Caffe 실습

Size: px
Start display at page:

Download "Caffe 실습"

Transcription

1 Caffe 실습 서울대학교융합과학기술대학원패턴인식및컴퓨터지능연구실 박성헌, 황지혜, 유재영

2 Contents Caffe 설치 Caffe 를이용한 CNN 학습및테스트 2

3 Deep Learning Deep Neural Net 을이용한학습방법 Neuron Perceptron Multi-layer perceptron Deep neural network 3

4 Why Deep Learning? Performance 영상인식, 음성인식등다양한분야에서최고성능을보여줌 End-to-End learning 데이터와 label 만지정해주면자동으로학습이가능 Speed GPGPU 을이용하기좋은구조 Versatility 같은 framework 를다양한분야에적용가능 4

5 Convolutional Neural Network Convolutional Layer 와 Pooling Layer 가핵심역할 영상을다루기적합한 Neural Network 5

6 CNN Tutorials Stanford CNN Tutorial (Andrew Ng) CNN 과 Neural Net 의기본작동원리를배우고 Matlab 를이용해직접구현해볼수있는 tutorial Stanford CNN course (Fei-Fei Li & Andrej Karpathy) OQi31AlC CNN 및 RNN 의기초부터최신연구내용까지다룸 6

7 Caffe Convolutional Architecture for Fast Feature Embedding

8 Caffe Overview UC Berkeley BVLC (Berkeley Vision and Learning Center) 에서제작 2+ years 1,000+ citations, 150+ contributors Yangqing Jia Evan Shelhamer Travor Darrell Open-source contributors Images from BVLC Caffe tutorial 8

9 Caffe Overview C++, CUDA 로짜여있음 (Matlab, Python wrapper 도존재 ) Open Source Community BSD License ( 수정, 재배포, 상업적사용등가능 ) GPGPU acceleration 적용 Fast, well-tested code Many network models available! 9

10 Caffe - How Fast? Speed with Krizhevsky's 2012 model: 2 ms/image on K40 GPU <1 ms inference with Caffe + cudnn v4 on Titan X 72 million images/day with batched IO 8-core CPU: ~20 ms/image Intel optimization in progress 9k lines of C++ code (20k with tests) Slides from BVLC Caffe tutorial 10

11 Caffe Installation (Windows) Requirements Visual Studio 2013 For GPU acceleration CUDA 7.5 ( cudnn v5 (registration 필요 ) ( CUDA 가설치된경로에파일추가 Ex) C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v Image from

12 Caffe Installation (Windows) Caffe Windows branch from Microsoft 12

13 Caffe Installation (Windows) Setting (CPU build) windows/commonsettings.props.example CommonSettings.props 로이름변경 Release / x64 로 Build target 설정 GPU 를쓰지않는경우 <CpuOnlyBuild> true <UseCuDNN> false C4819: 현재코드페이지 (949) 에서표시할수없는문자가파일에들어있습니다 Warning 이발생하는경우 <TreatWarningAsError> true -> false 13

14 Caffe Installation (Windows) Setting (GPU build) <CpuOnlyBuild> false cudnn 사용할경우 <UseCuDNN> true CUDA version (7.0, 7.5 등 ) <CudaVersion> CUDA compute capability 에서확인 장착된 GPU 에맞게 <CudaArchitecture> 설정 Ex) 3.5 인경우 compute_35,sm_35, 5.2 인경우 compute_52,sm_52 14

15 Caffe Installation (Windows) libcaffe 프로젝트빌드 처음빌드할경우 Nuget 을이용해서필요한 3rd party package 들이다운로드됨 이후컴파일및빌드에약 10 분정도소요 완료후 caffe 프로젝트빌드 15

16 Caffe Installation (Ubuntu) General dependencies sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5- serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev BLAS sudo apt-get install libatlas-base-dev Remaining dependencies, / / sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev 16

17 Caffe Installation (Ubuntu) Remaining dependencies, glog wget tar zxvf glog tar.gz cd glog /configure make && make install gflags wget unzip master.zip cd gflags-master mkdir build && cd build export CXXFLAGS="-fPIC" && cmake.. && make VERBOSE=1 make && make install lmdb git clone cd lmdb/libraries/liblmdb make && make install 17

18 Caffe Installation (Ubuntu) CUDA 설치 (GPU version only) CUDA 를지원하는 nvidia GPU 필요 : nvidia graphic driver 설치 : GPU 에맞는 CUDA version 다운로드 : runfile (local) 다운로드 sudo sh cuda_<version>_linux.run --no-opengl-libs Install nvidia driver [Y/N] : N 환경변수설정 open ~/.bashrc 추가 export PATH=/usr/local/cuda-7.5/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-7.5/lib64:$LD_LIBRARY_PATH 저장후 source.bashrc 18

19 Caffe Installation (Ubuntu) Download Caffe git clone Compilation with Make cp Makefile.config.example Makefile.config # Adjust Makefile.config CPU version: CPU_ONLY := 1 make all make all -j8 을이용해 make 속도를빠르게할수있음. j[parallel thread 의수 ] make test make runtest Ubuntu 이상버전에서 hdf5.h: No such file or directory 에러메시지가발생하면 Make.config 파일의 INCLUDE_DIRS, LIBRARY_DIRS 를다음과같이수정 INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/ LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/ 19

20 Caffe Installation (Ubuntu) Example Datasets cd $CAFFE_ROOT./data/mnist/get_mnist.sh./examples/mnist/create_mnist.sh 실행./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt CPU 버전일경우 lenet_solver.prototxt 의 solver mode 를 CPU 로변경 결과 20

21 Caffe Installation (Mac OSX) 참고 21

22 Dataset Link 실습에필요한데이터셋 MNIST (52MB) Training 및 test 모두다운로드 BVLC alexnet caffemodel (233 MB) 22

23 Caffe 실습 23

24 MNIST Tutorial MNIST dataset [LeCun et al., 1998] 손글씨인식데이터셋 32x32 image, 60,000 training samples and 10,000 test samples 24

25 Data preparation Caffe 에입력으로사용되는데이터형식 LMDB / LEVELDB 를주로사용 ( 빠른속도 ) LMDB 는 multiple process 에서엑세스가능, LEVELDB 는불가능 Image 를바로넣거나 HDF5 data 를입력으로사용할수도있음 25

26 MNIST Tutorial 데이터준비 convert_mnist_data 프로젝트빌드 cmd -> Caffe root directory 로이동 Leveldb for training data Build/x64/Release/convert_mnist_data.exe backend= leveldb examples/mnist/train-images.idx3-ubyte examples/mnist/train-labels.idx1-ubyte examples/mnist/mnist_train_leveldb Ubuntu(linux) 의경우 Build/x64/Release/convert_mnist_data.exe 대신에 build/examples/mnist/convert_mnist_data.bin 으로실행 Leveldb for test data Build/x64/Release/convert_mnist_data.exe backend= leveldb examples/mnist/t10k-images.idx3-ubyte examples/mnist/t10k-labels.idx1-ubyte examples/mnist/mnist_test_leveldb 26

27 MNIST Tutorial examples/mnist/lenet_solver.prototxt solver_mode : CPU 또는 GPU 설정 examples/mnist/lenet_train_test.prototxt LMDB -> LEVELDB 로변경 13 째줄 data_param { source: "examples/mnist/mnist_train_lmdb" batch_size: 64 backend: LMDB } 30 째줄 data_param { source: "examples/mnist/mnist_test_lmdb" batch_size: 100 backend: LMDB } 27 data_param { source: "examples/mnist/mnist_train_leveldb" batch_size: 64 backend: LEVELDB } data_param { source: "examples/mnist/mnist_test_leveldb" batch_size: 100 backend: LEVELDB }

28 MNIST Tutorial LeNet 모델을이용한 MNIST Training Cmd 창 -> Caffe root 폴더로이동 Build/x64/Release/caffe.exe train solver=examples/mnist/lenet_solver.prototxt 입력 Ubuntu(linux) 의경우 Build/x64/Release/caffe.exe 대신에 build/tools/caffe.bin 으로실행 10,000 iteration 완료시 98~99% accuracy 28

