sha1_base64="1ujlgcb6sgbo/8fo5dn1hlk4xig=">aaaclhicfvfnaxrbeo0dv+l6lejbg5fgjsaellkrzsukkche1ai7jrgzhjre2tkm3t1dd41kgna7v8ar/ht/ht/b2tlfsgly0psrv6+o6tdzaxsgop7dia5dv3hz1sbt7p279+4/2nx6+dkulvc4uoup/ekgay12ocjnbk9kj2azg8fz2cgifvwvfdcfg1jdymohd3qqfrbtp5u9w+hb4fg8gucytnexwzqqthhkm9upq+j+3ia8cgyr0nv7i9o4ot3qfekmhaosoligqhgp4plsbjxpzxdetaqajagzyhhm0afps5v2nxo5zcxetgvpx5fs2ysdddgqapux0glnwuxagvxx2744qqwutxus+nilzdfrfu130ka7sij0arnjtdkscr <latexit sha1_base64="9j6vim0mjrfg0rez0rf4mwsejle=">aaacpnicfvhbbhmxehwwwwm3fb55sygqtuinnojbs0uleoaftugsichug9ez3zj6srjnusnr+rg+hlf4av6ct8dzrkhpjuayfhtmjgbmtf5j4tcof3eik1evxb+xdbn76/adu/d62/c/olnbdgk30thxzhxiosfbgrlglqwmcgmj/pt1mj/6ctyjoz/goojmsvklqncggzr2no13u6ogzhshqavv1o Basic Theories Convolution!!! Discrete Time Fourier Transform (DTFT) for non-periodic time signals!! y[n] = 1X k= 1 x(n) = 1 2 x[k]h[n Z Convolution theorem is valid X(!)e j!n d! k], x[n] h[n] DTFT[x y] =DTFT[x] DTFT[y] X(!) = 1X n= 1 x[n]e j!n 4
54 Basic Theories <latexit sha1_base64="j3rpvbmqr0cceee7huxzhy5iefq=">aaacunicfzhnitraemd74tc6fs3q0uvjscdcdomiellc0imexfdw3mukhk5ptazjf8tuiswq4iv5nb686cv4chyyg+zsggxd/enfvvr1vv5j4tamfw6cs5evxl22c3144+at23dgu3c/olnbdlnuplgnoxmghyypcprwwllgkpdwkpcvo//jv7bogp0bvxwkihvazavn6kvs9gyz6zqxkbq4uugyrwc6kpcfjq5wwvmeho3n5mg/apdjloq47o501xos98s0o+qvbdqoj2fv9cjegxi/+en6o852b5+smeg1ao1cmufikkwwbzhfwsw0w6r2udfesgjij5r <latexit sha1_base64="jrormpd6zt9bgrhmylfn30srruk=">aaacmnicfvhtahnbfj2sxzv+pfpthmfqaaxdrej1t7fqfyiivmhsmltdzic3m+noxzizkw3d+go+jx/1oxwlh8hjjkjtghegozxzl/fec/nkcosi+d2jrly9dv3gxs3urdt37t7rbd7/bhvtgayzftqmcmpbcavdx52auwwaylzacv4elptjr2as1+rizs <latexit sha1_base64="pfttavdkkuekoqjk8lxyrov/3hu=">aaacohicfvhdahnbfj6sp63xl9vlbwzdqbyimylag7fgkfzc2kjjs7nlmj2cbibozzjzvhqw+by+jbf1ixwlh6fnn1gafjwwzdffdw7nng+yqquacfy7fd25e+/+2vqd9snhj5887ww8+xpc6sumpnpon2yigfywbqhqw2nhqzhmw0l2/qnwt76bd8rzy5wvkbqrwzvruibro86b3b3j4cxqpoldzsdwkeh0w182trzs/w6uuacb9+im+g3qx4luxz+sicprrussgttzgraotqhh2i8ltcvhuukn83zsbiiepbc5dalaqf3sqtlszjejgfoj83qs8oa9xleje8lmzjrpbe7dta0m/2mb11s1lprpbsvdqsd5ql7izdutlc1kbcsxk0xkzdhx2kc+vh4k6hkbqfw0djdt4yvecntldgkyr/ipnuh2gszw8iv6hxtgbtr/ukqez <latexit sha1_base64="+kxqsh2syuej4noeutiofjmwre0=">aaacv3icfvhbbtnaen2ywwmxpvdii0vuqsaa2rwifamogadeceuincj2rfvm7czzm3bxqnhk/sp+bl7ha/ge1k5atssx0mrpnpmjmt2tk0anjalvneda9rs3b23c7t65e+/+zm/rwscjk01grcstepxja4wkgflqgyyvbsxzbif5/hwtp/kk2lapptqfgptjutccemw9lfwg4535k8ok0ji4uhbdojevz5w4joptn9yn67ojsohu7x6zj5jdibmofpwz87+plxqvubrrz71+nijack+ceax6l3+jno6zrc7nzcpjxufywraxkzhsnnvyw0oy1n2kmqawmemsjh4kzmgkrv14hw57zhowuvsjbniyfxuoc2 Circular Convolution!! Discrete Fourier Transform (DFT) Converts a finite list of equally spaced samples of a function into the list of coefficients of a finite combination of complex sinusoids!!! x(n) = x[n] h[n], NX 1 k=0 X[k]e jk! 0 NX 1 k=0 x k y [n k] N X(k) = 1 N Convolution theorem is not valid, but circular convolution theorem is valid DFT[x[n] h[n]] = DFT[x[n]] DFT[h[n]] NX 1 n=0 x[n]e jk! 0n,! 0 = 2 N 5
55 Introduction to OFDM OFDM is a multi-carrier modulation Symbols at rate R are serial-to-parallel converted to N parallel streams Each stream is at rate R/N Symbol duration per stream increased N times Bandwidth per stream reduced N times Each stream modulates one of N orthogonal carriers Implemented easily with IFFT/FFT 6
56 Advantages and Disadvantages of OFDM Advantages No complex time-domain equalization. Robust against intersymbol interference (ISI) and fading caused by multipath propagation High spectral efficiency as compared to conventional schemes, CDMA Efficient implementation using Fast Fourier Transform (FFT). Low sensitivity to time synchronization errors. Tuned sub-channel receiver filters are not required (unlike conventional FDM). Facilitates single frequency networks (SFNs); i.e., transmitter macrodiversity. Disadvantages Sensitive to Doppler shift. Sensitive to frequency synchronization problems. High peak-to-average-power ratio (PAPR Loss of efficiency caused by cyclic prefix/guard interval Ref) Wikipedia 7
57 <latexit sha1_base64="tjoibyej5xvxwjmi4kdk7jue1ja=">aaacehicfvfnbxmxej0stjrav+dizsgqahuinhfqe6morixggchsq9mmq2rwmwys2t6vpysarckf4ao/jh/bnqvopqceckay/pteg834ocmvdb Complete OFDM Modulation X <latexit sha1_base64="uso x = IDFT[X] x 0 <latexit sha1_base64="yiv channel : h <latexit sha1_base64="i8thypjw159uuphzjcobq9fjnxk=">aaacgxicfvfdsxtbfl3z2lbtr1gf+7i0cojd2ehpiz5uqa99kso0vxsxchdysxmcmv1m7oph2 x 0 h = x ~ h + <latexit sha1_base64="+wcgikjugguvsedjrdfd2a7ufhk=">aaacmxicfvhdahnbfj6sfzx+pe2lxgygqleigxh1rlqqf0uqkxpb7k7h7orkd+jm7dbzvhkw9rf8gm/1pxwlh8hjpkqi6ifhvvm+c+b8zvzjt3h8vrnduhjp8pwnq91r12/cvnxb3hrny8ojhilsle4ka49kghyr x ~ h <latexit sha1_base64="i8qlf031txwewsmb0pxg11xraxk=">aaacfxicfvfrt HX <latexit sha1_base64="3qrecizgah1npljzybxtuy X <latexit sha1_base64="uso 8
58 OFDM Cyclic Prefix After IFFT, a guard band (cyclic prefix) is added at the beginning Guard time prevents Inter- Symbol Interference (ISI) and Inter- Carrier Interference (ICI) due to multipath 9
59 OFDM Cyclic Prefix Guard time duration > channel maximum delay Optic cable can cause additional delay spread 10
60 OFDM Parameters 11
61 OFDM in LTE 12
62 OFDM in LTE OFDM parameters should be optimized considering UE s velocity and multi path environments Time domain!!! Frequency domain 13
63 Fundamentals of MIMO 14
64 MIMO Channel Modeling 15
65 Linear Independent One vector can be represented by any linear combination of other vectors 16
66 Rank of Channel Matrix The maximum number of linearly independent column vectors of H!!!! The maximum number of data streams that can be transmitted simultaneously Rank(H) min(nr, NT) 17
67 Summary of various MIMO schemes Total transmit power is fixed regardless of the number of tx antennas ij = P h ij 2 n <latexit sha1_base64="lu0qoza6czkeip1gcozr39svceu=">aaacknicfvhbahrbeo0dl0nw2yasp7ymlghxyzknygqjrukddxfxce0wmw49vtuzbfoydpeis2d89wt8nd+sv/atrj1d 0 18
68 Downlink Physical Layer of LTE References: 1. Bong Youl Cho, LTE Physical Layer in TTA, March Stefania Sesia, et al., LTE: From Theory to Practice, Wiley, 2nd Ed. 3. Erik Dahlman, et al., 4G LTE/LTE-Advanced for Mobile Broadband, Elsevier 19
69 LTE Time Domain Frame Structure 20
70 Transmission Resource Structure-PDCCH RE REG CCE Aggregation Level Aggregation Level 1, 2,4, 8 aggregation level is determined by the enodeb according to the channel conditions. For a UE with a good DL channel one CCE For a UE with a poor DL channel, then eight CCEs may be required in order to achieve sufficient robustness 21
71 Transmission Resource Structure-PDSCH RE RB RBG Basic time-domain unit (TTI) for dynamic scheduling in LTE is one subframe consisting of two consecutive slots 22
