Volume: 41, Article ID: e < 방법론단신 > 중재메타분석 : R을활용한적용과실제 Intervention Meta-analysis: Application and Pract
|
|
- 영애 기
- 5 years ago
- Views:
Transcription
1 < 방법론단신 > 중재메타분석 : R을활용한적용과실제 Intervention Meta-analysis: Application and Practice using R software 심성률 1,2, 김성장 3,4,5 1 고려대학교의과대학예방의학교실, 2 순천향대학교서울병원비뇨의과학연구소, 3 부 산대학교의과대학핵의학과, 4 양산부산대학교병원, 의생명융합연구소, 5 양산부산대학교병원, 핵의학과 Sung Ryul Shim, MPH, PhD 1,2, Seong-Jang Kim, MD, PhD 3,4,5 1 Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea, 2 Urological Biomedicine Research Institute, Soonchunhyang University Hospital, Seoul, Korea, 3 Department of Nuclear Medicine, College of Medicine, Pusan National University, Yangsan, Korea, 4 BioMedical Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea, 5 Department of Nuclear Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea 교신저자 : 심성률 sungryul.shim@gmail.com 서울시성북구안암로 145 1
2 Abstract The objective of this study was to describe general approaches of intervention metaanalysis that are available for quantitative synthesis of data using R software. We conducted an intervention meta-analysis using two types of data that included difference in means in continuous data and odds ratio in binary data. The package commands of R software were metacont, metabin, and metagen for overall effect size, forest for forest plot, metareg for meta-regression analysis, and funnel and metabias for publication bias. The estimated overall effect sizes, test for heterogeneity and moderator effect, and the publication bias were reported using R software. Especially authors stressed how to calculate effect sizes of target studies in intervention metaanalysis. This study focused on the practical methods of intervention meta-analysis rather than theoretical concepts for Korean researchers who were non-majored in statistics. Through this study, authors hope that many Korean researchers will use R software to perform an intervention meta-analysis more easily and that related research will be activated. Keywords: Meta-analysis, Meta-regression, Forest plot, Heterogeneity, Publication bias, R software. 2
3 서론 메타분석 (meta-analysis) 은체계적 객관적으로대상문헌을선택한후개별연구들의 결과를계량화하여이를통합된효과크기 (effect size) 로제시함으로서근거기반의료 (evidence based medicine; EBM) 를위한올바른의사결정을할수있게한다 [1,5]. 메타분석을보다쉽게접근하기위한컴퓨터소프트웨어는 STATA, R, SAS, MIX, CMA, RevMan, Meta-Analyst 등이있다. RevMan(Review Manager) 과 CMA(Comprehensive meta-analysis) 는그래픽사용자입력방식으로초보자가이용하기에적합하지만확장성은제한적이어서 special topic 인네트워크메타분석, 진단검사메타분석, 용량-반응메타분석, 유전체메타분석등은불가능하다. 반면 R과 STATA 는확장성이좋아현재까지개발되어진중재메타분석에서부터진단검사메타분석에이르기까지다양한분석이가능하다. STATA 는상용프로그램이며뛰어난확장성과더불어대부분의통계모듈들이 STATA 저널에서검증을거치기에표준적이고신뢰할수있다. R은무료프로그램이며기본적으로통계전공자를위한프로그래밍언어를사용하기때문에이를구현하기에는상당한학습이필요하지만메타분석같은특정도구로서의 R은기초적인패키지사용과데이터및함수설정방법정도만익힌다면누구라도쉽게이용할수있다. 더욱이 R studio를같이설치한다면그래픽사용자입력방식을지원하기에매우편리하다. 본연구는저자가수행했던메타분석선행연구들을 [1-3] R 소프트웨어를이용해서 다시풀어낸것이다. 또한본연구는종합효과크기계산을위한효과크기의유형과 3
4 변경부터다룰것이기때문에메타분석을실시하기위한선행과정들 PICO(population, intervention, comparison, outcome) 에기초한체계적문헌수집, 데 이터추출, 그리고질 (quality assessment) 평가에대한사전지식이수반되어야한다. 효과크기의이해 메타분석을수행하려면가장먼저효과크기에대한이해가필요하다. 간단히말하자면효과크기란특정중재 (intervention) 에따른효과를나타낸다. 예를들어특정약물또는치료가투입되었다면이로서얻게되는이익 ( 또는손해 ) 을말하며통상적으로양적수치로표현한다 [1]. 연속형자료 (continuous data) 에서는평균의차이 (MD, difference in means), 이분형자료 (binary data) 또는생존형자료 (time to event data) 에서는위험도비 (odds ratio, relative risk, 또는 hazard ratio), 그리고유병률자료 (proportion or rate data) 에서는백분율 (percentage) 형태로효과크기 (effect size) 가표현된다. 그러나일반적으로보건의료메타분석에서는치료에따른직접적인효과크기를주요하게판단하기때문에변수간의상관성을나타내는상관계수 (correlation coefficient, r) 는효과크기로잘쓰여지지않고있다. 위험도비의형태와백분율은이미자료들간의표준화가이루어져있기때문에이를효과크기그대로사용하여도큰문제는없다. 그러나연속형변수의경우평균의차이 (MD, difference in means) 를효과크기로사 용하게되는데이때는효과크기의표준화를고려해주어야한다. Cochrane 에서는 MD(mean difference) 또는 difference in means 로지칭하며개별연구들이동일한 4
5 단위 (scale) 일경우사용이가능하며단위그대로이해하면되기에해석이용이하다. WMD(weighted mean difference) 또는 absolute MD가동일한용어이다. 표준화된효과크기 SMD(standardized mean difference) 는개별연구들의단위가다를경우이들을표준화해야상호비교가가능하다. 표준화란효과크기를표준편차 (standard deviation) 로나누는것이다. Figure 1은 SMD의크기를잘표현하고있는데 SMD는표준정규분포곡선의 z값에해당하는확률밀도크기와동일하다. 예를들어 SMD가 1.96이면 0을중심으로양의방향으로 47.5% 에위치한다. 한가지주의할점은효과크기의방향에따라단방향으로해석해야한다. 왜냐하면참조그룹의기준점이 0이기때문이다. 따라서 SMD 가 1.96을다시해석하면 치료그룹은참조그룹대비 95% 우수 / 열등하다 의의미가된다. 1. 효과크기계산 본연구에서는메타분석를위해서기본적으로이해하고있어야할효과크기와표준오차계산을다루려고한다. 프로그램을사용해서분석해보면결국메타분석은원자료자체를넣어서계산할수도있으며또한요약된효과크기와표준오차로서도종합효과크기를구할수있다는것을알수있다. 이처럼개별연구에서의효과크기와표준오차를계산하는것은매우중요한부분이며컴퓨터프로그램과더불어스스로계산할수있어야추후이어지는메타분석 special topic으로의확장된접근이가능하다. 1) 연속형예제자료 5