29 MNIST Tutorial Log 파일경로 기본경로 : C:\Users\User_name\AppData \Local\Temp Ubuntu(linux) 기본경로 : /tmp log_dir flag 로경로설정가능 caffe.cpp 의 main() 함수에서 FLAGS_log_dir= log_folder ; 추가 Iteration 1200, loss = Train net output #0: loss = (* 1 = loss) Iteration 1200, lr = 0.01 Iteration 1300, loss = Train net output #0: loss = (* 1 = loss) Iteration 1300, lr = 0.01 Iteration 1400, loss = Train net output #0: loss = (* 1 = loss) Iteration 1400, lr = 0.01 Iteration 1500, Testing net (#0) Test net output #0: accuracy = Test net output #1: loss = (* 1 = loss) Iteration 1500, loss = Train net output #0: loss = (* 1 = loss) Iteration 1500, lr =

30 Understanding Caffe Network Training/Testing 을위해보통두가지파일을정의함 Solver 정보를담은파일 Gradient update 를어떻게시킬것인가에대한정보를담음 learning rate, weight decay 등의 parameter 가정의됨 Test interval, snapshot 횟수등정의 Network 구조정보를담은파일 실제 CNN 구조정의 확장자가.prototxt 파일로만들어야함 Google Protocol Buffers 기반 ( 30

31 Understanding Caffe Network Net Caffe 에서 CNN ( 혹은 RNN 또는일반 NN) 네트워크는 Net 이라는구조로정의됨 Net 은여러개의 Layer 들이연결된구조 Directed Acyclic Graph (DAG) 구조만만족하면어떤형태이든 training 이가능함 LogReg LeNet ImageNet, Krizhevsky Images from BVLC Caffe tutorial

32 Understanding Caffe Network Layer CNN 의한 층 ' 을뜻함 Convolution 을하는 Layer, Pooling 을하는 Layer, activation function 을통과하는 layer, input data layer, Loss 를계산하는 layer 등이있음 소스코드에는각 layer 별로 Forward propagation, Backward propagation 방법이 CPU/GPU 버전별로구현되어있음 Blob Layer 를통과하는데이터덩어리 Image 의경우주로 NxCxHxW 의 4 차원데이터가사용됨 (N : Batch size, C : Channel Size, W : width, H : height) 32 Forward Blob Backward Layer Blob Images from BVLC Caffe tutorial

33 Understanding Caffe Network Protobuf 파일들여다보기 예제 : examples/mnist/lenet_train_test.prototxt 33

34 Understanding Caffe Network 입력데이터와관련된 Layer LevelDB data Image data HDF5 data Input Layer 는 top 이두개 LevelDB 경로 Batch size 1/256 Mean file 빼기 Train과 test시에쓸데이터를따로지정가능 34 layer { name: "mnist" type: "Data" top: "data" top: "label" data_param { source: "examples/mnist/mnist_train_leveldb" backend: LEVELDB batch_size: 64 } transform_param { scale: mean_file: mean_mnist.binaryproto } include: { phase: TRAIN } }

35 Understanding Caffe Network 입력데이터와관련된 Layer LevelDB data Image data 이미지를변환하지않고바로넣을때사용 LevelDB 또는 LMDB 를이용할때보다속도면에서약간느림 HDF5 data Shuffle 여부 Image list 정보가있는파일 leveldb 만들때입력으로쓴파일과같은형태 layer { name: "mnist" type: "ImageData" top: "data" top: "label" image_data_param { shuffle: true source: "examples/mnist/datalist.txt" batch_size: 64 } transform_param { scale: mean_file: mean_mnist.binaryproto } include: { phase: TRAIN } }

36 Understanding Caffe Network 입력데이터와관련된 Layer LevelDB data Image data HDF5 data 영상이외에실수형태의데이터를넣을수있음 layer { name: "mnist" type: "HDF5Data" top: "data" top: "label" hdf5_data_param { source: "examples/mnist/hdf5list.txt" batch_size: 64 } transform_param { scale: mean_file: mean_mnist.binaryproto } include: { phase: TRAIN } }

37 Understanding Caffe Network Convolution Layer Input size (i1xi2xi3) Output size (o1xo2xo3) Filter size (f1xf2) 일경우학습할 parameter 수 : o3xi3xf1xf2 o1 = (i1 + 2 x pad_size f1) / stride + 1 Layer 별로 Learning rate 를다르게조정가능. Solver 에서정한 learning rate 에곱해진값이해당 layer 의 learning rate 가됨첫번째는 weight 에대한 learning rate, 두번째는 bias 에대한 learning rate Convolution 후 output 으로나오는 feature map 개수 Convolution에쓰이는 filter의크기 Stride 설정 Padding 설정 Weight에대한 initialization. Gaussian도많이쓰임 Bias 에대한 initialization. Constant 의경우 value 를함께지정가능. Default 0 layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param {lr_mult: 1} param {lr_mult: 2} convolution_param { num_output: 20 kernel_size: 5 stride: 1 pad: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } }

38 Understanding Caffe Network Pooling Layer Size 계산은 convolution 경우와같음 Max, mean, stochastic 가능 layer { name: "pool1" type: "Pooling" bottom: "conv1" top: "pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } }

39 Understanding Caffe Network Activation Layer RELU, sigmoid, tanh 등가능 RELU 는 negative_slope 설정가능 layer { name: "relu1" type: "ReLU" bottom: "ip1" top: "ip1" }

40 Understanding Caffe Network Fully connected layer 일반적인 neural network 에서처럼아래 blob 과위 blob 의모든뉴런간에연결이되어있는 layer Fully connected layer output 뉴런개수 Initialization from Gaussian distribution layer { name: "ip1" type: "InnerProduct" bottom: "pool2" top: "ip1" param {lr_mult: 1} param {lr_mult: 2} inner_product_param { num_output: 500 weight_filler { type: "gaussian" std: } bias_filler { type: "constant" } } }

41 Understanding Caffe Network Loss layer 가장마지막 layer 로 label 과비교해서 loss 를계산함 Cross entropy, Euclidean distance 등 다양한 loss 가정의되어있음 Classification 문제에는 Softmax 를주로사용 (Cross Entropy Loss) Loss Layer 는 bottom 이두개 layer { name: "loss" type: "SoftmaxWithLoss" bottom: "ip2" bottom: "label" top: "loss" } 41

42 Understanding Caffe Network Accuracy layer Test 시에 Accuracy 를표시하기위해주로사용 layer { name: "accuracy" type: "Accuracy" bottom: "ip2" bottom: "label" top: "accuracy" include: { phase: TEST } } 42

43 Understanding Caffe Network Dropout Layer [Hinton et al. NIPS 2012] 논문에소개된내용으로 over-fitting 을방지하고 generalization 효과가좋음 주로 Fully connected layer 에사용 보통 0.5 사용 layer { name: "drop7" type: "Dropout" bottom: "fc7-conv" top: "fc7-conv" dropout_param { dropout_ratio: 0.5 } } 43

44 Understanding Caffe Network 많은새로운 Layer 와 Option 이추가되고있음 에서많이사용되는 Layer 와그사용법을볼수있음 현재 50 개이상의 Layer 종류가존재함 최근추가된 Layer 는 caffe.proto 파일및 github 의 discussion 등을통해알수있음 44

45 Understanding Caffe Solver Solver 정의하기 Net 구조를정의한 prototxt 파일 Test시에 iteration 횟수. Test_iter x batch_size만큼 test를함몇번 iteration돌때마다 test를할것인가? Solver type Learning rate momentum Weight decay Learning rate 변화를어떻게시킬것인가 Loss 를보여주는 iteration 횟수총 training iteration 수 Iteration 횟수마다기록을남김..caffemodel 과.solverstate 파일이생성됨 45 net: "examples/mnist/lenet_train_test.prototxt" test_iter: 100 test_interval: 500 type: "SGD" base_lr: 0.01 momentum: 0.9 weight_decay: lr_policy: "inv" gamma: power: 0.75 display: 100 Snapshot 파일앞에붙일이름 max_iter: snapshot: 5000 snapshot_prefix: "examples/mnist/lenet" solver_mode: GPU CPU or GPU

46 Understanding Caffe Solver Stochastic gradient descent solver (type: "SGD" ) 몇가지 solver 가더있으나 SGD 가가장많이사용됨 V t+1 = μv t α L(W t ) 최종 weight update momentum Learning rate 계산된 gradient W t+1 = W t + V t+1 46

47 Understanding Caffe Solver Learning Rate 결정하기 주로 step 이많이사용됨. DIGITS 라는 tool 을이용하면 visualization 가능 inv step multistep 47