72 DL Signal Generation Codeword CRC + Channel Coded The initial scrambling is applied to all downlink physical channels for interference rejection Scrambled bits are modulated to generate complex-valued modulation symbols Complex-valued modulation symbols are mapped onto one or several transmission layers Precoding of the complex-valued modulation symbols on each layer for transmission on the antenna ports mapping of complex-valued modulation symbols for each antenna port to resource elements generation of complex-valued time-domain OFDM signal for each antenna port 23
73 Modulation PDSCH, PMCH: QPSK, 16QAM, 64QAM PBCH, PCFICH, PDCCH: QPSK PHICH: BPSK 24
74 Layer Mapping and Precoding Spatial layer is used for one of the different streams generated by spatial multiplexing A layer can be described as a mapping of symbols onto the transmit antenna ports Each layer is identified by a precoding vector of size equal to the number of transmit antenna ports and can be associated with a radiation pattern The rank of the transmission is the number of layers transmitted A codeword is an independently encoded data block Sngle Transport Block (TB) delivered from the Medium Access Control (MAC) layer in the transmitter to the physical layer, and protected with a CRC 25
75 Layer Mapping and Precoding 1 The number of layers (NL) min (Tx ant, Rx ant) Codebook-based precoding CRS-based channel estimation Cell-specific reference signals (CRS) are applied after precoding Maximum 4 layers are supported Modulation symbols :one or two transport block(codewords) 26
76 Layer Mapping and Precoding Transport Block to Layer Mapping 27
77 Physical Channels Physical Channels PBCH Physical Broadcast Channel Transport Channels BCH Contents MIB (BW, SFN ) Comments UE PCFICH Physical Control Format Indicator Channel PMCH Physical Multicast Channel PHICH Physical HARQ Indicator Channel PDSCH Physical Downlink Shared Channel MCH DL-SCH PCH CFI (Control Format Indicator) Broadcast data ACK/NACK Downlink user data, SI Paging -UE PDCCH OFDM - subframe -One PCFICH/cell System Information RRC DL-SCH 28
78 Physical Channels-PBCH Broadcast MIB Should be reached over entire cell The coded BCH transport block is mapped to four subframes (slot #1 in subframe #0) within a 40ms interval 29
79 Physical Channels-PBCH Detectability without the UE having prior knowledge of the system bandwidth PBCH is mapped only to the central 72 subcarriers of the OFDM signal regardless of the actual system bandwidth Low system overhead for the PBCH Achieving stringent coverage requirements for a large quantity of data would result in a high system overhead. MIB is just 14 bits and repeated every 40 ms 350bps 30
80 Physical Channels-PBCH Reliable reception of the PBCH FEC Coding rate=1/48 (40/1920) Time diversity Spreading out the transmission of each MIB on the PBCH over a period of 40 ms Prevent information loss due to deep fading even when mobile is moving at pedestrian speeds Antenna diversity at both the enodeb and the UE Receive diversity at UE using dual receiving antennas Transmit diversity may be also employed at enb Space-Frequency Block Code (SFBC) using two or four transmit antenna ports UE can blindly find the number of transmit antenna ports (two or four) by using CRC on each MIB which is masked with a codeword representing the number of transmit antenna ports 31
81 Physical Channels-PCFICH Carries a Control Format Indicator (CFI) which indicates the number of OFDM symbols (i.e. normally 1, 2 or 3) used for transmission of control channel information in each subframe UE can deduce the value of the CFI without the PCFICH by multiple attempts to decode the control channels assuming each possible number of symbols, but this would result in significant additional processing load To minimize the possibility of confusion with PCFICH information from a neighbouring cell, a cell-specific frequency offset is applied to the positions of the PCFICH REs Offset depends on the Physical Cell ID (PCI), which is deduced from the Primary and Secondary Synchronization Signals (PSS and SSS) Tx diversity, the same antenna ports as PBCH 32
82 Physical Channels-PCFICH 33
83 Physical Channels-PHICH The PHICH carries the HARQ ACK/NACK, which indicates whether the enodeb has correctly received a transmission on the PUSCH 0 for ACK and 1 for a NACK This information is repeated in each of three BPSK symbols Tx diversity, the same antenna ports as PBCH 34
84 Physical Channels-PHICH A PHICH is carried by 3 Resource Element Groups (REGs) Each REG contains 4 resource elements (REs) The three REGs are evenly distributed within the system bandwidth to provide frequency diversity Multiple PHICHs can share the same set of REGs and are differentiated by orthogonal covers PHICHs which share the same resources are called a PHICH group 35
85 Physical Channels-PHICH A total of 8 orthogonal sequences have been defined (3GPP TS Table ), so each PHICH group can carry up to 8 PHICHs A specific PHICH is identified by two parameters PHICH group number Orthogonal sequence index within the group 36
86 Physical Channels-PDCCH Carry downlink control information(dci) which includes Downlink scheduling assignments, including PDSCH resource indication, transport format, HARQ-related information, and control information related to spatial multiplexing (if applicable). Uplink scheduling grants, including PUSCH resource indication, transport format, and HARQ-related information Uplink power control commands DL assignment Regular unicast data RB assignment, transport block size Scheduling of paging messages acts as a PICH Scheduling of SIBs Scheduling of RA responses UL power control commands 37
87 Physical Channels-PDCCH UL grant Regular unicast data Request for aperiodic CQI reports Power control command, cyclic shift of DM RS Tx diversity, the same antenna ports as PBCH 38
88 Physical Channels-PDCCH Release 9 Release 10 Release 10 39
89 Physical Channels-PDCCH PDCCH Format Each PDCCH is transmitted using one or more Control Channel Elements (CCEs) Each CCE corresponds to nine REGs Four QPSK symbols are mapped to each REG 40
90 Physical Channels-PDCCH The identity of the terminal (or terminals) addressed(rnti) is included in the CRC calculation and not explicitly transmitted Depending on the purpose of the DCI message, different RNTIs are used; for normal unicast data transmission, the terminal-specific C- RNTI is used 41