6 치료그룹과대조그룹이있을때, m1은치료그룹의치료전평균 (pre_mean1) 과치료후평균 (post_mean1) 평균의차이이며 m2는대조그룹의전 / 후평균차이이다. 따라서 s1과 s2는각 m1과 m2의표준편차이다. md는단순히치료그룹과대조그룹평균의차이이며 (m1-m2; 평균차이의방향은연구자가의도하는방향으로설정 ), 공통표준편차 (pooled standard deviation, sd) 와공통표준오차 (pooled standard deviation, se) 는아래수식으로계산한다. sd = (n 1 1)s (n 2 1)s 2 2 n 1 + n 2 2, se = s d 1 n n 2 표준화된효과크기 SMD는 md를공통표준편차로 (sd) 나누어준것이며 (SMD = md / sd), SMD의표준오차 (se) 는공통표준편차 (sd) 에각표본수의역수를합산한제곱근을곱한것이다. 이때만들어지는 SMD는 Cohen의 d이며표본수가적을경우종합효과크기 (overall effect size) 를과대추정하는경향이있는데이를보정해주기위해서 Hedges의 g를사용하기도한다. 2) 이분형예제자료 이분형예제자료는처치의유무와질병개선의유무에따라흔히 2 2 테이블형태로표시한다. 이때처치가있으면서질병개선됨 (true positive, tp), 처치가있으면서질병이개선안됨 (false positive, fp), 처치가없으면서질병이개선됨 (false negative), 처치가없으면서질병이개선안됨 (true negative, tn) 이라고하면효과크기 OR(odds 6
7 ratio) 과표준오차 (se) 는아래수식으로계산한다. OR = (tp tn) (fp fn), se = 1 tp + 1 fp + 1 fn + 1 tn R 의 meta 패키지를이용한중재메타분석 Figure 2는일반적인중재메타분석의흐름을나타낸다. 최초자료코딩시해당함수에적합하도록변수명을수정해야하며메타분석모델선정 (Fixed or Random) 으로종합효과크기를제시하고 -> 이질성을확인한다음 -> 출판편향을확인해서보고한다. R 에서메타분석을실시하는패키지는크게 meta, metafor, 그리고 rmeta 가있 다. 서로간의장단점이있으며필요한함수를쓸수있으니미리설치한다 [6]. install.packages("meta") install.packages("metafor") install.packaqes("rmeta ) 주요설명은실행하기쉬운 meta 패키지를중심으로기술한다. 본문과의구분을위하여명령어앞에는 으로표시하였다. 명령어가길어져서다음 줄로넘어가더라도 없으면앞의줄에서이어지는것이다. 따라서실제 R 프로그 램에입력시에는 는제외하고타이핑하여야한다. 1. 연속형 (continuous data) 예제자료 1) 데이터코딩및불러오기 7
8 척수손상동물모델에서줄기세포치료에따른방광기능효과를메타분석한연구로서결과지표는배뇨압력 (voiding pressure) 을예제로사용하였다. 전체연구수는 11개였고실험군 94개와대조군 93개로이루어졌다. subgroup 1은 contusion model 그리고 0은 transection and hemisection model로구분하였다 (Supplementary Material 1). 메타분석을실행하기위해 meta 패키지를로딩시킨다. library(meta) 다음은작업폴더에넣어둔예제파일을아래의명령어로 R의메모리에불러온다. 한가지주의할점은 R에서는쉼표로구분된수치파일 (csv) 의형태를선호하니 Appendix 1을 shim_con.csv 포멧으로저장해서지정된작업폴더에넣어두어야한다. data_con <- read.csv("shim_con.csv", header=true) read.csv는 csv파일을불러오는함수로서파일명 shim_con.csv" 를불러와서파일의첫번째변수명을그대로쓴다는뜻이다 (header=true). 이렇게로딩된파일은 R 메모리에서는 data_con 이름의데이터로저장된다. 2) 종합효과크기 meta 패키지는하위에여러함수들을포함하는데그중 metacont 함수는연속형자 료에서원자료들이모두있을때종합효과크기를계산한다. ma_con <- metacont(n1, m1, s1, n2, m2, s2, sm="smd", method.smd=" Hedges", study, byvar=g,data=data_con) print(ma_con, digits=3) 8
9 연속형자료에서는치료그룹과대조그룹 ( 혹은원하는방향대로반대로입력 ) 의표본 수, 평균, 표준편차를각각차례대로넣어준다. 개별연구들의단위가동일하여효과크기를표준화하지않고계산하려면 smd= MD 로입력하면된다. 그러나통상적으로는표준화된효과크기는 SMD 로표시하며 SMD 를산출하는방법은여러가지가있다. 가장기본적인방법은효과크기를공통 표준편차로나누어주는 Cohen 의 d 를말하는것으로표본수가적을경우종합효과 크기가과대추정되는경향이있으므로이를교정해주는 Hedges 의 g 를사용하는것 이바람직하다 (method.smd= Hedges 또는 Cohen ). 참고로 Hedges 의 g 는교정지 수 J를 Cohen의 d에곱하여계산한다. 3 J = 1 4(n 1 + n 2 ) 9 Fixed 또는 Random effect model 의설정을위해서는 comb.fixed=true 또는 FALSE, comb.random= TRUE 또는 FALSE 를추가해서입력한다. 만약모형설정을하지않는 다면 metacont 함수에서는두모형의결과를모두제시한다. study 는개별연구들의이름을나타내며 data=data_con 은 R 메모리에로딩된 data_con 이라는데이터를지정해주는것이다. subgroup 별결과를나타내려면 byvar=g 를입력하는데 g 는 subgroup 을나타내는변수명이다. metacont 함수를사 용해서나온결과들은 ma_con 에지정되며결과는 Figure 3 이다. ma_con 에서나온결과들을 Figure 3 에서하나씩살펴보자. 1 은전체 11 개연구의종합효과크기를나타낸다. Fixed effect model 의 SMD 는 (95%CI; , ) p-value < 이하로서해당처치가통계적으로유의 9
10 하게개선되는결과를나타내었다. Random effect model의 SMD는 (95%CI; , ) p-value <0.0001이하로서동일한결과를나타낸다. 2와 3은 subgroup에해당하는결과를 Fixed or Random effect model로서나타낸것이다. Random 모델에서는 subgroup(0 vs 1) 에따른차이가의심된다. 4는전체연구의이질성 (heterogeneity) 를나타낸것이다. 이질성의 Higgins I 2 는 Cochrane Q statistics에서자유도 (degree of freedom) 를뺀것을다시 Cochrane Q statistics으로나누어준값으로이질성을일관성있게정량화시킨다. 0% 에서 40% 는이질성이중요하지않을수있으며 (might not be important), 30% 에서 60% 는중간이질성 (moderate heterogeneity), 50% 에서 90% 는중대한이질성 (substantial heterogeneity), 그리고 75% 에서 100% 는심각한이질성 (considerable heterogeneity) 을나타낸다. Cochrane Q statistics의 p-value는조금폭넓게 0.1을유의성판단기준으로한다 [4]. 본연속형예제자료의 Higgins I 2 는 82.7% 이며 Cochrane Q statistics p-value < 이하로서이질성이존재한다는것을알수있다. 따라서전체적인모델은 Random effect model을우선하여야한다. 그외 Figure 3 하단에해당결과가어떤계산방법으로도출되었는지보여주고있다. Inverse variance method는메타분석의기본적인방법으로서개별연구들의가중치를계산할때해당연구의역분산을활용한다. DerSimonian-Lair estimator는 Random effect model에서연구간변량을계산할때 tau값을계산하는방법이며, Hedges g는현재의결과값은 Cohen s d를보정한 Hedges의 g를사용하였다는것이다. 세부적인계산방법은 meta 패키지를참조하면서임의대로자유롭게설정할수있 10
11 다. Forest plot( 숲그림 ) Figure 3 은상세한정보파악은좋으나전반적인식별력이떨어진다. 따라서 forest plot 을작성해줌으로서독자들의이해도를향상시킬수있다 (Figure 4). forest(ma_con, comb.fixed=true, comb.random=true,digits=3,rightcols=c("effect", "ci")) forest 함수에해당설정된메타분석모델 (ma_con) 을입력한다. 그런다음다양한옵션들을넣어주어그림을예쁘게만들어준다. comb.fixed=true와 comb.random=true는두모형을다표시하라는것이며, digits=3은소수점세자리까지만표시, rightcols=c( effect, ci )) 는 forest plot 오른편에는원래는 weight가표시되는데이를생략하고효과크기와신뢰구간만을보여주라는뜻이다. Figure 4는앞의종합효과크기와동일한정보를제공한다. 더불어개별연구들의효과크기를그래픽으로제시함으로써연구내변동과연구간변동을쉽게파악할수있도록해준다. 예를들어연구내변량이큰것은 Mitsui2005_a 그리고 Mitsui2003인것을알수있고연구간변량이큰것은 Mitsui2005_a, WBPark2010_1 그리고 WBPark2010_2 인것을알수있다. 3) 이질성 (heterogeneity) 메타분석에서얻어낸종합효과크기를제대로해석하려면연구들간의이질성유무 를확인하고만약유의한조절변수 (moderator) 가있다면이를검정하고보고하여야 11