48 Understanding Caffe Solver Learning Rate 결정하기 lr_policy: "inv" gamma: 0.1 power: 0.5 base_lr: 0.01 α = base_lr (1 + γ iter)^( power) lr_policy: step" gamma: 0.1 step: base_lr: 0.01 α = base_lr (γ^ iter/step ) lr_policy: multistep" gamma: 0.1 stepvalue: 5000 stepvalue: 8000 base_lr:

49 RMS Prop (type: "RMSProp" ) Gradient가 oscillate할경우더해줌 최종 weight update Understanding Caffe Solver 1 δ 만큼곱함, 그렇지않을경우 δ 만큼 (v t ) i = ቊ (v t 1) i + δ, if L W t i L W t 1 i > 0 (v t 1 ) i 1 δ otherwise (W t+1 ) i = W t i α(v t ) i 49

50 Understanding Caffe Solver Rule of thumb Momentum = 0.9 Weight decay = Base learning rate = 0.01 그외다양한 Solver 의 Optimization algorithm 은 에서확인가능

51 Terminal Interface Training caffe.exe train solver=solver_file.prototxt (Ubuntu: caffe.bin) Testing Backward propagation 없이 forward propagation 을통한결과값만출력 caffe.exe test gpu=0 iterations=100 weights=weight_file.caffemodel model=net_model.prototxt -model 은 solver 가아닌 net 파일을입력으로줘야함 -weights 는미리학습된 weight 파일 (.caffemodel 확장자 ) -iterations 옵션만큼 iteration 수행 caffe.exe help 옵션으로 flag 에대한도움말을볼수있음 51

52 MNIST Tutorial 로그들여다보기 I :33: net.cpp:408] mnist -> data I :33: net.cpp:408] mnist -> label I :33: common.cpp:36] System entropy source not available, using fallback algorithm to generate seed instead. I :33: db_leveldb.cpp:18] Opened leveldb examples/mnist/mnist_train_leveldb I :33: data_layer.cpp:41] output data size: 64,1,28,28 I :33: net.cpp:150] Setting up mnist I :33: net.cpp:157] Top shape: (50176) I :33: net.cpp:157] Top shape: 64 (64) I :33: net.cpp:165] Memory required for data: I :33: layer_factory.hpp:77] Creating layer conv1 I :33: net.cpp:100] Creating Layer conv1 I :33: common.cpp:36] System entropy source not available, using fallback algorithm to generate seed instead. I :33: net.cpp:434] conv1 <- data I :33: net.cpp:408] conv1 -> conv1 I :33: net.cpp:150] Setting up conv1 I :33: net.cpp:157] Top shape: (737280) I :33: net.cpp:165] Memory required for data: I :33: layer_factory.hpp:77] Creating layer pool1 I :33: net.cpp:100] Creating Layer pool1 I :33: net.cpp:434] pool1 <- conv1 I :33: net.cpp:408] pool1 -> pool1 I :33: net.cpp:150] Setting up pool1 I :33: net.cpp:157] Top shape: (184320) I :33: net.cpp:165] Memory required for data:

53 Memory Management CUDA out of memory error (code 2) CNN 구조를바꾸거나 Batch size 를줄여줘야한다. C:\Program Files\NVIDIA Corporation\NVSMI\nvidia-smi.exe 에서현재메모리사용현황확인가능 53

54 DIY! Creating Your Own Network Convolution layer 의 filter 개수및 kernel size 조절 Convolution layer 및 Pooling layer 쌓기 다양한 Solver 를이용한 Optimization 54

55 Data Preparation Dataset 준비하기 (Convert_imageset 프로젝트빌드 ) 영상데이터와 ground truth label 을준비 Label 은다음과같은형태로텍스트파일로만듦 Subfolder1/file1.JPEG 7 Subfolder2/file2.JPEG 3 Subfolder3/file3.JPEG 4 Label 은 0 부터시작 Shuffle, resize 등의옵션을활용 사용법 : 실행파일.exe [FLAGS] ROOTFOLDER/ LISTFILE DB_NAME 예시 : convert_imageset.exe backend= leveldb shuffle=true imagedata/ imagelist.txt imagedata_leveldb Ubuntu(linux) 의경우 convert_imageset.bin, 옵션은동일 55

56 Data Preparation Mean image 구하기 (Compute_image_mean 프로젝트빌드 ) 대부분의경우 training, testing 시에 image data 에서 mean image 를뺀다 LevelDB 또는 LMDB 를이용해서만듦 사용법 : 실행파일.exe [FLAGS] INPUT_DB [OUTPUT_FILE] 예시 : compute_image_mean.exe backend= leveldb imagedata_leveldb mean_imagedata.binaryproto Ubuntu(linux) 의경우 compute_image_mean.bin, 옵션은동일 실행결과 binaryproto 파일이생성됨. 56

57 Terminal Interface Training 을중간에멈춘뒤이어서하고싶을때 Snapshot 으로남겨둔 solverstate 파일을이용 (-snapshot 옵션 ) caffe.exe train solver=solver.prototxt -snapshot=lenet_iter_5000.solverstate Fine tuning / Transfer learning Pre-trained model 을이용하는방법 Snapshot 으로남겨둔 caffemodel 파일을이용 (-weights 옵션 ) caffe.exe train solver=solver.prototxt weights=lenet_iter_5000.caffemodel Layer 이름을비교해서이름이같은 Layer 는 caffemodel 파일에서미리 training 된 weight 를가져오고새로운 layer 는새로 initialization 을해서학습함. 57

58 ImageNet Tutorial ILSVRC2012(ImageNet) data set 약 128 만장의라벨링된 training set, 5 만장의 validation set, 10 만장의 test set 으로구성 1000 개의 class 로구성. 58

59 ImageNet Tutorial AlexNet 2012 년 ImageNet 에서우승한 CNN 모델 40.7% Top 1 Error, 18.2% Top 5 Error on validation set 5 개의 convolution network, 3 개의 pooling layer, 2 개의 fully connected layer 로구성 A Krizhevsky et al., NIPS

60 ImageNet Tutorial Image classification using AlexNet deploy.prototxt : network model 파일. 임의의입력을다룰때사용. layer { name: "data" type: "Input" top: "data" input_param { shape: { dim: 10 dim: 3 dim: 227 dim: 227 } } } alexnet.caffemodel : 미리학습된 Alexnet 학습모델. mean.binaryproto: imagenet dataset mean file. label.txt: class label 정보를담고있는 txt 파일 test.jpg: test 할이미지파일. 60

61 ImageNet Tutorial Image classification using AlexNet classification 프로젝트빌드 Build/x64/Release/classification.exe models/bvlc_alexnet/deploy.prototxt models/bvlc_alexnet/bvlc_alexnet.caffemodel data/ilsvrc12/imagenet_mean.binaryproto data/ilsvrc12/synset_words.txt data/ilsvrc12/test_image.jpg Ubuntu(linux): Build/x64/Release/classification.exe 를 build/examples/cpp_classification/classification.bin 으로대체 최종 top5 예측결과 확률값 분류된 class 결과 61

62 ImageNet Tutorial Convolution layer & blob visualization Visualization of the first layer (conv1) in AlexNet extract_features 프로젝트빌드 A Krizhevsky et al., NIPS

63 Tips Caffe model zoo 여러논문에사용된네트워크구조가올라와있음 Network-in-Network (NIN) 2013 년 ImageNet 2 위 vggnet 2014 년 ImageNet 1 위 등의모델이 prototxt 파일형태로있어참고하기좋음 63

64 Tips Slides from BVLC Caffe tutorial 64

65 Tips Loss 가일정이상줄어들지않는다 CNN 구조를더복잡하게, filter 를더많이써본다. Training Loss 가줄어드는데 Test 성능은좋아지지않는다. => Overfitting 의가능성이높으므로 CNN 구조를간단하게, filter 개수를줄여본다. 초반에 loss 가줄어드는데오래걸린다 => Initialization 에문제가있다. 65

66 Tips 이외에도많은 Caffe 의기능및옵션들이있음 하지만빠른업데이트로인해최근에추가된기능들의 Documentation 이친절하지는않음 최신의가능한 Option 들을확인하려면 src/caffe/proto/caffe.proto 파일을참고 Github 의 Pull request 와 issue 및 google groups 의검색을생활화 66