91 Physical Channels-PDSCH PDSCH is the main data-bearing downlink channel in LTE carrying All user data Broadcast system information which is not carried on the PBCH Paging messages No specific physical layer paging channel in LTE 42
92 Physical Channels-PDSCH PDSCH is the main data-bearing downlink channel in LTE carrying All user data Broadcast system information which is not carried on the PBCH Paging messages No specific physical layer paging channel in LTE Data is transmitted in units of Transport Blocks (TBs), each of which corresponds to MAC PDU Transport blocks are passed down from the MAC layer to the physical layer once per Transmission Time Interval (TTI), where a TTI is 1 ms, corresponding to the subframe duration 43
93 Physical Channels-PDSCH When employed for user data, one or, at most, two TBs can be transmitted per UE per subframe, depending on the following transmission modes selected for the PDSCH for each UE Transmission Modes Descriptions 1 Transmission from a single enodeb antenna port 2 Transmit diversity 3 Open-loop spatial multiplexing 4 Closed-loop codebook-based spatial multiplexing 5 Multi-User Multiple-Input Multiple-Output (MU-MIMO) 6 Closed-loop rank-1 precoding Transmission using non-codebook-based UE-specific RSs with a single spatial layer Transmission using non-codebook-based UE-specific RSs with up to two spatial layers Transmission using non-codebook-based UE-specific RSs with up to eight spatial layers 44 Releases Release 8 Release 9 Release 10
94 Physical Channels-PDSCH 45
95 Physical Channels-PDSCH Transmission Mode 1: Single antenna transmission DL transmissions using a single Tx antenna (Port 0) at enb Transmission Mode 2: Transmit diversity DL transmission using Alamouti-like transmit diversity schemes The number of layers is equal to the number of antenna ports 46
96 Physical Channels-PDSCH Transmission Mode 3: Open-loop spatial multiplexing Transmit different streams of data simultaneously on the same RB(s) by exploiting the spatial dimension of the radio channel. These data streams belong to the same user. It requires less UE feedback regarding the channel situation (no precoding matrix indicator is included, and is used when channel information is missing or when the channel rapidly changes, e.g. for UEs moving with high velocity Up to 2 codewords transmissions with no PMI feedback For two transmit antennas, a fixed precoding, while for four antennas, the precoders are cyclically switched Exploits CDD in DL transmissions Frequency selective fading Up to 4 layers and 4 antennas 47
97 Physical Channels-PDSCH Transmission Mode 4: Closed-loop spatial multiplexing (SU-MIMO) Transmit different streams of data simultaneously on the same RB(s) by exploiting the spatial dimension of the radio channel. These data streams belong to the same user. Up to 2 codewords transmissions with RI and PMI feedback. Exploits CDD in DL transmissions Up to 4 layers and 4 antennas 48
98 Physical Channels-PDSCH Transmission Mode 5: Multi-User MIMO (MU-MIMO) Transmit different streams of data simultaneously on the same RB(s) by exploiting the spatial dimension of the radio channel. These data streams belong to different users (Also known as downlink SDMA) The enodeb pairs UEs that report orthogonal PMIs. Single codewords and single Layer per user (UE reports only PMI, no RI is reported). Up to 4 Tx antennas at enb Different users can use the same time/freq resources in different location within a cell 49
99 Physical Channels-PDSCH Transmission Mode 6: Closed-loop Rank-1 Precoding Same as Mode 4 with Rank restriction 1 No Rank reports are required This mode amounts to beamforming since only a single layer is transmitted, exploiting the gain of the antenna array A UE feeds channel state information back to the enodeb to indicate suitable precoding matrix (PMI) to apply for the beamforming operation 50
100 Physical Channels-PDSCH Transmission Mode 7: Transmission using non-codebook-based UE-specific RSs with a single spatial layer Same as Mode 1 using UE-specific Reference Signals instead of Cell-specific Reference Signals (with the help of sounding reference signal) MIMO precoding is not restricted to a predefined codebook, so the UE cannot use the cell-specific RS for PDSCH demodulation and precoded UE-specific RS are therefore needed. Data transmission for the UE appears to have been received from only one transmit antenna. Therefore, this transmission mode is also called "single antenna port; port 5 Various algorithms for calculating the optimum beamforming weightings Direction of the received uplink signal (DoA or angle of arrival (AoA)) Channel estimation by using channel reciprocity in TD-LTE 51
101 Physical Channels-PDSCH Transmission Mode 8: Transmission using non-codebook-based UE-specific RSs with up to two spatial layers Extended to support dual-layer beamforming in Release 9 The two associated PDSCH layers can then be transmitted to a single user in good propagation conditions to increase its data rate, or to multiple users (MU-MIMO) to increase the system capacity Superposed beams share the available transmit power of the enodeb, so the increase in data rate comes at the expense of a reduction of coverage 52
102 Physical Signals-RS Cell-specific RS Transmitted in every downlink subframe, and span entire cell BW MBSFN RS Used for channel estimation for coherent demodulation of signals being transmitted by means of MBSFN UE-specific RS When non-codebook-based beamforming is used 53
103 Physical Signals-Cell Specific RS Enables the UE to determine the phase reference for demodulating the downlink control channels and the downlink data Also used by the UEs to generate Channel State Information (CSI) feedback The required spacing in time between the reference symbols can be determined by the maximum Doppler spread (highest speed) to be supported fd=fcv/c=950hz when =fc2ghz and v=500km/h Tc=1/(2fd)=0.5ms Two reference symbols per slot are needed in the time domain in order to estimate the channel correctly 54
104 Physical Signals-Cell Specific RS The required spacing in frequency between the reference symbols can be determined by the maximum coherence time The maximum r.m.s channel delay spread considered is about 991ns Bc,90% = 1/(50σ τ )=20kHz and Bc,50% = 1/(5σ τ )=200kHz One reference symbol every six subcarriers on each 991ns Bc,90% = 20 khz and Bc,50% = 200 khz Spacing two reference symbols in frequency, in one RB, is 45 khz Pseudo-random sequence generation! ns: slot number within a radio frame l:ofdm symbol number within the slot c(i): length-31 Gold sequence which is initialized depending on the cell ID A cell-specific frequency shift is applied, given by (Cell ID) mod 6 55