12 한다. 이러한이질성의원인은우연 (chance), 연구설계 (study design) 의차이, 연구환 경, 그리고표본집단의인구사회학적요인에이르기까지매우다양하다. (1) 시각적확인 : forest plot & subgroup analysis 이질성을탐색하기위해연구내변동과연구간변동을시각적으로쉽게확인할수 있다. (2) 이질성측정 : Higgins I 2 & Cochrane Q statistics Figure 3 을설명한면서연구의이질성을상세설명하였고이질성의정도를수치화해 서나타내며더불어통계적검정도보여준다. (3) 이질성원인파악 : meta-regression Forest plot을이용한시각적확인과 Cochrane Q statistics와 Higgins I 2 이용한이질성수치로부터이질성이의심된다면이질성의원인을통계적으로검정하기위한파악하기위하여메타회귀분석을실시한다. metareg(ma_con,g, method.tau="reml", digits=3) metareg 함수에설정된메타분석모델을넣어주고, 메타회귀분석에가중치를부여하는방법에따라 method.tau= REML (restricted maximum-likelihood estimator or ML (maximum-likelihood estimator), DL (DerSimonian-Laird estimator) 등을선택한다. 가중치계산방법에따른수치의변화는있지만대부분의통계적방향성은동일하니너무주의를기울이지않아도무방하다. Random effect model을기준으로 subgroup 1의종합효과크기는 (95%CI; , ) 그리고 subgroup 0의종합효과크기는 (-2.413, ) 로해당변수가조절변수 (moderator) 로의심되었으나메타회귀분석결과 p-value = 로 12
13 통계적으로유의한차이를나타내지는않았다. bubble(metareg(ma_con, g, method.tau="reml")) 메타회귀분석결과를 Figure 5에서와같이도식화해서나타낼수있다. 그래프상의직선은회귀직선을나타내며그기울기에대한통계적검정이앞서실시한메타회귀분석의 p-value이다. 4) 출판편향확인 (publication bias) 출판편향 (publication bias) 은개별연구들의특성과결과에따라연구가출판되거나출판되지않을오류이다. 일반적으로통계적유의한연구결과일경우더욱출판될가능성이높기때문에발생하는데, 이러한출판편향을고려하여해당메타연구의결과가과대또는과소추정되지는않았는지확인하여야한다. (1) 시각적확인 : funnel plot 출판편향을탐색하기위해연구들간의비대칭성이존재하는지시각적으로확인하여 야한다 (Figure 6). funnel(ma_con, comb.fixed=true, comb.random=false) funnel 함수에설정된메타분석모델을넣고, comb.fixed=true 또는 FALSE, comb.random= TRUE 또는 FALSE 를추가해서입력한다. Funnel plot 의 Y 축은표본크기 ( 표준오차 ) 를 X 축은효과크기를제시한다. 일반적으로 작은규모의연구들은아래쪽에넓게분포되며큰규모의연구들은깔때기안상단 에좁게분포된다. 따라서깔때기안상단에좌우대칭으로골고루분포되어있다면 13
14 출판편향은적다고판단할수있다. 연속형예제자료는깔때기바깥좌측으로 3개, 우측으로 2개의연구가, 깔때기안좌측으로 4개, 우측으로 2개의연구가분포한다. 시각적으로판단하기에출판편향이있을것으로판단된다 (Figure 6). (2) 출판편향통계적검정 출판편향을통계적으로검정하는일반적인방법은 Egger s linear regression method test (Egger s test) 그리고 Begg and Mazumdar s rank correlation test (Begg s test) 가있다. Egger s test가 Begg s test보다효과크기의실제추정치를더정확히추정한다고보고하고있다. 그러나통계적검정은출판편향의영향보다는연구의수가적을경우 (small study effect) 이를정확히검정하지못하므로 Cochrane에서는권고하지않는다. Egger s linear regression method test 중재효과의표준오차에대한개별연구들의효과크기관계를회귀식으로나타낸것 으로귀무가설은회귀식의초기값 (intercept) 은우연에의한결과로서출판편향이있 음을증명할수없다는것이다. ma_con <- metacont(n1, m1, s1, n2, m2, s2, sm="smd", method.smd="hedges", study,data=data_con) metabias(ma_con, method.bias="linreg") 앞선종합효과크기계산에서 subgroup 분석으로나누었기에 metabias 함수가실행 되지않을가능성이크다. 따라서전체연구를대상으로다시한번종합효과크기를 계산한다음바로이어서 metabias 함수를사용한다. metabias 함수에설정된메타 분석모델과 Egger s test 를실행하는 method.bias="linreg" 옵션을추가한다. 14
15 연속형자료의경우 bias 항목의 Coef. 가 으로초기값 (intercept) 을나타내며해 당 p-value < 로써귀무가설을기각하여출판편향이있음을확인할수있다. Begg and Mazumdar s rank correlation test 개별연구들의표준화된효과크기와표준오차와의상관관계를보정된순위상관 (rank correlation) 으로검정한다. 순위상관검정이유의하지않다면출판편향이없음 을나타낸다. metabias(ma_con, method.bias="rank") metabias 함수에설정된메타분석모델과 Begg s test를실행하는 method.bias="rank" 옵션을추가한다. Egger s test 결과와마찬가지로 p-value = 로서출판편향이있음을알수있다. 이처럼출판편향이통계적으로유의할때는출판편향이의심되는연구들을포함또는제외하여종합효과크기를다시한번확인할필요가있다. 즉, 출판편향에대한민감도분석 (sensitivity analysis) 을실시하여해당연구들의특성을보고하고이질성이발견된다면메타회귀분석을통해서통계적검정도실시하여야한다. 2. 이분형 (binary data) 예제자료 메타분석을실행을위한명령어는연속형예제자료와대부분동일하므로차이가있 는부분을중심으로설명하겠다. 1) 데이터코딩및불러오기 15
16 전체연구수는 6개였고전체표본수는 1,380으로이루어졌다. g는 subgroup 분석을위해임의로 0과 1을설정하였다 (Supplementary Material 1). Supplementary Material 1의 hwang_bin.csv 포멧으로저장해서지정된작업폴더에넣어두어야한다. data_bin <- read.csv("hwang_bin.csv", header=true) 2) 종합효과크기 meta 패키지는하위에여러함수들을포함하는데그중 metabin 함수는이분형자 료에서원자료들이모두있을때종합효과크기를계산한다. ma_bin <- metabin(tp,tp+fp,fn,fn+tn, sm="or", method ="Inverse", study, byvar=g, data=data_bin) print(ma_bin, digits=3) 이분형자료에서는 tp, tp+fp, fn, fn+tn을각각차례대로넣어준다. 효과크기를 OR 또는 RR로표시하고싶으면 sm= OR 또는 RR 로설정한다. 개별연구들의가중치를설정하는방법이다수있는데일반적인 inverse variance method 를사용하려면 method= Inverse 를입력한다. metabin 함수를사용해서나온결과들은 ma_bin에지정되며 Figure 7에서하나씩살펴보자. 1은전체 6개연구의종합효과크기를나타낸다. Fixed effect model의 OR는 (95%CI; 1.526, 2.789) p-value <0.0001이하로서동아리활동이취업에통계적으로유의하게영향을미치는결과를나타내었다. Random effect model의 OR은 (95%CI; 1.103, 2.813) p-value = 로서동일한결과를나타낸다. 16
17 2와 3은 subgroup에해당하는결과를 Fixed or Random effect model로서나타낸것이다. Random 모델에서는 subgroup(0 vs 1) 에따른차이가의심된다. 4는전체연구의이질성 (heterogeneity) 를나타낸것이다. 본이분형예제자료의 Higgins I 2 는 52.6% 이며 Cochrane Q statistics p-value = 로서이질성이있음을알수있다. 그외 Figure 7 하단에해당결과가어떤계산방법으로도출되었는지밝히고있다. Inverse variance method는메타분석의기본적인방법으로서개별연구들의가중치를계산할때해당연구의역분산을활용한다. DerSimonian-Lair estimator는 Random effect model에서연구간변량을계산할때 tau값을계산하는방법이다. 세부적인계산방법은 meta 패키지를참조하면서임의대로자유롭게설정할수있다. Forest plot( 숲그림 ) forest(ma_bin, comb.fixed=true, comb.random=true,digits=3,rightcols=c("effect", "ci")) forest 함수에해당설정된메타분석모델 (ma_bin) 을입력한다. 상세옵션설명은연 속형예제자료와동일하다. 3) 이질성 (heterogeneity) (1) 이질성원인파악 : meta-regression Forest plot을이용한시각적확인과 Cochrane Q statistics와 Higgins I 2 이용한이질성수치로부터이질성이의심된다면이질성의원인을통계적으로검정하기위한파악하기위하여메타회귀분석을실시한다. 17
18 metareg(ma_bin, g, method.tau="reml", digits=3) Random effect model을기준으로 subgroup 1의종합효과크기는 1.428(95%CI; 0.865, 2.357) 그리고 subgroup 0의종합효과크기는 2.542(1.743, 3.707) 로해당변수가조절변수 (moderator) 로의심되었으나메타회귀분석결과 p-value = 로통계적으로유의한차이를나타내지는않았다. 메타회귀분석을위해서는대상연구가최소 10개이상은있어야유의미한결과로해석할수있다. 그러나본이분형예제자료는전체연구의수가 6개로메타회귀분석에적절하지않고통계적유의차를나타내지못하였으나추후연구의수가추가된다면해당조절변수는유의하게영향을미칠것으로판단된다. 4) 출판편향확인 (publication bias) (1) 시각적확인 : funnel plot funnel(ma_bin, comb.fixed=true, comb.random=false) 이분형예제자료의 funnel plot을그려보면깔때기안좌측으로 4개, 깔때기바깥우측으로 1개의연구가분포한다. 시각적으로판단하기에출판편향이있을것으로판단된다. 따라서연속형예제에서실시하였던출판편향의통계적검정을이용하여고찰하기바란다. 3. 자료유형상관없이메타분석 18