67 References Caffe github Caffe intro & tutorial Caffe-users Google Groups Caffe BVLC tutorial slide gc2fcdcce7_216_0 LeCun et al., 1998 LeCun, Yann, et al. "Gradient-based learning applied to document recognition."proceedings of the IEEE (1998): Krizhevsky et al., 2012 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems Dropout Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of Machine Learning Research 15.1 (2014):

68 Thank You Q&A M I P A L aboratory m a c h i n e i n t e l l i g e n c e & p a t t e r n a n a l y s i s 68

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Deep Learning 작업환경조성 & 사용법 ISL 안재원 Ubuntu 설치 작업환경조성 접속방법 사용예시 2 - ISO file Download www.ubuntu.com Ubuntu 설치 3 - Make Booting USB Ubuntu 설치 http://www.pendrivelinux.com/universal-usb-installer-easy-as-1-2-3/

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 주식회사미루웨어 deep learning 개발머쉰 미루웨어는 NVIDIA GPU Computing / GPU 가상화분야솔루션제공공식파트너사입니다. http://www.miruware.com / miruware@miruware.com T : 02-562-8993 / F : 02-562-8994 Deep Learning 개발환경 Unutu 장점 ( 개발머쉰 )

More information

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5> 주간기술동향 2016. 5.18. 컴퓨터 비전과 인공지능 장혁 한국전자통신연구원 선임연구원 최근 많은 관심을 받고 있는 인공지능(Artificial Intelligence: AI)의 성과는 뇌의 작동 방식과 유사한 딥 러닝의 등장에 기인한 바가 크다. 이미 미국과 유럽 등 AI 선도국에서는 인공지능 연구에서 인간 뇌 이해의 중요성을 인식하고 관련 대형 프로젝트들을

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

28 THE ASIAN JOURNAL OF TEX [2] ko.tex [5]

28 THE ASIAN JOURNAL OF TEX [2] ko.tex [5] The Asian Journal of TEX, Volume 3, No. 1, June 2009 Article revision 2009/5/7 KTS THE KOREAN TEX SOCIETY SINCE 2007 2008 ko.tex Installing TEX Live 2008 and ko.tex under Ubuntu Linux Kihwang Lee * kihwang.lee@ktug.or.kr

More information

1. 안드로이드개발환경설정 안드로이드개발을위해선툴체인을비롯한다양한소프트웨어패키지가필요합니다 툴체인 (Cross-Compiler) 설치 안드로이드 2.2 프로요부터는소스에기본툴체인이 prebuilt 라는이름으로포함되어있지만, 리눅스 나부트로더 (U-boot)

1. 안드로이드개발환경설정 안드로이드개발을위해선툴체인을비롯한다양한소프트웨어패키지가필요합니다 툴체인 (Cross-Compiler) 설치 안드로이드 2.2 프로요부터는소스에기본툴체인이 prebuilt 라는이름으로포함되어있지만, 리눅스 나부트로더 (U-boot) 1. 안드로이드개발환경설정 안드로이드개발을위해선툴체인을비롯한다양한소프트웨어패키지가필요합니다. 1.1. 툴체인 (Cross-Compiler) 설치 안드로이드 2.2 프로요부터는소스에기본툴체인이 prebuilt 라는이름으로포함되어있지만, 리눅스 나부트로더 (U-boot) 만별도로필요한경우도있어툴체인설치및설정에대해알아봅니다. 1.1.1. 툴체인설치 다음링크에서다운받을수있습니다.

More information

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018)   ISSN (Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.246 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) CNN a), a), a) CNN-Based Hand Gesture Recognition

More information

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE 2: (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, 2019 7 (JBE Vol. 24, No. 4, July 2019) https://doi.org/10.5909/jbe.2019.24.4.623

More information

R을 이용한 텍스트 감정분석

R을 이용한 텍스트 감정분석 R Data Analyst / ( ) / kim@mindscale.kr (kim@mindscale.kr) / ( ) ( ) Analytic Director R ( ) / / 3/45 4/45 R? 1. : / 2. : ggplot2 / Web 3. : slidify 4. : 5. Matlab / Python -> R Interactive Plots. 5/45

More information

<31332DB9E9C6AEB7A2C7D8C5B72D3131C0E528BACEB7CF292E687770>

<31332DB9E9C6AEB7A2C7D8C5B72D3131C0E528BACEB7CF292E687770> 보자. 이제 v4.6.2-1 로업데이트됐다. 그림 F-15의하단처럼 msfupdate를입력해 root @bt:~# msfudpate 그림 F-16 과같이정상적으로업데이트가진행되는것을볼수있다. 이후에는 msfupdate를입력하면최신업데이트모듈과공격코드를쉽게유지할수있다. 그림 F-16 msfupdate의진행확인 G. SET 업데이트문제해결 백트랙을기본설치로운영을할때에는

More information

Delving Deeper into Convolutional Networks for Learning Video Representations - Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arXiv:

Delving Deeper into Convolutional Networks for Learning Video Representations  -   Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville  arXiv: Delving Deeper into Convolutional Networks for Learning Video Representations Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arxiv: 1511.06432 Il Gu Yi DeepLAB in Modu Labs. June 13, 2016 Il Gu Yi

More information

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019)   ISSN (Special Paper) 24 2, 2019 3 (JBE Vol. 24, No. 2, March 2019) https://doi.org/10.5909/jbe.2019.24.2.234 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) SIFT a), a), a), a) SIFT Image Feature Extraction

More information

Solaris Express Developer Edition

Solaris Express Developer Edition Solaris Express Developer Edition : 2008 1 Solaris TM Express Developer Edition Solaris OS. Sun / Solaris, Java, Web 2.0,,. Developer Solaris Express Developer Edition System Requirements. 768MB. SPARC

More information

BSC Discussion 1

BSC Discussion 1 Copyright 2006 by Human Consulting Group INC. All Rights Reserved. No Part of This Publication May Be Reproduced, Stored in a Retrieval System, or Transmitted in Any Form or by Any Means Electronic, Mechanical,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 1 Tizen 실습예제 : Remote Key Framework 시스템소프트웨어특론 (2014 년 2 학기 ) Sungkyunkwan University Contents 2 Motivation and Concept Requirements Design Implementation Virtual Input Device Driver 제작 Tizen Service 개발절차

More information

Ch 1 머신러닝 개요.pptx

Ch 1 머신러닝 개요.pptx Chapter 1. < > :,, 2017. Slides Prepared by,, Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 1.1 3 1.2... 7 1.3 10 1.4 16 1.5 35 2 1 1.1 n,, n n Artificial

More information

MAX+plus II Getting Started - 무작정따라하기

MAX+plus II Getting Started - 무작정따라하기 무작정 따라하기 2001 10 4 / Version 20-2 0 MAX+plus II Digital, Schematic Capture MAX+plus II, IC, CPLD FPGA (Logic) ALTERA PLD FLEX10K Series EPF10K10QC208-4 MAX+plus II Project, Schematic, Design Compilation,

More information

LXR 설치 및 사용법.doc

LXR 설치 및 사용법.doc Installation of LXR (Linux Cross-Reference) for Source Code Reference Code Reference LXR : 2002512( ), : 1/1 1 3 2 LXR 3 21 LXR 3 22 LXR 221 LXR 3 222 LXR 3 3 23 LXR lxrconf 4 24 241 httpdconf 6 242 htaccess

More information

인켈(국문)pdf.pdf

인켈(국문)pdf.pdf M F - 2 5 0 Portable Digital Music Player FM PRESET STEREOMONO FM FM FM FM EQ PC Install Disc MP3/FM Program U S B P C Firmware Upgrade General Repeat Mode FM Band Sleep Time Power Off Time Resume Load

More information

PCServerMgmt7

PCServerMgmt7 Web Windows NT/2000 Server DP&NM Lab 1 Contents 2 Windows NT Service Provider Management Application Web UI 3 . PC,, Client/Server Network 4 (1),,, PC Mainframe PC Backbone Server TCP/IP DCS PLC Network

More information

_KrlGF발표자료_AI

_KrlGF발표자료_AI AI 의과거와현재그리고내일 AI is the New Electricity 2017.09.15 AI! 2 Near Future of Super Intelligence? *source l http://www.motherjones.com/media/2013/05/robots-artificial-intelligence-jobs-automation 3 4 I think

More information

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf

More information

휠세미나3 ver0.4

휠세미나3 ver0.4 andromeda@sparcs:/$ ls -al dev/sda* brw-rw---- 1 root disk 8, 0 2014-06-09 18:43 dev/sda brw-rw---- 1 root disk 8, 1 2014-06-09 18:43 dev/sda1 brw-rw---- 1 root disk 8, 2 2014-06-09 18:43 dev/sda2 andromeda@sparcs:/$

More information

Remote UI Guide

Remote UI Guide Remote UI KOR Remote UI Remote UI PDF Adobe Reader/Adobe Acrobat Reader. Adobe Reader/Adobe Acrobat Reader Adobe Systems Incorporated.. Canon. Remote UI GIF Adobe Systems Incorporated Photoshop. ..........................................................