105 Physical Signals-Cell Specific RS One antenna Two antennas 56
106 Physical Signals-Cell Specific RS Four antennas 57
107 Physical Signals-Cell Specific RS Density for the third and fourth RSs is lower, compared to the density of the first and second RSs. Reduce the RS overhead in the case of four reference signals This obviously has an impact on the potential of the terminal to track very fast channel variations However, this can be justified based on an expectation that, for example, high-order spatial multiplexing will mainly be applied to scenarios with low mobility. 58
108 Physical Signals-UE Specific RS In Release 8 of LTE, UE-specific RSs may be transmitted in addition to the CRS if the UE is configured (by higher-layer RRC signaling) to use transmission mode 7 The UE-specific RSs are embedded only in the RBs to which the PDSCH is mapped for those UEs If UE-specific RSs are transmitted, the UE is expected to use them to derive the channel estimate for demodulating the data in the corresponding PDSCH RBs The same precoding is applied to the UE-specific RSs as to the PDSCH data symbols, and therefore there is no need for signaling to inform the UE of the precoding applied 59
109 Physical Signals-PSS and SSS 504 unique physical-layer cell identities 168 unique physical-layer cell-identity groups (0~167) 3 physical-layer identity within physical-layer cell-identity group (0~2) 60
110 Physical Signals-Summary Source), Synchronization and Cell Search for LTE and WCDMA 61
111 Physical Signals-Cell Search Procedure Source), Synchronization and Cell Search for LTE and WCDMA 62
112 LTE Downlink Resource Grids Ref) 63
113 LTE Downlink Resource Grids Ref) 64
114 Uplink Physical Layer of LTE References: 1. Bong Youl Cho, LTE Physical Layer in TTA, March Stefania Sesia, et al., LTE: From Theory to Practice, Wiley, 2nd Ed. 3. Erik Dahlman, et al., 4G LTE/LTE-Advanced for Mobile Broadband, Elsevier 65
115 Uplink Key Features SC-FDMA is used to reduce UEs PAPR Perform an M-point DFT operation on each block of M QAM data symbols Zeros are then inserted among the outputs of the DFT in order to match the DFT size to an N-subcarrier OFDM modulator 66
116 Uplink Key Features SC-FDMA parameters!!!!!!! MU-MIMO, QPSK, 16QAM, (64QAM) modulations are supported 67
117 Physical Channels Physical Uplink Shared Channel (PUSCH) Uplink counterpart of PDSCH Carries UL-SCH Physical Uplink Control Channel (PUCCH) Carries HARQ ACK/NAKs in response to DL transmission Carries Scheduling Request (SR) Carries channel status reports such as CQI, PMI and RI At most one PUCCH per UE Physical Random Access Channel (PRACH) Carries the random access preamble 68
118 Physical Channels 69
119 Physical Channels-PUCCH PUCCH Formats 70
120 Physical Channels-PRACH Cyclic Prefix and Guard Time of PRACH determine the maximum allowable cell coverage in LTE Delay spread of UE close to enb Guard Time= max RTT UE close to enb UE at cell edge Delay spread of UE at cell edge =max delay spread max RTT T CP =max RTT+max delay spread 71
121 Physical Channels-PRACH There 4 PRACH preamble format Maximum cell radius is about 100km 72
122 Physical Signals An uplink physical signal is used by the physical layer but does not carry information originating from higher layers Two types of reference signals UL demodulation reference signal (DRS) for PUSCH, PUCCH UL sounding reference signal (SRS) not associated with PUSCH, PUCCH transmission 73
123 Physical Signals-DRS The DRSs associated with uplink PUSCH data or PUCCH control transmissions from a UE are primarily provided for channel estimation for coherent demodulation and are therefore present in every transmitted uplink slot DRS for PUSCH In the center SC-FDMA symbol for normal CP In the 3rd SC-FDMA symbol for extended CP 74
124 Physical Signals-DRS DRS for PUCCH Format 1x: ACK/NACK!!!! Format 2x: CSI 75
125 Physical Signals-SRS Transmitted on the uplink to allow for the enb to estimate the uplink channel state at different frequencies. Periodic SRS (Release 8) and aperiodic SRS (Release 10) Periodic SRS Once every 2 ms (every second subframe) ~ Once every 160 ms (every 16th frame) 76
126 Physical Signals-SRS Non-frequency-hopping (wideband) versus frequency-hopping SRS Wideband SRS transmission is more efficient from a resource-utilization point of view because less OFDM symbols need to be used to sound a given overall bandwidth However, in the case of a high uplink path loss, wideband SRS transmission may lead to relatively low received power density, which may degrade the channelstate estimation narrowband SRS 77
127 Thank you for you attention! 78
슬라이드 제목 없음
OFDM (Orthogonal Frequency Division Multiplexing) 서울대학교이동통신연구실 1 Contents Introduction Generation of subcarriers using the IFFT Guard time and cyclic extension Windowing Choice of OFDM parameters OFDM
More information½Éº´È¿ Ãâ·Â
Standard and Technology of Full-Dimension MINO Systems in LTE-Advances Pro Massive MIMO has been studied in academia foreseeing the capacity crunch in the coming years. Presently, industry has also started
More informationMicrosoft PowerPoint - LTE_Overview_new.ppt
UMTS Long Term Evolution (LTE) 안수현 suhyun.an@rohde-schwarz.com 1ES/GP Rohde & Schwarz, Korea Overview: Market Trend Date Title of presentation 2 이동통신기술동향 GSM/(E)GPRS WCDMA/HSPA CDMA2000 1xEVDO LTE UMB
More information(72) 발명자 정진곤 서울특별시 성북구 종암1동 54-398 이용훈 대전광역시 유성구 어은동 한빛아파트 122동 1301 호 - 2 -
(51) Int. Cl. (19) 대한민국특허청(KR) (12) 등록특허공보(B1) H04B 7/04 (2006.01) H04B 7/02 (2006.01) H04L 1/02 (2006.01) (21) 출원번호 10-2007-0000175 (22) 출원일자 2007년01월02일 심사청구일자 2008년08월26일 (65) 공개번호 10-2008-0063590 (43)
More informationKT 무선네트워크진화방향 KT 개인고객부문무선연구소 최병진
KT 무선네트워크진화방향 2009. 7. 2 KT 개인고객부문무선연구소 최병진 (cbj@kt.com) 목차 I. 무선네트워크기술진화 II. 해외사업자무선네트워크진화동향 III. 국내사업자무선네트워크진화동향 IV. KT 무선네트워크진화방향 2 I. 무선네트워크기술진화 망진화 History 이동통신기술은 CDMA 상용화이후동기 / 비동기진영간경쟁을통해급속히발전
More informationCS.hwp
보고서 2019-11 2019. 1. 3 CS(065770) IT H/W < 작성기관 : 한국기업데이터 > 보고서 ( 요약 ) 보고서 ( 전문 ) 기업현황산업분석기술분석주요이슈및전망 CS(065770) IT H/W 이 보고서는 자본시장 혁신을 위한 코스닥시장 활성화 방안 의 일환으로 코스닥 기업에 대한 투자정보 확충을 위해, 한국거래소와 한국예탁결제원의 후원을
More information¼º¿øÁø Ãâ·Â-1
Bandwidth Efficiency Analysis for Cooperative Transmission Methods of Downlink Signals using Distributed Antennas In this paper, the performance of cooperative transmission methods for downlink transmission
More informationMicrosoft PowerPoint Multiplexing
Multiplexing 부산대학교정보컴퓨터공학부 김종덕 (kimjd@pusan.ac.kr) 강의의목표 Multiplexing 기술이해결하려는문제를이해한다. 기본 Multiplexing 기술인 FDM과 Synchronous TDM 기술의주요원리및특징을이해한다. Synchronous TDM과 Statistical/Asynchronous TDM을비교하여이해한다.