19 지금까지연속형 (continuous data) 과이분형 (binary data) 의원자료에서종합효과크기와이와관련된이질성을평가하는방법을알아보았다. 그러나사실이러한자료에따른구분은사용자의편의를위해서명령어 ( 함수 ) 를구분해놓았을뿐개별연구들의효과크기와표준오차를이미알고있다면자료의유형에상관없이메타분석을실시할수있다. 1) 데이터코딩및불러오기 앞에서실행했던연속형 (continuous data, Appendix 1) 과이분형 (binary data, Appendix 2) 의원자료를불러오면효과크기와표준오차는이미변수로입력되어져 있다. data_con <- read.csv("shim_con.csv", header=true) data_bin <- read.csv("hwang_bin.csv", header=true) read.csv 함수로연속형과이분형자료를각각불러들여 R 메모리에서 data_con, data_bin 이름의데이터로저장한다. 2) 종합효과크기 meta 패키지는하위에여러함수들을포함하는데그중 metagen 함수는효과크기 와표준오차로서종합효과크기를계산한다. (1) 연속형자료효과크기와표준오차계산 ma_con_es <- metagen(cohen_d, cohen_se, sm="cohen(smd)", study, byvar=g, data=data_con) print(ma_con_es, digits=3) forest(ma_con_es, comb.fixed=true, comb.random=true, digits=3, rightcols=c("effect", "ci")) metagen 함수에효과크기에해당하는 cohen_d 와표준오차 cochen_se 를입력한다. 19
20 연속형자료의효과크기와표준오차로산출한메타분석모델이 ma_con_es에설정된다. 앞서실시한연속형예제자료에서 SMD 중 Cohen의 d를옵션으로 [method.smd="cohen ] 사용한다면지금산출한메타분석모델 ma_con_es과동일한효과크기를얻을수있다. (2) 이분형자료효과크기와표준오차계산 ma_bin_es <- metagen(lnor, orse, sm="or", study, data=data_bin) print(ma_bin_es, digits=3) forest(ma_bin_es, comb.fixed=true, comb.random=true, digits=3, rightcols=c("effect", "ci")) metagen 함수에효과크기에해당하는 lnor 과표준오차 orse 를입력한다. 이분형자 료의효과크기와표준오차로산출한메타분석모델이 ma_bin_es 에설정된다. 앞서실시한이분형예제자료의효과크기와동일함을알수있을것이다. 맺음말 본연구는통계학을전공하지않은일반연구자들도쉽게수행할수있도록통계학이론을최소화하여메타분석의실질적수행방법에집중하였다. 따라서본연구를참고하여메타분석을실행하고자하는연구자는반드시효과크기계산에대한개념정립을확고히하여야한다. 아울러국내연구자들이 R을이용한메타분석을보다쉽게수행함으로써관련연구가활성화되기를바란다. 20
21 References 1. Hwang SD & Shim SR. Meta-analysisp; from forest plot to network meta-analysis. Seoul: Hannarae publishing co.; 2018 (Korean). ISBN: Shim SR. Intervention meta-analysis using R software. Gyeonggi-do: SDB Lab; 2019 (Korean). ISBN Shim SR, Shin IS, Bae JM. Intervention Meta-Analysis Using STATA Software. J Health Info Stat. 2016;41(1): Higgins JPT, Green S. editors Cochrane handbook for systematic reviews of interventions. Version 5.1.0: The Cochrane Collaboration. Available from: 5. Borensein M, Hedges LV, Higgins JPT, Rothstein HR. (2019). Introduction to Meta- Analysis.preface. West Sussex, UK: John Wiley & Sons Ltd.; p R software "meta" packages. Available from: or 21
22 Figure legends Figure 1. Effect size of standardized mean difference. Figure 2. Flow chart of intervention meta-analysis using R "meta" package. 22
23 Figure 3. Overall effect size of continuous example. 23
24 Figure 4. Forest plot of continuous example. Figure 5. Meta-regression bubble plot of continuous example.. 24
25 Figure 6. Funnel plot of continuous example. 25
26 Figure 7. Overall effect size of binary example. 26
<B0A3C3DFB0E828C0DBBEF7292E687770>
초청연자특강 대구가톨릭의대의학통계학교실 Meta analysis ( 메타분석 ) 예1) The effect of interferon on development of hepatocellular carcinoma in patients with chronic hepatitis B virus infection?? -:> 1998.1 ~2007.12.31 / RCT(2),
More informationJournal of Health Informatics and Statistics Brief Communication J Health Info Stat 2016;41(1): p
Brief Communication J Health Info Stat 2016;41(1):123-134 http://dx.doi.org/10.21032/jhis.2016.41.1.123 pissn 2465-8014 eissn 2465-8022 중재메타분석을위한 STATA 명령어 심성률 1, 신인수 2, 배종면 3 1 순천향대학교서울병원임상분자생물학연구소, 2
More information메타분석: 통계적 방법의 기초
메타분석: 통계적 방법의 기초 서울시립대학교 통계학과 이용희 209년 4월 23일 Contents 하나의 실험과 효과의 크기 관심있는 모수: 효과의 크기 2 모수의 추정량 3 추정량에 대한 믿음 4 추정량의 분산과 표준오차 5 추정량의 분산과 모집단의 분산 6 통계적 효과의 크기 7 신뢰구간 8 일반적인 관심 모수 2 2 2 3 개의 실험의 비교 실험들의 이질성
More information슬라이드 1
대한의료관련감염관리학회학술대회 2016년 5월 26일 ( 목 ) 15:40-17:40 서울아산병원동관 6층대강당서울성심병원김지형 기능, 가격, 모든것을종합 1 Excel 자료정리 2 SPSS 학교에서준다면설치 3 통계시작 : dbstat 4 Web-R : 표만들기, 메타분석 5 R SPSS www.cbgstat.com dbstat 직접 dbstat 길들이기
More informationG Power
G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2
More information조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a
조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형
More informationJournal of Educational Innovation Research 2016, Vol. 26, No. 3, pp DOI: * Meta Analysis : T
Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp.289-314 DOI: http://dx.doi.org/10.21024/pnuedi.26.3.201612.289 * Meta Analysis : Trends and Effects of Art-Therapy with Clay Purpose:
More information메타분석에서통계학적고려사항들 강현 Hanyang Med Rev 2015;35: pissn X eissn 중앙대학교의과대학마취통증의학과 Statistic
메타분석에서통계학적고려사항들 강현 http://dx.doi.org/0.7599/hmr.205.35..23 pissn 738-429X eissn 2234-4446 중앙대학교의과대학마취통증의학과 Statistical Considerations in Meta-Analysis Hyun Kang Department of Anesthesiology and Pain Medicine,
More information878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu
한 국 통 계 학 회 논 문 집 2012, 19권, 6호, 877 884 DOI: http://dx.doi.org/10.5351/ckss.2012.19.6.877 Maximum Tolerated Dose Estimation Applied Biased Coin Design in a Phase Ⅰ Clinical Trial Yu Kim a, Dongjae Kim
More information상담학연구 , , ,, ( ),.,., 15 19,, 30, (Corresponding Author): / Tel: /
. 2000 2015 30.., 30 100, 0.949.,, ( ),.,., 15 19,, 30, 2 3.. (Corresponding Author): / Tel: 054-284-3474 / E-mail: kikiki-2@daum.net (, 2009)... (Peterson & Seligman, 2004), (, 2011). Fitzgerald(1998),,,,,
More informationR t-..
R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)
More information한국성인에서초기황반변성질환과 연관된위험요인연구
한국성인에서초기황반변성질환과 연관된위험요인연구 한국성인에서초기황반변성질환과 연관된위험요인연구 - - i - - i - - ii - - iii - - iv - χ - v - - vi - - 1 - - 2 - - 3 - - 4 - 그림 1. 연구대상자선정도표 - 5 - - 6 - - 7 - - 8 - 그림 2. 연구의틀 χ - 9 - - 10 - - 11 -
More information(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re
EMF Health Effect 2003 10 20 21-29 2-10 - - ( ) area spot measurement - - 1 (Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern
More information???? 1
The Korean Journal of Applied Statistics (2013) 26(1), 201 208 DOI: http://dx.doi.org/10.5351/kjas.2013.26.1.201 A Note on Model Selection in Mixture Experiments with Process Variables Jung Il Kim a,1
More informationmethods.hwp
1. 교과목 개요 심리학 연구에 기저하는 기본 원리들을 이해하고, 다양한 심리학 연구설계(실험 및 비실험 설계)를 학습하여, 독립된 연구자로서의 기본적인 연구 설계 및 통계 분석능력을 함양한다. 2. 강의 목표 심리학 연구자로서 갖추어야 할 기본적인 지식들을 익힘을 목적으로 한다. 3. 강의 방법 강의, 토론, 조별 발표 4. 평가방법 중간고사 35%, 기말고사
More information공공기관임금프리미엄추계 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영 ( 한국직업능력개발원연구위원 ) 연구보조원강승복 ( 한국노동연구원책임연구원 ) 이연구는국회예산정책처의정책연구용역사업으로 수행된것으로서, 본연구에서제시된의견이나대안등은
2013 년도연구용역보고서 공공기관임금프리미엄추계 - 2013. 12.- 이연구는국회예산정책처의연구용역사업으로수행된것으로서, 보고서의내용은연구용역사업을수행한연구자의개인의견이며, 국회예산정책처의공식견해가아님을알려드립니다. 연구책임자 한국노동연구원선임연구위원정진호 공공기관임금프리미엄추계 2013. 12. 연구책임자정진호 ( 한국노동연구원선임연구위원 ) 연구원오호영
More informationDBPIA-NURIMEDIA
e- 비즈니스연구 (The e-business Studies) Volume 17, Number 1, February, 28, 2016:pp. 3~30 ISSN 1229-9936 (Print), ISSN 2466-1716 (Online) 원고접수일심사 ( 수정 ) 게재확정일 2016. 01. 08 2016. 01. 09 2016. 02. 25 ABSTRACT
More information???? 1
The Korean Journal of Applied Statistics (2014) 27(1), 13 20 DOI: http://dx.doi.org/10.5351/kjas.2014.27.1.013 Maximum Tolerated Dose Estimation by Stopping Rule and SM3 Design in a Phase I Clinical Trial
More informationDBPIA-NURIMEDIA
The e-business Studies Volume 17, Number 4, August, 30, 2016:319~332 Received: 2016/07/28, Accepted: 2016/08/28 Revised: 2016/08/27, Published: 2016/08/30 [ABSTRACT] This paper examined what determina
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationAnalysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ
Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in University & 2 Kang Won University [Purpose] [Methods]
More informationDBPIA-NURIMEDIA
The e-business Studies Volume 17, Number 6, December, 30, 2016:237~251 Received: 2016/11/20, Accepted: 2016/12/24 Revised: 2016/12/21, Published: 2016/12/30 [ABSTRACT] Recently, there is an increasing
More information기관고유연구사업결과보고
기관고유연구사업결과보고 작성요령 2001 ~ 2004 2005 ~ 2007 2008 ~ 2010 2001 ~ 2004 2005 ~ 2007 2008 ~ 2010 1 2/3 2 1 0 2 3 52 0 31 83 12 6 3 21 593 404 304 1,301 4 3 1 8 159 191 116 466 6 11 (`1: (1: 16 33 44 106
More informationAbstract Musculoskeletal Symptoms and Related Factors for Nurses and Radiological Technologists Wearing a Lead Apron for Radiation Pro t e c t i o n Jung-Im Yoo, Jung-Wan Koo 1 ) Angio Unit, Team of Radiology,
More information이 장에서 사용되는 MATLAB 명령어들은 비교적 복잡하므로 MATLAB 창에서 명령어를 직접 입력하지 않고 확장자가 m 인 text 파일을 작성하여 실행을 한다
이장에서사용되는 MATLAB 명령어들은비교적복잡하므로 MATLAB 창에서명령어를직접입력하지않고확장자가 m 인 text 파일을작성하여실행을한다. 즉, test.m 과같은 text 파일을만들어서 MATLAB 프로그램을작성한후실행을한다. 이와같이하면길고복잡한 MATLAB 프로그램을작성하여실행할수있고, 오류가발생하거나수정이필요한경우손쉽게수정하여실행할수있는장점이있으며,
More informationBrief Communication 보건정보통계학회지제 40 권제 3 호 pissn eissn Journal of Health Informatics and Statistics 2015;40(3): STATA 를이용한진단검
Brief Communication 보건정보통계학회지제 40 권제 3 호 pissn 2465-8014 eissn 2465-8022 Journal of Health Informatics and Statistics 2015;40(3):190-199 심성률 1), 신인수 2), 배종면 3) 1) 순천향대학교서울병원임상분자생물학연구소, 2) 전주대학교교육학과, 3)
More information- i - - ii - - iii - - iv - - v - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - α α - 20 - α α α α α α - 21 - - 22 - - 23 -
More information09구자용(489~500)
The Study on the Grid Size Regarding Spatial Interpolation for Local Climate Maps* Cha Yong Ku** Young Ho Shin*** Jae-Won Lee**** Hee-Soo Kim*****.,...,,,, Abstract : Recent global warming and abnormal
More information시스템경영과 구조방정식모형분석
2 st SPSS OPEN HOUSE, 2009 년 6 월 24 일 AMOS 를이용한잠재성장모형 (Latent Growth Model ) 세명대학교경영학과김계수교수 (043) 649-242 gskim@semyung.ac.kr 목차. LGM개념소개 2. LGM모형종류 3. LGM 예제 4. 결과치비교 5. 정리및요약 2 적합모형의판단방법 Tips SEM 결과해석방법