More information

Contributors: Myung Su Seok and SeokJae Yoo Last Update: 09/25/ Introduction 2015년 8월현재전자기학분야에서가장많이쓰이고있는 simulation software는다음과같은알고리즘을사용하고있다.

Contributors: Myung Su Seok and SeokJae Yoo Last Update: 09/25/ Introduction 2015년 8월현재전자기학분야에서가장많이쓰이고있는 simulation software는다음과같은알고리즘을사용하고있다. Contributors: Myung Su Seok and SeokJae Yoo Last Update: 09/25/2015 1. Introduction 2015년 8월현재전자기학분야에서가장많이쓰이고있는 simulation software는다음과같은알고리즘을사용하고있다. 2. Installation 2.1. For Debian GNU/Linux 국내에서사용되는컴퓨터들의

More information

°í¼®ÁÖ Ãâ·Â

°í¼®ÁÖ Ãâ·Â Performance Optimization of SCTP in Wireless Internet Environments The existing works on Stream Control Transmission Protocol (SCTP) was focused on the fixed network environment. However, the number of

More information

Mango220 Android How to compile and Transfer image to Target

Mango220 Android How to compile and Transfer image to Target Mango220 Android How to compile and Transfer image to Target http://www.mangoboard.com/ http://cafe.naver.com/embeddedcrazyboys Crazy Embedded Laboratory www.mangoboard.com cafe.naver.com/embeddedcrazyboys

More information

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018)   ISSN (Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.186 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Robust Online Object Tracking via Convolutional

More information

딥러닝 첫걸음

딥러닝 첫걸음 딥러닝첫걸음 4. 신경망과분류 (MultiClass) 다범주분류신경망 Categorization( 분류 ): 예측대상 = 범주 이진분류 : 예측대상범주가 2 가지인경우 출력층 node 1 개다층신경망분석 (3 장의내용 ) 다범주분류 : 예측대상범주가 3 가지이상인경우 출력층 node 2 개이상다층신경망분석 비용함수 : Softmax 함수사용 다범주분류신경망

More information

1217 WebTrafMon II

1217 WebTrafMon II (1/28) (2/28) (10 Mbps ) Video, Audio. (3/28) 10 ~ 15 ( : telnet, ftp ),, (4/28) UDP/TCP (5/28) centralized environment packet header information analysis network traffic data, capture presentation network

More information

VOL.76.2008/2 Technical SmartPlant Materials - Document Management SmartPlant Materials에서 기본적인 Document를 관리하고자 할 때 필요한 세팅, 파일 업로드 방법 그리고 Path Type인 Ph

VOL.76.2008/2 Technical SmartPlant Materials - Document Management SmartPlant Materials에서 기본적인 Document를 관리하고자 할 때 필요한 세팅, 파일 업로드 방법 그리고 Path Type인 Ph 인터그래프코리아(주)뉴스레터 통권 제76회 비매품 News Letters Information Systems for the plant Lifecycle Proccess Power & Marine Intergraph 2008 Contents Intergraph 2008 SmartPlant Materials Customer Status 인터그래프(주) 파트너사

More information

Interstage5 SOAP서비스 설정 가이드

Interstage5 SOAP서비스 설정 가이드 Interstage 5 Application Server ( Solaris ) SOAP Service Internet Sample Test SOAP Server Application SOAP Client Application CORBA/SOAP Server Gateway CORBA/SOAP Gateway Client INTERSTAGE SOAP Service

More information

CD-RW_Advanced.PDF

CD-RW_Advanced.PDF HP CD-Writer Program User Guide - - Ver. 2.0 HP CD-RW Adaptec Easy CD Creator Copier, Direct CD. HP CD-RW,. Easy CD Creator 3.5C, Direct CD 3.0., HP. HP CD-RW TEAM ( 02-3270-0803 ) < > 1. CD...3 CD...5

More information

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for 2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon

More information

지난시간에... 우리는 kernel compile을위하여 cross compile 환경을구축했음. UBUNTU 12.04에서 arm-2009q3를사용하여 간단한 c source를빌드함. 한번은 intel CPU를위한 gcc로, 한번은 ARM CPU를위한 gcc로. AR

지난시간에... 우리는 kernel compile을위하여 cross compile 환경을구축했음. UBUNTU 12.04에서 arm-2009q3를사용하여 간단한 c source를빌드함. 한번은 intel CPU를위한 gcc로, 한번은 ARM CPU를위한 gcc로. AR Configure Kernel Build Environment And kernel & root file system Build 2018-09-27 VLSI Design Lab 1 지난시간에... 우리는 kernel compile을위하여 cross compile 환경을구축했음. UBUNTU 12.04에서 arm-2009q3를사용하여 간단한 c source를빌드함.

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 (Host) set up : Linux Backend RS-232, Ethernet, parallel(jtag) Host terminal Target terminal : monitor (Minicom) JTAG Cross compiler Boot loader Pentium Redhat 9.0 Serial port Serial cross cable Ethernet

More information

github_introduction.key

github_introduction.key Github/Git Starter Guide for Introductory Level Curtis Kim @ KAKAO Why Github/Git? - :, - - Q1 :? - Q2 :? - Q3 : ( )? - Q4 :? - Github/Git. Old Paradigm : - - a.java.. Git. - - - - - - - - - (commit &

More information

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구 Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Jul.; 29(7), 550 559. http://dx.doi.org/10.5515/kjkiees.2018.29.7.550 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Human

More information

TEL:02)861-1175, FAX:02)861-1176 , REAL-TIME,, ( ) CUSTOMER. CUSTOMER REAL TIME CUSTOMER D/B RF HANDY TEMINAL RF, RF (AP-3020) : LAN-S (N-1000) : LAN (TCP/IP) RF (PPT-2740) : RF (,RF ) : (CL-201)

More information

untitled

untitled Push... 2 Push... 4 Push... 5 Push... 13 Push... 15 1 FORCS Co., LTD A Leader of Enterprise e-business Solution Push (Daemon ), Push Push Observer. Push., Observer. Session. Thread Thread. Observer ID.

More information

Microsoft Word - Final_ _최정빈.docx

Microsoft Word - Final_ _최정빈.docx CSED499I-01 Research Project Final Report Embedded MDNet Mobile Embedded Multi-Domain Convolutional Neural Networks for Visual Tracking 20080650 CSE Jeongbin Choe Advisor: Prof. Bohyung Han, CV Lab 1.