More information<4D6963726F736F667420576F7264202D2032303133303330385FB1E2BCFAB5BFC7E2BAD0BCAE2DB8F0B9D9C0CF20B3D7C6AEBFF6C5A92DC3D6BFCF2E646F6378>
2013-03-08 모바일 네트워크 기술 동향 모바일 네트워크의 개념과 기본적인 배경 지식에 대해 소개하고, 최근 업계 동향을 살펴봄 목차 1. 모바일 네트워크 개요...2 2. 3G 네트워크 기술 소개...4 3. LTE-A 최신 동향...7 최완, wanne@etri.re.kr ETRI 차세대콘텐츠연구소 콘텐츠서비스연구실 ETRI 차세대콘텐츠연구소 콘텐츠서비스연구실
More information제 3 편
제 3 편 미약무선기기 (3 미터 ) 무선조정기 (500 미터 ) 소출력무선기기 코드리스전화기 데이터전송용 무선호출용 특정소출력무선기기 무선데이터통신및무선 LAN 용 무선마이크용 무선조정및안전시스템용 시각장애인용 단거리전용통신용 1000 100 10 60GHz ANSIBLE 5GHz PAN/LAN Convergence HIPERLAN/2 802.11a
More information3 : ATSC 3.0 (Jeongchang Kim et al.: Study on Synchronization Using Bootstrap Signals for ATSC 3.0 Systems) (Special Paper) 21 6, (JBE Vol. 21
3: ATSC 3.0 (Jeongchang Kim et al.: Study on Synchronization Using Bootstrap Signals for ATSC 3.0 Systems) (Special Paper) 21 6, 2016 11 (JBE Vol. 21, No. 6, November 2016) http://dx.doi.org/10.5909/jbe.2016.21.6.899
More informationChapter4.hwp
Ch. 4. Spectral Density & Correlation 4.1 Energy Spectral Density 4.2 Power Spectral Density 4.3 Time-Averaged Noise Representation 4.4 Correlation Functions 4.5 Properties of Correlation Functions 4.6
More information내용 q Introduction q Binary passand modulation Ÿ ASK (Amplitude Shift Keying) Ÿ FSK (Frequency Shift Keying) Ÿ PSK (Phase Shift Keying) q Comparison of
6 주차 통과대역디지털변조 q 목표 Ÿ Digital passand modulation 이해 Ÿ ASK, FSK, PSK, QAM의특성비교 - Error proaility - Power spectrum - Bandwidth efficiency ( 대역효율 ) - 그외 : implementation 디지털통신 1 충북대학교 내용 q Introduction q
More informationT T A S t a n d a r d
제정일 : 2017 년 06 월 28 일 T T A S t a n d a r d 5G 시범서비스를위한통신시스템 - 평창올림픽 Communication System for 5G Trial Service - PyeongChang Olympic Games 표준초안검토위원회 IMT 프로젝트그룹 (PG906) 표준안심의위원회 전파 / 이동통신기술위원회 (TC9) 성명
More information½½¶óÀ̵å Á¦¸ñ ¾øÀ½
하나의그룹 FH/FDMA 시스템에서 겹쳐지는슬롯수에따른성능분석 구정우 jwku@eve.yonsei.ac.kr 2000. 4. 27 Coding & Information Theory Lab. Department of Electrical and Computer Engineering, Yonsei Univ. 차례 (Contents) 1. 도입 (Introduction)
More information°í¼®ÁÖ Ãâ·Â
Performance Optimization of SCTP in Wireless Internet Environments The existing works on Stream Control Transmission Protocol (SCTP) was focused on the fixed network environment. However, the number of
More information3 : FBMC/OQAM (YongJu Won et al.: A Study of Iterative Channel Estimation and Equalization Scheme of FBMC/OQAM in a Frequency Oversampling Domain) (Re
(Regular Paper) 21 3, 2016 5 (JBE Vol. 21, No. 3, May 2016) http://dx.doi.org/10.5909/jbe.2016.21.3.391 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) FBMC/OQAM a), b), a), a) A Study of Iterative Channel
More informationPowerPoint Template
Mobile 미디어 IT 기술 OFDM / OFDMA Techniques Department of Electronics and IT Media Engineering 1 Contents 1. OFDM (Orthogonal Frequency Division Multiplexing) OFDM Overview OFDM Techniques 2. OFDMA System
More information통신서비스품질평가보고서 2017 Evaluation Report for the Quality of Communication Services
www.nia.or.kr 2017 통신서비스품질평가보고서 2017 Evaluation Report for the Quality of Communication Services www.nia.or.kr 2017 통신서비스품질평가보고서 2017 Evaluation Report for the Quality of Communication Services www.nia.or.kr
More informationMicrosoft PowerPoint ppt
Wireless LAN 최양희서울대학교컴퓨터공학부 Radio-Based Wireless LANs Most widely used method Adv: penetrating walls and other obstacles with little attenuation. Disadv: security, interference, etc. 3 approaches: ISM
More informationPowerPoint 프레젠테이션
Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING
More information- i - - ii - - iii - - iv - - v - - vi - - 1 - - 2 - - 3 - 1) 통계청고시제 2010-150 호 (2010.7.6 개정, 2011.1.1 시행 ) - 4 - 요양급여의적용기준및방법에관한세부사항에따른골밀도검사기준 (2007 년 11 월 1 일시행 ) - 5 - - 6 - - 7 - - 8 - - 9 - - 10 -
More information<32382DC3BBB0A2C0E5BED6C0DA2E687770>
논문접수일 : 2014.12.20 심사일 : 2015.01.06 게재확정일 : 2015.01.27 청각 장애자들을 위한 보급형 휴대폰 액세서리 디자인 프로토타입 개발 Development Prototype of Low-end Mobile Phone Accessory Design for Hearing-impaired Person 주저자 : 윤수인 서경대학교 예술대학
More informationSEC wcdma full(05.9) 로 부터 update
LTE Advanced 개요 1 LTE Advanced 표준화 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 Release12 B4G (Small Cell, FD-MIMO, eimta, M2M, eca...) Release11 LTE-Advanced enhancement
More information8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2
VSB a), a) An Alternative Carrier Phase Independent Symbol Timing Offset Estimation Methods for VSB Receivers Sung Soo Shin a) and Joon Tae Kim a) VSB. VSB.,,., VSB,. Abstract In this paper, we propose
More information<313630313032C6AFC1FD28B1C7C7F5C1DF292E687770>
양성자가속기연구센터 양성자가속기 개발 및 운영현황 DOI: 10.3938/PhiT.25.001 권혁중 김한성 Development and Operational Status of the Proton Linear Accelerator at the KOMAC Hyeok-Jung KWON and Han-Sung KIM A 100-MeV proton linear accelerator
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2016 Jun.; 27(6), 495 503. http://dx.doi.org/10.5515/kjkiees.2016.27.6.495 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Design
More informationSEC wcdma full(05.9) 로 부터 update
4 세대이동통신무선기술 청강문화산업대학교 모바일아카데미 2014. 05 자료구성은복잡해보여도진행은쉬운내용으로진행됩니다 모든그림과수치는 3GPP 표준규격을준용하여재정리하였으며, 관련산업통계는 http://www.gsacom.com 에서인용되었습니다. 1 목차 1. 이동통신기술의진화 2. OFM 기술의이해 3. 다중안테나기술의이해 4. LTE 무선기술의개요 5.
More informationAV PDA Broadcastin g Centers Audio /PC Personal Mobile Interactive (, PDA,, DMB ),, ( 150km/h ) (PPV,, ) Personal Mobile Interactive Multimedia Broadcasting Services 6 MHz TV Channel Block A Block
More information<313920C0CCB1E2BFF82E687770>
韓 國 電 磁 波 學 會 論 文 誌 第 19 卷 第 8 號 2008 年 8 月 論 文 2008-19-8-19 K 대역 브릭형 능동 송수신 모듈의 설계 및 제작 A Design and Fabrication of the Brick Transmit/Receive Module for K Band 이 기 원 문 주 영 윤 상 원 Ki-Won Lee Ju-Young Moon
More information06이동통신
www.mke.go.kr + www.keit.re.kr Part.06 444 449 502 521 529 552 01 444 Korea EvaluationInstitute of Industrial Technology IT R&D www.mke.go.kr www.keit.re.kr Ministry of Knowledge Economy 445 02 446 Korea
More information슬라이드 1
Broadband IT Korea Standardization & Chip Development of IEEE 802.11n 2006.06.27 이석규 IEEE 802.11n 표준화동향 (1) IEEE 802.11n 802.11a/g 의전송속도를높이자는의도에서출발, 그후 MAC Throughput 향상목적추가 2002 년 5 월 HTSG (High Throughput
More information#Ȳ¿ë¼®
http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research
More information` Companies need to play various roles as the network of supply chain gradually expands. Companies are required to form a supply chain with outsourcing or partnerships since a company can not
More informationMicrosoft PowerPoint - ch03ysk2012.ppt [호환 모드]
전자회로 Ch3 iode Models and Circuits 김영석 충북대학교전자정보대학 2012.3.1 Email: kimys@cbu.ac.kr k Ch3-1 Ch3 iode Models and Circuits 3.1 Ideal iode 3.2 PN Junction as a iode 3.4 Large Signal and Small-Signal Operation
More information< C0FCC6C4BBEABEF7B5BFC7E E687770>
한국전파진흥협회 - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - Ⅰ - 25 - - 26 - - 27 -
More information09È«¼®¿µ5~152s
Korean Journal of Remote Sensing, Vol.23, No.2, 2007, pp.45~52 Measurement of Backscattering Coefficients of Rice Canopy Using a Ground Polarimetric Scatterometer System Suk-Young Hong*, Jin-Young Hong**,
More information04 최진규.hwp
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2015 Aug.; 26(8), 710717. http://dx.doi.org/10.5515/kjkiees.2015.26.8.710 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) RF ESPAR
More information중소기업 기술혁신개발사업
휴대인터넷중계기 4G 포럼 (2004/12/10) 쏠리테크 CTO 이재학 목차 휴대인터넷중계기개요 TDD 중계기 Issue 사항 기지국 Interface 휴대인터넷 Network 구조 쏠리테크휴대인터넷중계기개발현황 2 중계기란 (What is Repeater)? 중계기요구사항 중계기유형 Link 중계기의구성 휴대인터넷중계기개요 3 What is Repeater?