More information05-08 087ÀÌÁÖÈñ.hwp
산별교섭에 대한 평가 및 만족도의 영향요인 분석(이주희) ꌙ 87 노 동 정 책 연 구 2005. 제5권 제2호 pp. 87118 c 한 국 노 동 연 구 원 산별교섭에 대한 평가 및 만족도의 영향요인 분석: 보건의료노조의 사례 이주희 * 2004,,,.. 1990. : 2005 4 7, :4 7, :6 10 * (jlee@ewha.ac.kr) 88 ꌙ 노동정책연구
More information012임수진
Received : 2012. 11. 27 Reviewed : 2012. 12. 10 Accepted : 2012. 12. 12 A Clinical Study on Effect of Electro-acupuncture Treatment for Low Back Pain and Radicular Pain in Patients Diagnosed with Lumbar
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information2017 년 6 월한국소프트웨어감정평가학회논문지제 13 권제 1 호 Abstract
2017 년 6 월한국소프트웨어감정평가학회논문지제 13 권제 1 호 Abstract - 31 - 소스코드유사도측정도구의성능에관한비교연구 1. 서론 1) Revulytics, Top 20 Countries for Software Piracy and Licence Misuse (2017), March 21, 2017. www.revulytics.com/blog/top-20-countries-software
More information동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석
동아시아국가들의실질환율, 순수출및 경제성장간의상호관계비교연구 : 시계열및패널자료인과관계분석 목차 I. 서론 II. 동아시아각국의무역수지, 실질실효환율및 GDP간의관계 III. 패널데이터를이용한 Granger인과관계분석 IV. 개별국실증분석모형및 TYDL을이용한 Granger 인과관계분석 V. 결론 참고문헌 I. 서론 - 1 - - 2 - - 3 - - 4
More information인문사회과학기술융합학회
Vol.5, No.5, October (2015), pp.471-479 http://dx.doi.org/10.14257/ajmahs.2015.10.50 스마트온실을 위한 가상 외부기상측정시스템 개발 한새론 1), 이재수 2), 홍영기 3), 김국환 4), 김성기 5), 김상철 6) Development of Virtual Ambient Weather Measurement
More information에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 1~18 가격비대칭성검정모형민감도분석 1
에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 1~18 가격비대칭성검정모형민감도분석 1 2 3 < 표 1> ECM 을이용한선행연구 4 5 6 7 and 8 < 표 2> 오차수정모형 (ECM1~ECM4) 9 10 < 표 3> 민감도분석에쓰인더미변수 11 12 < 표
More informationJournal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on
Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp.157-176 DOI: http://dx.doi.org/10.21024/pnuedi.28.3.201809.157 NCS : * A Study on the NCS Learning Module Problem Analysis and Effective
More information<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>
부동산학연구 제16집 제1호, 2010. 3, pp. 117~130 Journal of the Korea Real Estate Analysts Association Vol.16, No.1, 2010. 3, pp. 117~130 비선형 Mankiw-Weil 주택수요 모형 - 수도권 지역을 대상으로 - Non-Linear Mankiw-Weil Model on Housing
More information서론 34 2
34 2 Journal of the Korean Society of Health Information and Health Statistics Volume 34, Number 2, 2009, pp. 165 176 165 진은희 A Study on Health related Action Rates of Dietary Guidelines and Pattern of
More informationJournal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc
Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp.251-273 DOI: http://dx.doi.org/10.21024/pnuedi.27.2.201706.251 : 1997 2005 Research Trend Analysis on the Korean Alternative Education
More information확률과통계 강의자료-1.hwp
1. 통계학이란? 1.1 수학적 모형 실험 또는 증명을 통하여 자연현상을 분석하기 위한 수학적인 모형 1 결정모형 (deterministic model) - 뉴톤의 운동방정식 : - 보일-샤를의 법칙 : 일정량의 기체의 부피( )는 절대 온도()에 정비례하고, 압력( )에 반비례한다. 2 확률모형 (probabilistic model) - 주사위를 던질 때
More information지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월
지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support
More information44-4대지.07이영희532~
A Spatial Location Analysis of the First Shops of Foodservice Franchise in Seoul Metropolitan City Younghee Lee* 1 1 (R) 0 16 1 15 64 1 Abstract The foodservice franchise is preferred by the founders who
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More informationCrt114( ).hwp
cdna Microarray Experiment: Design Issues in Early Stage and the Need of Normalization Byung Soo Kim, Ph.D. 1, Sunho Lee, Ph.D. 2, Sun Young Rha, M.D., Ph.D. 3,4 and Hyun Cheol Chung, M.D., Ph.D. 3,4 1
More informationDBPIA-NURIMEDIA
e- 비즈니스연구 (The e-business Studies) Volume 17, Number 1, February, 28, 2016:pp. 293~316 ISSN 1229-9936 (Print), ISSN 2466-1716 (Online) 원고접수일심사 ( 수정 ) 게재확정일 2015. 12. 04 2015. 12. 24 2016. 02. 25 ABSTRACT
More information에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -
에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 - . - 2 - . 1. - 3 - [ 그림 1] 도시가스수요와실질 GDP 추이 - 4 - - 5 - - 6 - < 표 1>
More informationJournal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H
Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp.577-601 DOI: http://dx.doi.org/10.21024/pnuedi.28.4.201812.577 3 * The Effect of Home-based Activities Using Traditional Fairy Tales
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Oct.; 29(10), 799 804. http://dx.doi.org/10.5515/kjkiees.2018.29.10.799 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Method
More information2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형
M-Plus 의활용 - 기본모형과예제명령어 - 성신여자대학교 심리학과 조영일, Ph.D. 2 / 27 목차 1. M-plus 소개 2. 중다회귀 3. 경로모형 4. 확인적요인분석 5. 구조방정식모형 6. 잠재성장모형 7. 교차지연자기회귀모형 3 / 27 1. M-plus 란? 기본정보 M-plus 는구조방정식모형과종단자료분석 ( 잠재성장모형 ) 의분석에사용되기위해서고안된프로그램임.