More information

목차 제 1 장 inexio Touch Driver소개... 3 1.1 소개 및 주요 기능... 3 1.2 제품사양... 4 제 2 장 설치 및 실행... 5 2.1 설치 시 주의사항... 5 2.2 설치 권고 사양... 5 2.3 프로그램 설치... 6 2.4 하드웨

목차 제 1 장 inexio Touch Driver소개... 3 1.1 소개 및 주요 기능... 3 1.2 제품사양... 4 제 2 장 설치 및 실행... 5 2.1 설치 시 주의사항... 5 2.2 설치 권고 사양... 5 2.3 프로그램 설치... 6 2.4 하드웨 최종 수정일: 2010.01.15 inexio 적외선 터치스크린 사용 설명서 [Notes] 본 매뉴얼의 정보는 예고 없이 변경될 수 있으며 사용된 이미지가 실제와 다를 수 있습니다. 1 목차 제 1 장 inexio Touch Driver소개... 3 1.1 소개 및 주요 기능... 3 1.2 제품사양... 4 제 2 장 설치 및 실행... 5 2.1 설치 시

More information

11111111111111111111111111111111111111111111111111111111111111111111111111111

11111111111111111111111111111111111111111111111111111111111111111111111111111 서울시 금천구 가산동 448 대륭테크노타운 3차 301호 전화 : (02)838-0760 팩스 : (02)838-0782 메일 : support@gyrosoft.co.kr www.gyrosoft.co.kr www.gyro3d.com 매뉴얼 버전 : 1.00 (발행 2008.6.1) 이 설명서의 어느 부분도 자이로소프트(주)의 승인 없이 일부 또는 전부를 복제하여

More information

Orcad Capture 9.x

Orcad Capture 9.x OrCAD Capture Workbook (Ver 10.xx) 0 Capture 1 2 3 Capture for window 4.opj ( OrCAD Project file) Design file Programe link file..dsn (OrCAD Design file) Design file..olb (OrCAD Library file) file..upd

More information

C 프로그래밍 언어 입문 C 프로그래밍 언어 입문 김명호저 숭실대학교 출판국 머리말..... C, C++, Java, Fortran, Python, Ruby,.. C. C 1972. 40 C.. C. 1999 C99. C99. C. C. C., kmh ssu.ac.kr.. ,. 2013 12 Contents 1장 프로그래밍 시작 1.1 C 10 1.2 12

More information

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45 3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : 20049 0/45 Define ~ Analyze Define VOB KBI R 250 O 2 2.2% CBR Gas Dome 1290 CTQ KCI VOC Measure Process Data USL Target LSL Mean Sample N StDev (Within) StDev

More information

Ⅱ. Embedded GPU 모바일 프로세서의 발전방향은 저전력 고성능 컴퓨팅이다. 이 러한 목표를 달성하기 위해서 모바일 프로세서 기술은 멀티코 어 형태로 발전해 가고 있다. 예를 들어 NVIDIA의 최신 응용프 로세서인 Tegra3의 경우 쿼드코어 ARM Corte

Ⅱ. Embedded GPU 모바일 프로세서의 발전방향은 저전력 고성능 컴퓨팅이다. 이 러한 목표를 달성하기 위해서 모바일 프로세서 기술은 멀티코 어 형태로 발전해 가고 있다. 예를 들어 NVIDIA의 최신 응용프 로세서인 Tegra3의 경우 쿼드코어 ARM Corte 스마트폰을 위한 A/V 신호처리기술 편집위원 : 김홍국 (광주과학기술원) 스마트폰에서의 영상처리를 위한 GPU 활용 박인규, 최호열 인하대학교 요 약 본 기고에서는 최근 스마트폰에서 요구되는 다양한 멀티미 디어 어플리케이션을 embedded GPU(Graphics Processing Unit)를 이용하여 고속 병렬처리하기 위한 GPGPU (General- Purpose

More information

4 : CNN (Sangwon Suh et al.: Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset) (Regular Paper) 23 6, (J

4 : CNN (Sangwon Suh et al.: Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset) (Regular Paper) 23 6, (J (Regular Paper) 23 6, 2018 11 (JBE Vol. 23, No. 6, November 2018) https://doi.org/10.5909/jbe.2018.23.6.855 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) CNN a), a), a), a), a) Dual CNN Structured Sound

More information

APOGEE Insight_KR_Base_3P11

APOGEE Insight_KR_Base_3P11 Technical Specification Sheet Document No. 149-332P25 September, 2010 Insight 3.11 Base Workstation 그림 1. Insight Base 메인메뉴 Insight Base Insight Insight Base, Insight Base Insight Base Insight Windows

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 AWS PyTorch Install & Jupyter Notebook 2017.07.15 최건호 INDEX 01 02 03 04 AWS Server Cuda & CuDNN Anaconda PyTorch 인스턴스만들기 https://aws.amazon.com/ko/ https://aws.amazon.com/ko/ 로그인 EC2 인스턴스클릭 Launch Instance

More information

Manufacturing6

Manufacturing6 σ6 Six Sigma, it makes Better & Competitive - - 200138 : KOREA SiGMA MANAGEMENT C G Page 2 Function Method Measurement ( / Input Input : Man / Machine Man Machine Machine Man / Measurement Man Measurement

More information

Smart Power Scope Release Informations.pages

Smart Power Scope Release Informations.pages v2.3.7 (2017.09.07) 1. Galaxy S8 2. SS100, SS200 v2.7.6 (2017.09.07) 1. SS100, SS200 v1.0.7 (2017.09.07) [SHM-SS200 Firmware] 1. UART Command v1.3.9 (2017.09.07) [SHM-SS100 Firmware] 1. UART Command SH모바일

More information

ISP and CodeVisionAVR C Compiler.hwp

ISP and CodeVisionAVR C Compiler.hwp USBISP V3.0 & P-AVRISP V1.0 with CodeVisionAVR C Compiler http://www.avrmall.com/ November 12, 2007 Copyright (c) 2003-2008 All Rights Reserved. USBISP V3.0 & P-AVRISP V1.0 with CodeVisionAVR C Compiler

More information

Special Theme _ 모바일웹과 스마트폰 본 고에서는 모바일웹에서의 단말 API인 W3C DAP (Device API and Policy) 의 표준 개발 현황에 대해서 살펴보고 관 련하여 개발 중인 사례를 통하여 이해를 돕고자 한다. 2. 웹 애플리케이션과 네이

Special Theme _ 모바일웹과 스마트폰 본 고에서는 모바일웹에서의 단말 API인 W3C DAP (Device API and Policy) 의 표준 개발 현황에 대해서 살펴보고 관 련하여 개발 중인 사례를 통하여 이해를 돕고자 한다. 2. 웹 애플리케이션과 네이 모바일웹 플랫폼과 Device API 표준 이강찬 TTA 유비쿼터스 웹 응용 실무반(WG6052)의장, ETRI 선임연구원 1. 머리말 현재 소개되어 이용되는 모바일 플랫폼은 아이폰, 윈 도 모바일, 안드로이드, 심비안, 모조, 리모, 팜 WebOS, 바다 등이 있으며, 플랫폼별로 버전을 고려하면 그 수 를 열거하기 힘들 정도로 다양하게 이용되고 있다. 이

More information

Analytics > Log & Crash Search > Unity ios SDK [Deprecated] Log & Crash Unity ios SDK. TOAST SDK. Log & Crash Unity SDK Log & Crash Search. Log & Cras

Analytics > Log & Crash Search > Unity ios SDK [Deprecated] Log & Crash Unity ios SDK. TOAST SDK. Log & Crash Unity SDK Log & Crash Search. Log & Cras Analytics > Log & Crash Search > Unity ios SDK [Deprecated] Log & Crash Unity ios SDK. TOAST SDK. Log & Crash Unity SDK Log & Crash Search. Log & Crash Unity SDK... Log & Crash Search. - Unity3D v4.0 ios

More information

SOSCON-MXNET_1014

SOSCON-MXNET_1014 딥러닝계의블루오션, Apache MXNet 공헌하기 윤석찬, Amazon Web Services 오규삼, 삼성 SDS SAMSUNG OPEN SOURCE CONFERENCE 018 목차 11 1 : 4 2 031 1 1 21 51: 1 L 1 S D A 1 S D N M Deep Learning 101 SAMSUNG OPEN SOURCE CONFERENCE

More information

MPLAB C18 C

MPLAB C18 C MPLAB C18 C MPLAB C18 MPLAB C18 C MPLAB C18 C #define START, c:\mcc18 errorlevel{0 1} char isascii(char ch); list[list_optioin,list_option] OK, Cancel , MPLAB IDE User s Guide MPLAB C18 C

More information

DIY 챗봇 - LangCon

DIY 챗봇 - LangCon without Chatbot Builder & Deep Learning bage79@gmail.com Chatbot Builder (=Dialogue Manager),. We need different chatbot builders for various chatbot services. Chatbot builders can t call some external

More information

DE1-SoC Board

DE1-SoC Board 실습 1 개발환경 DE1-SoC Board Design Tools - Installation Download & Install Quartus Prime Lite Edition http://www.altera.com/ Quartus Prime (includes Nios II EDS) Nios II Embedded Design Suite (EDS) is automatically

More information

ARMBOOT 1

ARMBOOT 1 100% 2003222 : : : () PGPnet 1 (Sniffer) 1, 2,,, (Sniffer), (Sniffer),, (Expert) 3, (Dashboard), (Host Table), (Matrix), (ART, Application Response Time), (History), (Protocol Distribution), 1 (Select