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2017 Mar.; 28(3), 163 169. http://dx.doi.org/10.5515/kjkiees.2017.28.3.163 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) PCB
More information<3230303520BBEABEF7B5BFC7E228C3D6C1BE292E687770>
2 1) 1. 5 2. 6 2.1 6 2.2 7 2.3 13 2.4 16 2.5 19 2.6 25 2.7 28 3. 32 3.1 33 3.2 42 46 1.,,,. 2004 13 4,841 0.6%. 2004,,. *, (02) 570 4491, sky@kisdi.re.kr( : ) * *, (02) 570 4164, milip@kisdi.re.kr( :,
More information., 3D HDTV. 3D HDTV,, 2 (TTA) [] 3D HDTV,,, /. (RAPA) 3DTV [2] 3DTV, 3DTV, DB(, / ), 3DTV. ATSC (Advanced Television Systems Committee) 8-VSB (8-Vesti
ATSC a), a) A Carrier Frequency Synchronization Scheme for modified ATSC Systems Young Gon Jeon a) and Joon Tae Kim a) 3D HDTV (3-Dimensional High Definition Television). 3D HDTV HDTV ATSC (Advanced Television
More information/ TV 80 () DAB 2001 2002 2003 2004 2005 2010 Analog/Digital CATV Services EPG TV ( 60 ) TV ( Basic, Tier, Premiums 60 ) VOD Services Movies In Demand ( 20 ) Education N- VOD (24 ) Digital Music
More information±è±¤¼ø Ãâ·Â-1
Efficient Adaptive Modulation Technique for MAC-PHY Cross Layer Optimization in OFDMA-based Cellular Systems An adaptive transmission scheme using QAM and LDPC code is proposed for an OFDMA cellular system
More information(JBE Vol. 21, No. 3, May 2016) HE-AAC v2. DAB+ 120ms..,. DRM+(Digital Radio Mondiale plus) [3] xhe-aac (extended HE-AAC). DRM+ DAB HE-AAC v2 xhe-aac..
3 : xhe-aac (Bongho Lee et al.: A Study on the Variable Transmission of xhe-aac Audio Frame) (Special Paper) 21 3, 2016 5 (JBE Vol. 21, No. 3, May 2016) http://dx.doi.org/10.5909/jbe.2016.21.3.357 ISSN
More information- iii - - i - - ii - - iii - 국문요약 종합병원남자간호사가지각하는조직공정성 사회정체성과 조직시민행동과의관계 - iv - - v - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - α α α α - 15 - α α α α α α
More information그룹웨어와 XXXXX 제목 예제
데이터통신 부호화 (encoding) 부호화 (Encoding) 의개념 정보 Encoder 신호 1 Digital - to - Digital 2 Analog - to - Digital 3 Digital - to - Analog 4 Analog - to - Analog 2 1 Digital-to-Digital Encoding Digital 정보를 Digital
More information이동통신업계 구도변화 속도 빨라질 것! 3 Ⅰ. 주파수 광대역화 이뤄짐! 4 주파수 경매 결과: 많은 투자없이 광대역화 이뤄냄! 4 주파수는 유한자원으로 효율성이 가장 중요! 6 2013년 주파수 경매방법 세부내용 8 Ⅱ. 주파수는 묶을수록 속도가 빨라짐 10 LTE는
2013년 9월 2일 산업분석 통신서비스 Overweight (유지) 이동통신업계 구도변화 속도 빨라질 것! 2013년 주파수 할당 결과 광대역화 이뤄짐 통신서비스 Analyst 김미송 02-6114-2919 ms.kim@hdsrc.com RA 김한준 02-6114-2957 ernest.kim@hdsrc.com 리서치센터 트위터 @QnA_Research 미래부는
More informationTEL:02)861-1175, FAX:02)861-1176 , REAL-TIME,, ( ) CUSTOMER. CUSTOMER REAL TIME CUSTOMER D/B RF HANDY TEMINAL RF, RF (AP-3020) : LAN-S (N-1000) : LAN (TCP/IP) RF (PPT-2740) : RF (,RF ) : (CL-201)
More information歯1.PDF
200176 .,.,.,. 5... 1/2. /. / 2. . 293.33 (54.32%), 65.54(12.13%), / 53.80(9.96%), 25.60(4.74%), 5.22(0.97%). / 3 S (1997)14.59% (1971) 10%, (1977).5%~11.5%, (1986)
More information<3130C0E5>
Redundancy Adding extra bits for detecting or correcting errors at the destination Types of Errors Single-Bit Error Only one bit of a given data unit is changed Burst Error Two or more bits in the data
More informationSlide 1
Clock Jitter Effect for Testing Data Converters Jin-Soo Ko Teradyne 2007. 6. 29. 1 Contents Noise Sources of Testing Converter Calculation of SNR with Clock Jitter Minimum Clock Jitter for Testing N bit
More informationMicrosoft PowerPoint - AC3.pptx
Chapter 3 Block Diagrams and Signal Flow Graphs Automatic Control Systems, 9th Edition Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois 1 Introduction In this chapter,
More information휴대용 기기 분야 가정용 영상 기기 분야 휴대 전화 USB, FireWire 등 PC PC TV DVD/Blu-ray 플레이어 게임 콘솔 휴대 전화 휴대전화, PMP 등 휴대용 기기 간 대용량 데이터 무선 전송 캠코더 Component, Display Port, DVI
표준 기술동향 60GHz 주파수 대역 기반 밀리미터파 무선전송기술 표준화 동향 홍승은 ETRI 무선통신연구부 초고속무선통신연구팀 선임연구원 이우용 ETRI 무선통신연구부 초고속무선통신연구팀 팀장 정현규 ETRI 무선통신연구부 부장 1. 머리말 제공할 수 있다. 또한 저전력 구현을 통해 스마트폰과 같은 휴대용 장치에도 탑재되어 장치 간 대용량 무선 통신에 사용되는
More informationTTA Verified : HomeGateway :, : (NEtwork Testing Team)
TTA Verified : HomeGateway :, : (NEtwork Testing Team) : TTA-V-N-05-006-CC11 TTA Verified :2006 6 27 : 01 : 2005 7 18 : 2/15 00 01 2005 7 18 2006 6 27 6 7 9 Ethernet (VLAN, QoS, FTP ) (, ) : TTA-V-N-05-006-CC11
More informationWiBro 시스템 발전방향
차세대 WiBro 기술 2006. 02. 24. 이동통신연구단무선시스템연구그룹 휴대인터넷표준연구팀 윤철식 1. 휴대인터넷표준화현황 -2- IEEE 802.16 & WiMAX Forum 표준화현황 IEEE 802.16 표준화현황 2004. 4Q : IEEE Standard 802.16-2004 승인및발간 (1 Oct. 2004) 2005. 4Q : IEEE 802.16-2004에대한Corrigendum
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 27(5),
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2016 May; 27(5), 454462. http://dx.doi.org/10.5515/kjkiees.2016.27.5.454 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) Research
More informationÁ¦4Àå-Á¦2ÀýÀÌÅë±â±â.hwp
2G 2.5G 3G Mobile Radio Telephony * Limited number of channels Analog Cellular Mobitex ETC * Data transmission circuit or packet switched * Non-continuous * Moderate capacity coverage * National coverage
More informationDBPIA-NURIMEDIA