More information歯1.PDF
200176 .,.,.,. 5... 1/2. /. / 2. . 293.33 (54.32%), 65.54(12.13%), / 53.80(9.96%), 25.60(4.74%), 5.22(0.97%). / 3 S (1997)14.59% (1971) 10%, (1977).5%~11.5%, (1986)
More informationDBPIA-NURIMEDIA
The e-business Studies Volume 17, Number 6, December, 30, 2016:21~34 Received: 2016/12/04, Accepted: 2016/12/27 Revised: 2016/12/19, Published: 2016/12/30 [ABSTRACT] With the development of the Internet,
More informationMicrosoft PowerPoint - IPYYUIHNPGFU
분산분석 분산분석 (ANOVA: ANALYSIS OF VARIANCE) 두개이상의모집단의차이를검정 예 : 회사에서세종류의기계를설치하여동일한제품을생산하는경우, 각기계의생산량을조사하여평균생산량을비교 독립변수 : 다른변수에의해영향을주는변수 종속변수 : 다른변수에의해영향을받는변수 요인 (Factor): 독립변수 예에서의요인 : 기계의종류 (I, II, III) 요인수준
More information16(1)-3(국문)(p.40-45).fm
w wz 16«1y Kor. J. Clin. Pharm., Vol. 16, No. 1. 2006 x w$btf3fqpsu'psn û w m w Department of Statistics, Chonnam National University Eunsik Park College of Natural Sciences, Chonnam National University
More information아시아연구 16(1), 2013 pp. 105-130 중국의경제성장과보험업발전간의 장기균형관계 Ⅰ. 서론 Ⅲ. 실증분석 1. 분석방법 < 그림 1> 중국의보험밀도와국민 1 인당명목 GNI 성장추이 보험밀도 국민 1 인당명목 GNI < 그림 2> 중국의주요거시경제지표변화추이 총저축액 금리, 물가, 실업률 < 표 1> 변수정의 변수명 정의 자료출처 LTP
More information- iii - - i - - ii - - iii - 국문요약 종합병원남자간호사가지각하는조직공정성 사회정체성과 조직시민행동과의관계 - iv - - v - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - α α α α - 15 - α α α α α α
More informationPowerPoint 프레젠테이션
응용식물통계학 Statistics of Applied Plants Science 친환경식물학부유기농생태학전공황선구 13 장상관분석 1. 상관계수 2. 상관분석의가정과특성 3. 모상관계수의검정과신뢰한계 4. 순위상관 14 장회귀분석 1. 회귀직선의추정 2. 회귀직선의검정및추론 3. 모집단절편과회귀계수의구간추정 4. 곡선회귀 - 실습 - 상관분석 지금까지한가지확률변수에의한현상을검정하였다.
More information<31335FB1C7B0E6C7CABFDC2E687770>
에너지기후변화교육 4(2):203~211(2014) 203 초등학교 교과서 에너지 단원의 탐구활동과 시각자료 기능 분석 사례 연구 신명경 권경필 * 경인교육대학교 Abstract : This study aimed to analyze energy related inquiry activity and visual materials in elementary textbook.
More informationMATLAB and Numerical Analysis
School of Mechanical Engineering Pusan National University dongwoonkim@pusan.ac.kr Review 무명함수 >> fun = @(x,y) x^2 + y^2; % ff xx, yy = xx 2 + yy 2 >> fun(3,4) >> ans = 25 시작 x=x+1 If문 >> if a == b >>
More informationÀå¾Ö¿Í°í¿ë ³»Áö
Disability & Employment 55 Disability & Employment 56 57 Disability & Employment 58 59 Disability & Employment 60 61 Disability & Employment 62 63 Disability & Employment 64 65 Disability & Employment
More information°í¼®ÁÖ Ãâ·Â
Performance Optimization of SCTP in Wireless Internet Environments The existing works on Stream Control Transmission Protocol (SCTP) was focused on the fixed network environment. However, the number of
More information975_983 특집-한규철, 정원호
Focused Issue of This Month Gyu Cheol an, MD Department of Otolaryngology ead & Neck Surgery, Gachon University of College Medicine E - mail : han@gilhospital.com Won-o Jung, MD Department of Otolaryngology
More informationJournal of Educational Innovation Research 2018, Vol. 28, No. 2, pp DOI: IPA * Analysis of Perc
Journal of Educational Innovation Research 2018, Vol. 28, No. 2, pp.45-72 DOI: http://dx.doi.org/10.21024/pnuedi.28.2.201806.45 IPA * Analysis of Perception and Needs on Teaching Competencies of Faculty
More information<C0E5B7C1BBF328BEEEB8B0C0CCB5E9C0C729202D20C3D6C1BE2E687770>
본 작품들의 열람기록은 로그파일로 남게 됩니다. 단순 열람 목적 외에 작가와 마포구의 허락 없이 이용하거나 무단 전재, 복제, 배포 시 저작권법의 규정에 의하여 처벌받게 됩니다. 마포 문화관광 스토리텔링 공모전 구 분 내 용 제목 수상내역 작가 공모분야 장르 어린이들의 가장 즐거웠던 나들이 장소들 마포 문화관광 스토리텔링 공모전 장려상 변정애 창작이야기 기타
More information02Á¶ÇýÁø
Analysis of Hazardous Fog and Index Development in Korea* Hye-Jin Cho** Abstract : The existing researches related to the fog have focused on mainly the fog itself and its spatial variation. This study
More informationadfasdfasfdasfasfadf
C 4.5 Source code Pt.3 ISL / 강한솔 2019-04-10 Index Tree structure Build.h Tree.h St-thresh.h 2 Tree structure *Concpets : Node, Branch, Leaf, Subtree, Attribute, Attribute Value, Class Play, Don't Play.
More informationRheu-suppl hwp
Objective: This paper reviews the existing Korean medical and public health, and nursing academy articles on disease-specific and domain-specific quality of life, and provides recommendations for the universally
More information590호(01-11)
T H E K O R E A N D O C T O R S W E E K L Y www.docdocdoc.co.kr I N S I D E 38 3 5 6 7 10 13 28 29 30 31 38 41 42 2 Advertisement Government & Medicine 3 Government & Medicine 4 Government & Medicine Government
More informationJournal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti
Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp.127-148 DOI: http://dx.doi.org/11024/pnuedi.27.4.201712.127 A Study on the Optimization of Appropriate Hearing-impaired Curriculum Purpose:
More information<283732372D3733312920B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A1283035292E687770>
대한안과학회지 제 49 권 제 5 호 2008 J Korean Ophthalmol Soc 49(5):727-731, 2008 DOI : 10.3341/jkos.2008.49.5.727 다초점 소프트콘택트렌즈의 노안의 시력보정에 대한 유용성 평가 김현경 1 김효명 2 정성근 1 가톨릭대학교 의과대학 성모병원 안과학교실 1, 고려대학교 의과대학 안암병원 안과학교실
More information<B3EDB4DC28B1E8BCAEC7F6292E687770>
1) 초고를읽고소중한조언을주신여러분들게감사드린다. 소중한조언들에도불구하고이글이포함하는오류는전적으로저자개인의것임을밝혀둔다. 2) 대표적인학자가 Asia's Next Giant: South Korea and Late Industrialization, 1990 을저술한 MIT 의 A. Amsden 교수이다. - 1 - - 2 - 3) 계량방법론은회귀분석 (regression)
More information슬라이드 1
Pairwise Tool & Pairwise Test NuSRS 200511305 김성규 200511306 김성훈 200614164 김효석 200611124 유성배 200518036 곡진화 2 PICT Pairwise Tool - PICT Microsoft 의 Command-line 기반의 Free Software www.pairwise.org 에서다운로드후설치
More informationexample code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for
2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon
More information*
JOURNAL OF HOSPITAL MANAGEMENT & POLICY Korean Institute of Hospital Management 4 17 31 46 65 88 97 104 109 122 128 140 4 17 31 JOURNAL OF HOSPITAL MANAGEMENT & POLICY 4 5 JOURNAL OF HOSPITAL MANAGEMENT
More information1997 4 23 2000 9 5 2003 9 10 2008 2 20 2008 12 10 2011 7 1 2012 8 17 2014 9 19 2015 3 31 2015 6 30 2016 9 30 2017 6 30 2019 3 31 326 327 328 < >
More information( )Kjhps043.hwp
Difference of Fistula Maturation Degree and Physical Property by the Types of Tube Material: An Experimental Study Sang Koo Kang, M.D. 1, Hee Chul Yu, M.D. 1,4, Woo Sung Moon, M.D. 2,4, Ju Hyoung Lee,
More information278 경찰학연구제 12 권제 3 호 ( 통권제 31 호 )
여성경찰관의직업윤리의식결정요인분석 * An Analysis of Determinantal Factors Influencing Professional Ethical Standards of South Korean Police Women 신문희 ** 이영민 *** Ⅰ. 서론 Ⅱ. 이론적배경 Ⅲ. 연구방법 Ⅳ. 연구결과 Ⅴ. 결론 Ⅰ. 서론 278 경찰학연구제 12
More information학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석
,, Even the short history of the Web system, the techniques related to the Web system have b een developed rapidly. Yet, the quality of the Webbased application software has not improved. For this reason,
More information생존분석의 추정과 비교 : 보충자료 이용희 December 12, 2018 Contents 1 생존함수와 위험함수 생존함수와 위험함수 예제: 지수분포
생존분석의 추정과 비교 : 보충자료 이용희 December, 8 Cotets 생존함수와 위험함수. 생존함수와 위험함수....................................... 예제: 지수분포.......................................... 예제: 와이블분포.........................................