More information

Sun Java System Messaging Server 63 64

Sun Java System Messaging Server 63 64 Sun Java System Messaging Server 6.3 64 Sun Java TM System Communications Suite Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. : 820 2868 2007 7 Copyright 2007 Sun Microsystems,

More information

2 : (EunJu Lee et al.: Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest). (Advanced Driver Assistant System, ADA

2 : (EunJu Lee et al.: Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest). (Advanced Driver Assistant System, ADA (JBE Vol. 20, No. 6, November 2015) (Regular Paper) 20 6, 2015 11 (JBE Vol. 20, No. 6, November 2015) http://dx.doi.org/10.5909/jbe.2015.20.6.938 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a),

More information

Windows Embedded Compact 2013 [그림 1]은 Windows CE 로 알려진 Microsoft의 Windows Embedded Compact OS의 history를 보여주고 있다. [표 1] 은 각 Windows CE 버전들의 주요 특징들을 담고

Windows Embedded Compact 2013 [그림 1]은 Windows CE 로 알려진 Microsoft의 Windows Embedded Compact OS의 history를 보여주고 있다. [표 1] 은 각 Windows CE 버전들의 주요 특징들을 담고 OT S / SOFTWARE 임베디드 시스템에 최적화된 Windows Embedded Compact 2013 MDS테크놀로지 / ES사업부 SE팀 김재형 부장 / jaei@mdstec.com 또 다른 산업혁명이 도래한 시점에 아직도 자신을 떳떳이 드러내지 못하고 있는 Windows Embedded Compact를 오랫동안 지켜보면서, 필자는 여기서 그와 관련된

More information

ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE (Online Upgrade) ORANGE CONFIGURATION ADMIN O

ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE (Online Upgrade) ORANGE CONFIGURATION ADMIN O Orange for ORACLE V4.0 Installation Guide ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE...1 1....2 1.1...2 1.2...2 1.2.1...2 1.2.2 (Online Upgrade)...11 1.3 ORANGE CONFIGURATION ADMIN...12 1.3.1 Orange Configuration

More information

1. efolder 시스템구성 A. DB B. apache - mod-perl - PHP C. SphinxSearch ( 검색서비스 ) D. File Storage 2. efolder 설치순서 A. DB (MySQL) B. efolder Service - efolder

1. efolder 시스템구성 A. DB B. apache - mod-perl - PHP C. SphinxSearch ( 검색서비스 ) D. File Storage 2. efolder 설치순서 A. DB (MySQL) B. efolder Service - efolder Embian efolder 설치가이드 efolder 시스템구성 efolder 설치순서 Installation commands 1. efolder 시스템구성 A. DB B. apache - mod-perl - PHP C. SphinxSearch ( 검색서비스 ) D. File Storage 2. efolder 설치순서 A. DB (MySQL) B. efolder

More information

Microsoft Word ARM_ver2_0a.docx

Microsoft Word ARM_ver2_0a.docx [Smart]0703-ARM 프로그램설치 _ver1_0a 목차 1 윈도우기반으로리눅스컴파일하기 (Cygwin, GNU ARM 설치 )... 2 1.1 ARM datasheet 받기... 2 1.2 Cygwin GCC-4.0 4.1 4.2 toolchain 파일받기... 2 1.3 Cygwin 다운로드... 3 1.4 Cygwin Setup... 5 2 Cygwin

More information

슬라이드 1

슬라이드 1 Pairwise Tool & Pairwise Test NuSRS 200511305 김성규 200511306 김성훈 200614164 김효석 200611124 유성배 200518036 곡진화 2 PICT Pairwise Tool - PICT Microsoft 의 Command-line 기반의 Free Software www.pairwise.org 에서다운로드후설치

More information

RNN & NLP Application

RNN & NLP Application RNN & NLP Application 강원대학교 IT 대학 이창기 차례 RNN NLP application Recurrent Neural Network Recurrent property dynamical system over time Bidirectional RNN Exploit future context as well as past Long Short-Term

More information

Secure Programming Lecture1 : Introduction

Secure Programming Lecture1 : Introduction Malware and Vulnerability Analysis Lecture3-2 Malware Analysis #3-2 Agenda 안드로이드악성코드분석 악성코드분석 안드로이드악성코드정적분석 APK 추출 #1 adb 명령 안드로이드에설치된패키지리스트추출 adb shell pm list packages v0nui-macbook-pro-2:lecture3 v0n$

More information

사회통계포럼

사회통계포럼 wcjang@snu.ac.kr Acknowledgements Dr. Roger Peng Coursera course. https://github.com/rdpeng/courses Creative Commons by Attribution /. 10 : SNS (twitter, facebook), (functional data) : (, ),, /Data Science

More information

Microsoft Word - 3부A windows 환경 IVF + visual studio.doc

Microsoft Word - 3부A windows 환경 IVF + visual studio.doc Visual Studio 2005 + Intel Visual Fortran 9.1 install Intel Visual Fortran 9.1 intel Visual Fortran Compiler 9.1 만설치해서 DOS 모드에서실행할수있지만, Visual Studio 2005 의 IDE 를사용하기위해서는 Visual Studio 2005 를먼저설치후 Integration

More information

정보기술응용학회 발표

정보기술응용학회 발표 , hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management

More information

보고싶었던 Deep Learning과 OpenCV를이용한이미지처리과정에대해공부를해볼수있으며더나아가 Deep Learning기술을이용하여논문을작성하는데많은도움을받을수있으며아직배우는단계에있는저에게는기존의연구를따라해보는것만으로도큰발전이있다고생각했습니다. 그래서이번 DSP스마

보고싶었던 Deep Learning과 OpenCV를이용한이미지처리과정에대해공부를해볼수있으며더나아가 Deep Learning기술을이용하여논문을작성하는데많은도움을받을수있으며아직배우는단계에있는저에게는기존의연구를따라해보는것만으로도큰발전이있다고생각했습니다. 그래서이번 DSP스마 특성화사업참가결과보고서 작성일 2017 12.22 학과전자공학과 참가활동명 EATED 30 프로그램지도교수최욱 연구주제명 Machine Learning 을이용한얼굴학습 학번 201301165 성명조원 I. OBJECTIVES 사람들은새로운사람들을보고인식을하는데걸리는시간은 1초채되지않다고합니다. 뿐만아니라사람들의얼굴을인식하는인식률은무려 97.5% 정도의매우높은정확도를가지고있습니다.

More information

2 : CNN (Jaeyoung Kim et al.: Experimental Comparison of CNN-based Steganalysis Methods with Structural Differences) (Regular Paper) 24 2, (JBE

2 : CNN (Jaeyoung Kim et al.: Experimental Comparison of CNN-based Steganalysis Methods with Structural Differences) (Regular Paper) 24 2, (JBE 2: CNN (Jaeyoung Kim et al.: Experimental Comparison of CNN-based Steganalysis Methods with Structural Differences) (Regular Paper) 24 2, 2019 3 (JBE Vol. 24, No. 2, March 2019) https://doi.org/10.5909/jbe.2019.24.2.315

More information

PowerPoint Presentation

PowerPoint Presentation Hyperledger Fabric 개발환경구축및예제 Intelligent Networking Lab Outline 2/64 개발환경구축 1. Docker installation 2. Golang installation 3. Node.Js installation(lts) 4. Git besh installation 예제 1. Building My First Network

More information

Copyright 2012, Oracle and/or its affiliates. All rights reserved.,.,,,,,,,,,,,,.,...,. U.S. GOVERNMENT END USERS. Oracle programs, including any oper

Copyright 2012, Oracle and/or its affiliates. All rights reserved.,.,,,,,,,,,,,,.,...,. U.S. GOVERNMENT END USERS. Oracle programs, including any oper Windows Netra Blade X3-2B( Sun Netra X6270 M3 Blade) : E37790 01 2012 9 Copyright 2012, Oracle and/or its affiliates. All rights reserved.,.,,,,,,,,,,,,.,...,. U.S. GOVERNMENT END USERS. Oracle programs,

More information

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1 : LabVIEW Control Design, Simulation, & System Identification LabVIEW Control Design Toolkit, Simulation Module, System Identification Toolkit 2 (RLC Spring-Mass-Damper) Control Design toolkit LabVIEW

More information

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX 20062 () wwwexellencom sales@exellencom () 1 FMX 1 11 5M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX D E (one

More information

untitled

untitled 1... 2 System... 3... 3.1... 3.2... 3.3... 4... 4.1... 5... 5.1... 5.2... 5.2.1... 5.3... 5.3.1 Modbus-TCP... 5.3.2 Modbus-RTU... 5.3.3 LS485... 5.4... 5.5... 5.5.1... 5.5.2... 5.6... 5.6.1... 5.6.2...