27(2), 2007, 96-121 S ij k i POP j a i SEXR j i AGER j i BEDDAT j ij i j S ij S ij POP j SEXR j AGER j BEDDAT j k i a i i i L ij = S ij - S ij ---------- S ij S ij = k i POP j a i SEXR j i AGER j i BEDDAT
More information05-08 087ÀÌÁÖÈñ.hwp
산별교섭에 대한 평가 및 만족도의 영향요인 분석(이주희) ꌙ 87 노 동 정 책 연 구 2005. 제5권 제2호 pp. 87118 c 한 국 노 동 연 구 원 산별교섭에 대한 평가 및 만족도의 영향요인 분석: 보건의료노조의 사례 이주희 * 2004,,,.. 1990. : 2005 4 7, :4 7, :6 10 * (jlee@ewha.ac.kr) 88 ꌙ 노동정책연구
More informationSRC PLUS 제어기 MANUAL
,,,, DE FIN E I N T R E A L L O C E N D SU B E N D S U B M O TIO
More information2 : 2.4GHz (Junghoon Paik et al.: Medium to Long Range Wireless Video Transmission Scheme in 2.4GHz Band with Beamforming) (Regular Paper) 23 5, 2018
2 : 2.4GHz (Junghoon Paik et al.: Medium to Long Range Wireless Video Transmission Scheme in 2.4GHz Band with Beamforming) (Regular Paper) 23 5, 2018 9 (JBE Vol. 23, No. 5, September 2018) https://doi.org/10.5909/jbe.2018.23.5.693
More information4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1
: LabVIEW Control Design, Simulation, & System Identification LabVIEW Control Design Toolkit, Simulation Module, System Identification Toolkit 2 (RLC Spring-Mass-Damper) Control Design toolkit LabVIEW
More information2009방송통신산업동향.hwp
제 3 절이동전화단말기 16) 목차 1. 59. 59. 63. 65. 68 2. 72. 72. 73. Trend 77. 80. 81 84 1. 세계이동전화단말기시장의현황과변화추이 가. 가입자규모현황및전망 ITU, 2008 40 460 16) *, (02) 570-4288, kimmin@kisdi.re.kr 16) ITU, 2009 59 제 1 장 통신산업,
More information○ 제2조 정의에서 기간통신역무의 정의와 EU의 전자커뮤니케이션서비스 정의의 차이점은
이동전화시장 경쟁활성화를 위한 MVNO 추진을 바라보며 김원식 1) 1. 들어가며 최근 이동전화의 무선재판매 시장 활성화 등을 위해 정보통신부가 준비한 전기통신사업 법 개정안 공청회에서 무선재판매의무제 관련규정을 둘러싸고 전문가들의 우려와 지적이 상당하였다. 우선 무선재판매 제도 도입의 배경을 살펴보자. 직접적 배경으로는 국내 이동전화 요금에 대한 이용자들의
More information<B1E2C8B9BDC3B8AEC1EE2DC3D6BCF6BFEB2E687770>
5G-New Radio MIMO 표준기술 * 최수용, 김윤선 * 연세대학교교수삼성전자수석연구원 본고에서는 5G(5th Generation) 시스템 New Radio(NR)-물리계층기술중에서 3GPP(3rd Generation Partnership Project) 표준에포함된다중안테나기술에대해살펴보고자한다. 밀리미터대역의이용, LTE(Long Term Evolution)
More information5-서영주KICS2013-03-151.hwp
논문 13-38C-09-05 한국통신학회논문지 '13-09 Vol.38C No.09 http://dx.doi.org/10.7840/kics.2013.38c.9.764 LTE 펨토셀 네트워크를 위한 적응적 주기의 MLB 알고리즘 김 우 중, 이 정 윤 *, 서 영 주 Adaptive Periodic MLB Algorithm for LTE Femtocell Networks
More information<4D F736F F D204954B1E2C8B9BDC3B8AEC1EE2DBDC5C8ABBCB72E646F63>
IT 기획시리즈 차세대통신기술 8 IT 기획시리즈 차세대통신기술 8 LTE-Advanced Relay 기술 장일두 LG-Nortel, 주임연구원 sugmjjang@lg-nortel.com 신홍섭, 박동주, 권경인 LG-Nortel, CTO Div. 1. 서론 2. LTE-Advanced Relay 종류와기능및특징 3. LTE-Advanced Relay 기술동향
More informationuntitled
Logic and Computer Design Fundamentals Chapter 4 Combinational Functions and Circuits Functions of a single variable Can be used on inputs to functional blocks to implement other than block s intended
More informationMicrosoft PowerPoint - wireless communications.ppt
무선통신 기술 무선통신 기술의 분류, 종류, 진화 무선랜 기술 이동통신 기술 세대 구분, 주요 특징, 와이브로, LTE ㅇ LG U+의 무선통신 전략 LG U+의 무선통신 로드맵, ACN 서비스 1 무선통신 기술의 분류 無線통신 Wireless 사용자 구간의 유선 부분을 무선으로 대체 Nomadic 이동한 후 그 장소에 멈추어서 통신 서비스를 이용, 보행 중
More information김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More information歯A1.1함진호.ppt
The Overall Architecture of Optical Internet ETRI ? ? Payload Header Header Recognition Processing, and Generation A 1 setup 1 1 C B 2 2 2 Delay line Synchronizer New Header D - : 20Km/sec, 1µsec200 A
More information歯4.PDF
21 WDM * OADM MUX/DEMUX EDFA Er + Doped Fiber Isolator Isolator GFF WDM Coupler 1.48 um LD 1.48 um LD Transmitter Receiver MUX EDFA OADM DEMUX Switch Fiber Optics Micro Optics Waveguide Optics Isolator,
More information<4D6963726F736F667420576F7264202D203037BFB9C3E6C0CF5FC6AFC1FD5F2DC0FAC0DAB0CBC5E4BCF6C1A4B9DDBFB55FB6EC5F2E646F6378>
B4G 이동 통신 기술 동향 스마트 유무선 네트워크 특집 예충일 (C.I. Yeh) 고영조 (Y.J. Ko) 남준영 (J.Y. Nam) 노태균 (T.G. Noh) 신준우 (J.W. Shin) 안재영 (J.Y. Ahn) 송평중 (P.J. Song) B4G 이동통신방식연구실 책임연구원 B4G 이동통신방식연구실 책임연구원 B4G 이동통신방식연구실 선임연구원 B4G
More information±è¼ºÃ¶ Ãâ·Â-1
Localization Algorithms Using Wireless Communication Systems For efficient Localization Based Services, development of accurate localization algorithm has to be preceded. In this paper, research trend
More informationuntitled
(Rev. 1.6) 1 1. MagicLAN.......8 1.1............8 1.2........8 1.3 MagicLAN.......10 2.........12 2.1.... 12 2.2 12 2.3....12 3. Windows 98SE/ME/2000/XP......13 3.1.....13 3.2 Windows 98SE.... 13 3.3 Windows
More informationMicrosoft Word - SRA-Series Manual.doc
사 용 설 명 서 SRA Series Professional Power Amplifier MODEL No : SRA-500, SRA-900, SRA-1300 차 례 차 례 ---------------------------------------------------------------------- 2 안전지침 / 주의사항 -----------------------------------------------------------
More informationÀ̵¿·Îº¿ÀÇ ÀÎÅͳݱâ¹Ý ¿ø°ÝÁ¦¾î½Ã ½Ã°£Áö¿¬¿¡_.hwp
l Y ( X g, Y g ) r v L v v R L θ X ( X c, Yc) W (a) (b) DC 12V 9A Battery 전원부 DC-DC Converter +12V, -12V DC-DC Converter 5V DC-AC Inverter AC 220V DC-DC Converter 3.3V Motor Driver 80196kc,PWM Main
More informationT100MD+
User s Manual 100% ) ( x b a a + 1 RX+ TX+ DTR GND TX+ RX+ DTR GND RX+ TX+ DTR GND DSR RX+ TX+ DTR GND DSR [ DCE TYPE ] [ DCE TYPE ] RS232 Format Baud 1 T100MD+