More informationhttp://www.kbc.go.kr/pds/2.html Abstract Exploring the Relationship Between the Traditional Media Use and the Internet Use Mee-Eun Kang This study examines the relationship between
More information슬라이드 1
빅데이터분석을위한데이터마이닝방법론 SAS Enterprise Miner 활용사례를중심으로 9 주차 예측모형에대한평가 Assessment of Predictive Model 최종후, 강현철 차례 6. 모형평가의기본개념 6.2 모델비교 (Model Comparison) 노드 6.3 임계치 (Cutoff) 노드 6.4 의사결정 (Decisions) 노드 6.5 기타모형화노드들
More informationexp
exp exp exp exp exp exp exp exp exp exp exp log 第 卷 第 號 39 4 2011 4 투영법을 이용한 터빈 블레이드의 크리프 특성 분석 329 성을 평가하였다 이를 위해 결정계수값인 값 을 비교하였으며 크리프 시험 결과를 곡선 접합 한 결과와 비선형 최소자승법으로 예측한 결과 사 이 결정계수간 정도의 오차가 발생하였고
More information조사연구 sampling error of polling sites and the additional error which comes from non-response, early voting and second stage sampling error of voters in
조사연구 권 호 DOI http://dx.doi.org/10.20997/sr.18.4.7 연구노트 2016 년국회의원선거출구조사오차분석 Analysis of Prediction Error of the Exit Polling for 2016 National Assembly Election in Korea 1) 3) a) b) c) 주제어 대국회의원선거 예측오차
More information(5차 편집).hwp
(215), 54(1), 17-3 211 STEAM,.. STEAM, STEAM, 5~6 11.,., 5~6...,. (, 21)., 29. (,, 212). 211 STEAM * :, E-mail: njkwon@hanmail.net http://dx.doi.org/1.15812/ter.54.1.2153.17 (215), 54(1), 17-3,. (Arts)
More information#Ȳ¿ë¼®
http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information유한차분법을 이용한 다중 기초자산 주가연계증권 가격결정
유한차분법을 이용한 다중 기초자산 주가연계증권 가격결정 이인범 *, 장우진 ** * 서울대학교 산업공학과 석사과정, 서울시 관악구 대학동 서울대학교 공과대학 39-315 **서울대학교 산업공학과 부교수, 서울시 관악구 대학동 서울대학교 공과대학 39-305 Abstract 주가연계증권은 국내에서 발행되는 대표적인 주식 연계 구조화 증권으로 2003 년부터 발행되기
More information(01) hwp
Journal of Life Science 2013 Vol. 23. No. 2. 157~166 ISSN (Print) 1225-9918 ISSN (Online) 2287-3406 DOI : http://dx.doi.org/10.5352/jls.2013.23.2.157 α μ δ κ 158 생명과학회지 2013, Vol. 23. No. 2 Journal of
More informationJournal of Educational Innovation Research 2016, Vol. 26, No. 3, pp DOI: Awareness, Supports
Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp.335-363 DOI: http://dx.doi.org/10.21024/pnuedi.26.3.201612.335 Awareness, Supports in Need, and Actual Situation on the Curriculum Reconstruction
More informationDevelopment of culture technic for practical cultivation under structure in Gastrodia elate Blume
Development of culture technic for practical cultivation under structure in Gastrodia elate Blume 1996. : 1. 8 2. 1 1998. 12. : : ( ) : . 1998. 12 : : : : : : : : : : - 1 - .. 1.... 2.. 3.... 1..,,.,,
More information1..
Volume 12, Number 1, 6~16, Factors influencing consultation time and waiting time of ambulatory patients in a tertiary teaching hospital Jee-In Hwang College of Nursing Science, Kyung Hee University :
More information<C7A5C1F620BEE7BDC4>
연세대학교 상경대학 경제연구소 Economic Research Institute Yonsei Universit 서울시 서대문구 연세로 50 50 Yonsei-ro, Seodaemun-gS gu, Seoul, Korea TEL: (+82-2) 2123-4065 FAX: (+82- -2) 364-9149 E-mail: yeri4065@yonsei.ac. kr http://yeri.yonsei.ac.kr/new
More informationMain Title
GE Peter S. Pande,, Robert P. Neuman, Ronald R. Cavanagh The SIX SIGMA WAY April 29, 2005 Jin-Ho Jeong,, Ph.D. Competitiveness Valuation International, Inc. Korea Partner of IMD WCY jeong@cvikorea.net
More informationAbstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie
Volume 12, Number 1, 92~102, An Intervention Study of Pain Reduction during IV Therapy in Hospitalized Children Myo-Jin Kim 1), Joung-Hae Bak 1), Won-Seok Seo 2) Mi-Young Kim 3), Sun-Kyoung Park 3), Jai-Soung
More informationDBPIA-NURIMEDIA
e- 비즈니스연구 (The e-business Studies) Volume 17, Number 3, June, 30, 2016:pp. 273~299 ISSN 1229-9936 (Print), ISSN 2466-1716 (Online) 원고접수일심사 ( 수정 ) 게재확정일 2016. 06. 11 2016. 06. 24 2016. 06. 26 ABSTRACT e-
More informationMicrosoft PowerPoint - 26.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More informationJkbcs016(92-97).hwp
Expression of bcl-2 and Apoptosis and Its Relationship to Clinicopathological Prognostic Factors in Breast Cancer - A Study with Long Term Follow-up correlated with the survival rate.(journal of Korean
More informationuntitled
Journal of Rheumatic Diseases Vol. 22, No. 1, February, 2015 http://dx.doi.org/10.4078/jrd.2015.22.1.4 Review Article 메타분석 이영호고려대학교의과대학내과학교실류마티스내과 Meta-analysis Young Ho Lee Division of Rheumatology, Department
More informationA Study on the Relationships between Self-Differentiation and Adaptability Factors for Senior Dementia Patients Care Givers Department of Social Welfare, Seoul Welfare Graduate University Full-time Lecturer
More informationPharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ
Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee University College of Medicine & Hospital E mail : ycell2@yahoo.co.kr Abstract
More information