More information

manual pdfÃÖÁ¾

manual pdfÃÖÁ¾ www.oracom.co.kr 1 2 Plug & Play Windows 98SE Windows, Linux, Mac 3 4 5 6 Quick Guide Windows 2000 / ME / XP USB USB MP3, WMA HOLD Windows 98SE "Windows 98SE device driver 7 8 9 10 EQ FM LCD SCN(SCAN)

More information

KT AI MAKERS KIT 사용설명서 (Node JS 편).indd

KT AI MAKERS KIT 사용설명서 (Node JS 편).indd KT AI MAKERS KIT 03 51 20 133 3 4 5 6 7 8 9 1 2 3 5 4 11 10 6 7 8 9 12 1 6 2 7 3 8 11 12 4 9 5 10 10 1 4 2 3 5 6 1 4 2 5 3 6 12 01 13 02 03 15 04 16 05 17 06 18 07 19 08 20 21 22 23 24 25 26 27 28 29

More information

untitled

untitled FORCS Co., LTD 1 2 FORCS Co., LTD . Publishing Wizard Publishing Wizard Publishing Wizard Publishing Wizard FORCS Co., LTD 3 Publishing Wizard Publidhing Wizard HTML, ASP, JSP. Publishing Wizard [] []

More information

초보자를 위한 C++

초보자를 위한 C++ C++. 24,,,,, C++ C++.,..,., ( ). /. ( 4 ) ( ).. C++., C++ C++. C++., 24 C++. C? C++ C C, C++ (Stroustrup) C++, C C++. C. C 24.,. C. C+ +?. X C++.. COBOL COBOL COBOL., C++. Java C# C++, C++. C++. Java C#

More information

강의10

강의10 Computer Programming gdb and awk 12 th Lecture 김현철컴퓨터공학부서울대학교 순서 C Compiler and Linker 보충 Static vs Shared Libraries ( 계속 ) gdb awk Q&A Shared vs Static Libraries ( 계속 ) Advantage of Using Libraries Reduced

More information

04_오픈지엘API.key

04_오픈지엘API.key 4. API. API. API..,.. 1 ,, ISO/IEC JTC1/SC24, Working Group ISO " (Architecture) " (API, Application Program Interface) " (Metafile and Interface) " (Language Binding) " (Validation Testing and Registration)"

More information

TTA Verified : HomeGateway :, : (NEtwork Testing Team)

TTA Verified : HomeGateway :, : (NEtwork Testing Team) TTA Verified : HomeGateway :, : (NEtwork Testing Team) : TTA-V-N-05-006-CC11 TTA Verified :2006 6 27 : 01 : 2005 7 18 : 2/15 00 01 2005 7 18 2006 6 27 6 7 9 Ethernet (VLAN, QoS, FTP ) (, ) : TTA-V-N-05-006-CC11

More information

Install stm32cubemx and st-link utility

Install stm32cubemx and st-link utility STM32CubeMX and ST-LINK Utility for STM32 Development 본문서는 ST Microelectronics 의 ARM Cortex-M 시리즈 Microcontroller 개발을위해제공되는 STM32CubeMX 와 STM32 ST-LINK Utility 프로그램의설치과정을설명합니다. 본문서는 Microsoft Windows 7

More information

Introduction to Deep learning

Introduction to Deep learning Introduction to Deep learning Youngpyo Ryu 동국대학교수학과대학원응용수학석사재학 youngpyoryu@dongguk.edu 2018 년 6 월 30 일 Youngpyo Ryu (Dongguk Univ) 2018 Daegu University Bigdata Camp 2018 년 6 월 30 일 1 / 66 Overview 1 Neuron

More information

untitled

untitled R&S Power Viewer Plus For NRP Sensor 1.... 3 2....5 3....6 4. R&S NRP...7 -.7 - PC..7 - R&S NRP-Z4...8 - R&S NRP-Z3... 8 5. Rohde & Schwarz 10 6. R&S Power Viewer Plus.. 11 6.1...12 6.2....13 - File Menu...

More information

임베디드시스템설계강의자료 4 (2014 년도 1 학기 ) 김영진 아주대학교전자공학과

임베디드시스템설계강의자료 4 (2014 년도 1 학기 ) 김영진 아주대학교전자공학과 임베디드시스템설계강의자료 4 (2014 년도 1 학기 ) 김영진 아주대학교전자공학과 Outline n n n n n n 보드개요보드연결필수패키지, Tool-Chain 설치 Kernel, file system build Fastboot 및 Tera Term설치 Kernel, file system 이미지전송및설치 - 2 - Young-Jin Kim X-Hyper320TKU

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING

More information

1

1 1 1....6 1.1...6 2. Java Architecture...7 2.1 2SDK(Software Development Kit)...8 2.2 JRE(Java Runtime Environment)...9 2.3 (Java Virtual Machine, JVM)...10 2.4 JVM...11 2.5 (runtime)jvm...12 2.5.1 2.5.2

More information

품질검증분야 Stack 통합 Test 결과보고서 [ The Bug Genie ]

품질검증분야 Stack 통합 Test 결과보고서 [ The Bug Genie ] 품질검증분야 Stack 통합 Test 결과보고서 [ The Bug Genie ] 2014. 10. 목 차 I. Stack 통합테스트개요 1 1. 목적 1 II. 테스트대상소개 2 1. The Bug Genie 소개 2 2. The Bug Genie 주요기능 3 3. The Bug Genie 시스템요구사항및주의사항 5 III. Stack 통합테스트 7 1. 테스트환경

More information

(JBE Vol. 24, No. 4, July 2019) (Special Paper) 24 4, (JBE Vol. 24, No. 4, July 2019) ISSN

(JBE Vol. 24, No. 4, July 2019) (Special Paper) 24 4, (JBE Vol. 24, No. 4, July 2019)   ISSN (JBE Vol. 24, No. 4, July 2019) (Special Paper) 24 4, 2019 7 (JBE Vol. 24, No. 4, July 2019) https://doi.org/10.5909/jbe.2019.24.4.564 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Integral Regression

More information

LCD Display

LCD Display LCD Display SyncMaster 460DRn, 460DR VCR DVD DTV HDMI DVI to HDMI LAN USB (MDC: Multiple Display Control) PC. PC RS-232C. PC (Serial port) (Serial port) RS-232C.. > > Multiple Display

More information

<31325FB1E8B0E6BCBA2E687770>

<31325FB1E8B0E6BCBA2E687770> 88 / 한국전산유체공학회지 제15권, 제1호, pp.88-94, 2010. 3 관내 유동 해석을 위한 웹기반 자바 프로그램 개발 김 경 성, 1 박 종 천 *2 DEVELOPMENT OF WEB-BASED JAVA PROGRAM FOR NUMERICAL ANALYSIS OF PIPE FLOW K.S. Kim 1 and J.C. Park *2 In general,

More information

(JBE Vol. 22, No. 2, March 2017) (Special Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

(JBE Vol. 22, No. 2, March 2017) (Special Paper) 22 2, (JBE Vol. 22, No. 2, March 2017)   ISSN (Special Paper) 22 2, 2017 3 (JBE Vol. 22, No. 2, March 2017) https://doi.org/10.5909/jbe.2017.22.2.162 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) Convolutional Neural Network a), b), a), a), Facial

More information

DocsPin_Korean.pages

DocsPin_Korean.pages Unity Localize Script Service, Page 1 Unity Localize Script Service Introduction Application Game. Unity. Google Drive Unity.. Application Game. -? ( ) -? -?.. 준비사항 Google Drive. Google Drive.,.. - Google

More information

s SINUMERIK 840C Service and User Manual DATA SAVING & LOADING & & /

s SINUMERIK 840C Service and User Manual DATA SAVING & LOADING & & / SINUMERIK 840C Service and Uer Manual DATA SAVING & LOADING & & / / NC, RS232C /. NC NC / Computer link () Device ( )/PC / / Print erial Data input RS232C () Data output Data management FLOPPY DRIVE, FLOPPY

More information