More information<BCF6BDC3323030392D31385FB0EDBCD3B5B5B7CEC8DEB0D4C5B8BFEEB5B5C0D4B1B8BBF3BFACB1B85FB1C7BFB5C0CE2E687770>
... 수시연구 2009-18.. 고속도로 휴게타운 도입구상 연구 A Study on the Concept of Service Town at the Expressway Service Area... 권영인 임재경 이창운... 서 문 우리나라는 경제성장과 함께 도시화가 지속적으로 진행되어 지방 지역의 인구감소와 경기의 침체가 계속되고 있습니다. 정부의 다각 적인
More informationRRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2015 Mar.; 26(3), 276 282. http://dx.doi.org/10.5515/kjkiees.2015.26.3.276 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) RRH
More informationPJTROHMPCJPS.hwp
제 출 문 농림수산식품부장관 귀하 본 보고서를 트위스트 휠 방식 폐비닐 수거기 개발 과제의 최종보고서로 제출 합니다. 2008년 4월 24일 주관연구기관명: 경 북 대 학 교 총괄연구책임자: 김 태 욱 연 구 원: 조 창 래 연 구 원: 배 석 경 연 구 원: 김 승 현 연 구 원: 신 동 호 연 구 원: 유 기 형 위탁연구기관명: 삼 생 공 업 위탁연구책임자:
More information11¹Ú´ö±Ô
A Review on Promotion of Storytelling Local Cultures - 265 - 2-266 - 3-267 - 4-268 - 5-269 - 6 7-270 - 7-271 - 8-272 - 9-273 - 10-274 - 11-275 - 12-276 - 13-277 - 14-278 - 15-279 - 16 7-280 - 17-281 -
More information<B3EDB9AEC1FD5F3235C1FD2E687770>
경상북도 자연태음악의 소박집합, 장단유형, 전단후장 경상북도 자연태음악의 소박집합, 장단유형, 전단후장 - 전통 동요 및 부녀요를 중심으로 - 이 보 형 1) * 한국의 자연태 음악 특성 가운데 보편적인 특성은 대충 밝혀졌지만 소박집합에 의한 장단주기 박자유형, 장단유형, 같은 층위 전후 구성성분의 시가( 時 價 )형태 등 은 밝혀지지 않았으므로
More information<3136C1FD31C8A320C5EBC7D52E687770>
고속도로건설에 따른 지역간 접근성 변화분석 A study on the impact of new highway construction on regional accessibility The purpose of this is to analyse the interregional accessibility changes due to highway construction.
More informationstep 1-1
Written by Dr. In Ku Kim-Marshall STEP BY STEP Korean 1 through 15 Action Verbs Table of Contents Unit 1 The Korean Alphabet, hangeul Unit 2 Korean Sentences with 15 Action Verbs Introduction Review Exercises
More information07김동회_ok.hwp
(Regular Paper) 19 4, 2014 7 (JBE Vol. 19, No. 4, July 2014) http://dx.doi.org/10.5909/jbe.2014.19.4.510 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) IEEE 802.11n WLAN A-MPDU a), a) Block Ack-based Dynamic
More information4 : ATSC 3.0 UHD, HD, (Chang Ho Seo et al.: A Study on Delivery Integration of UHD, Mobile HD, Digital Radio based on ATSC 3.0) (Regular Paper) 24 4,
(Regular Paper) 24 4, 2019 7 (JBE Vol. 24, No. 4, July 2019) https://doi.org/10.5909/jbe.2019.24.4.643 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) ATSC 3.0 UHD, HD, a), a), b), c), d) A Study on Delivery
More informationexample code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for
2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon
More informationCoriolis.hwp
MCM Series 주요특징 MaxiFlo TM (맥시플로) 코리올리스 (Coriolis) 질량유량계 MCM 시리즈는 최고의 정밀도를 자랑하며 슬러리를 포함한 액체, 혼합 액체등의 질량 유량, 밀도, 온도, 보정된 부피 유량을 측정할 수 있는 질량 유량계 이다. 단일 액체 또는 2가지 혼합액체를 측정할 수 있으며, 강한 노이즈 에도 견디는 면역성, 높은 정밀도,
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 25(12),
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2014 Dec.; 25(12), 12751283. http://dx.doi.org/10.5515/kjkiees.2014.25.12.1275 ISSN 1226-3133 (Print)ISSN 2288-226X (Online)
More information지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월
지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support
More information... 수시연구 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 권혁구ㆍ서상범...
... 수시연구 2013-01.. 2010 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 2010... 권혁구ㆍ서상범... 서문 원장 김경철 목차 표목차 그림목차 xi 요약 xii xiii xiv xv xvi 1 제 1 장 서론 2 3 4 제 2 장 국가물류비산정방법 5 6 7 8 9 10 11 12 13
More information歯2710h.PDF
I C- 271 0H. ( ).. ( ) (0 2 ) 3443-8844 (HITOP) : (02)704-9104 : : HITOP ICOM IN C. ( ) 1 1-1 1-2 2 3 3-1 3-2 3-3 3-4 4 - PANEL - - - - - - - / - - DTMF - 1 1-1 IC- 2710H" VHF/ UHF FM, 144.000MHz - 146.000MHz
More informationDIY 챗봇 - LangCon
without Chatbot Builder & Deep Learning bage79@gmail.com Chatbot Builder (=Dialogue Manager),. We need different chatbot builders for various chatbot services. Chatbot builders can t call some external
More informationSAR 측정용 멀티프로브의 근거리장 왜곡특성 연구
MIMO OFDM 2006. 11 충주대학교문철 발표자소개 연구분야 다중안테나시스템을위한채널모델링및다중안테나전송기술연구 무선자원할당기술연구 수행과제 ( 최근 3 년간 ) 2003~ 현재 : 차세대이동통신을위한다중안테나기술연구 ( 삼성전자 ) 2005 년 : 휴대인터넷을위한다중안테나기술 ( 삼성전자 ) 2006 년 : WiBro 시스템의 Hybrid SA/SDM/SDMA
More information12È«±â¼±¿Ü339~370
http://www.kbc.go.kr/ k Si 2 i= 1 Abstract A Study on Establishment of Fair Trade Order in Terrestrial Broadcasting Ki - Sun Hong (Professor, Dept. of Journalism & Mass Communication,
More information<BFA9BAD02DB0A1BBF3B1A4B0ED28C0CCBCF6B9FC2920B3BBC1F62E706466>
001 002 003 004 005 006 008 009 010 011 2010 013 I II III 014 IV V 2010 015 016 017 018 I. 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 III. 041 042 III. 043
More informationSEC wcdma full(05.9) 로 부터 update
이동통신기술의진화 to LTE / MIMO 청강문화산업대학모바일아카데미 2011 년 7 월 1 목차 이동통신기술의진화 ------- p3 OFM 기술의개요 ---------- p9 다중안테나기술의개요 ------ p39 HSPA, HSPA+, LTE --------- p62 LTE 프로토콜 / 채널의구성 ---- p91 물리계층,MAC계층의동작 ---- p127
More information2009년 국제법평론회 동계학술대회 일정
한국경제연구원 대외세미나 인터넷전문은행 도입과제와 캐시리스사회 전환 전략 일시 2016년 3월 17일 (목) 14:00 ~17:30 장소 전경련회관 컨퍼런스센터 2층 토파즈룸 주최 한국경제연구원 한국금융ICT융합학회 PROGRAM 시 간 내 용 13:30~14:00 등 록 14:00~14:05 개회사 오정근 (한국금융ICT융합학회 회장) 14:05~14:10
More information