- i -
- ii -
- iii -
- iv -
- v -
- vi -
Photograph of miniature SiC p-n and Schottky diode detector Photograph SiC chip mounted on a standard electrical package Photograph of SiC neutron detector with a NIST standard double fission chamber - vii -
- viii -
- 1 -
- 2 -
- 3 -
- 4 -
Bandgap @300K Band Structure Crystal Form Lattice Constant (Angstrom) μ n @300K ( cm2 /v-s) u p @300K ( cm2 /v-s) Saturation Electron Velocity Table 1. Silicon Carbide Material Properties C (Diamond) Ge Si 3C-SiC 4H-SiC 6H-SiC 5.47 0.66 1.12 2.4 3.26 3.01 Indirect Indirect Indirect Indirect Indirect Indirect Diamond Diamond Diamond ZincBlende Hexagonal Hexagonal 3.57 5.66 5.43 4.36 3.073 3.081 (10.05c) (15.12c) 2000 3900 1450 1000 900 450 2100 1800 500 50 120 50 2.7 3.1 1 2.2 2 2 (10 7 cm /s) Break 100 1 3 20 22 25-5 -
Down Field (10 5 v/cm) Dielectric Constant Density (g/ cm3 ) Melting Point( ) @1 ATM Mohs Hardness (kg/ mm2 ) 5.7 16.2 11.9 9.7 9.7 9.7 3.515 5.323 2.33 3.21 3.21 3.21 2830 2830 2830 4000 937 1420 (sublimes (sublimes (sublimes @1825 ) @1825 ) @1825 ) 10 6.3 7 9.2 9.2 9.2 Polytype Density [g cm -3 ] Temperature [K] Ref & comments 2H 3.214 293 [17] 3C 3.166 300 [18] 3C 3.21427 300 Using Eqn (1) and Xray-data in [16] 3C 3.210 300 [19] 6H 3.211 300 [19] 6H 3.24878 300 Using Eqn (1) and X-ray data in [16] - 6 -
Polytype Lattice parameter (a, c in A ) Temperature [K] Ref 3C a = 4.3596 297 [20] 3C a = 4.3582 0 [20] 2H 4H 6H 6H 15R 21R 33R a = 3.0763 300 [21] c = 5.0480 300 [21] a = 3.0730 300 [22] c = 10.053 a = 3.0806 297 [20] c = 15.1173 a = 3.080 0 [20] c = 15.1173 a = 12.691 300 [23] α = 13 54' a = 17.683 300 [23] α = 9 58' a = 27.704 300 [23] α = 6 21' Thermal Polytype conductivity, χ Comments Ref. [W cm -1 K -1 ] 3C 3.2 poly-3c [24] 4H 3.7 - [24] 6H 3.6 N N = 8 10 15 cm -3 at 300K [26] 6H 3.6 N N = 5 10 16 cm -3 at 300K [26] 6H 3.6 N N = 1 10 19 cm -3 at 300K [26] 6H 2.31 N Al = 5 10 19 cm -3 at 300K [26] 6H 4.9 - [25] - 7 -
Polytype ν [m s-1] Temperature [K] Ref. 6H 13,300 300 [29] 3C(poly) 12,600 297 [28] 4H 13,730 20 [29] 6H 13,100 5 [29] 6H 13,260 300 [29] 21R 12,270 300 [27] - 8 -
- 9 -
- 10 -
- 11 -
- 12 -
- 13 -
- 14 -
- 15 -
- 16 -
- 17 -
Fig. 1 Photograph of miniature SiC Fig. 2 Photograph SiC chip mounted p-n and Schottky diode detector on a standard electrical package - 18 -
Fig. 3 Photograph of SiC neutron detector with a NIST standard double fission chamber - 19 -
- 20 -
- 21 -
- 22 -
- 23 -
Fig. 4 Historical Diagram of Growth method of Silicon Carbide - 24 -
Fig. 5 Cross Section of an Acheson furnace before and after the furnace has been fired, from ref. [44]. - 25 -
Fig. 6 Cross section of a Lely furnace, from ref. [45]. - 26 -
Fig. 7 Schematic of a modified Lely setup - 27 -
- 28 -
Fig. 8 Technique of reduced micropipe density by using LPE method - 29 -
- 30 -
Fig. 9 Step-controlled epitaxy Growth method - 31 -
- 32 -
- 33 -
- 34 -
- 35 -
- 36 -
- 37 -
- 38 -
- 39 -
- 40 -
- 41 -
- 42 -
- 43 -
- 44 -
- 45 -
⁵ ⁶ - 46 -
- 47 -
- 48 -
- 49 -
- 50 -
- 51 -
- 52 -
- 53 -
- 54 -
- 55 -
- 56 -
- 57 -
- 58 -
- 59 -
- 60 -
- 61 -
- 62 -
- 63 -
- 64 -
- 65 -
- 66 -
본보고서는탄화규소 (SiC) 반도체의일반적특성및최신연구동향을기술하고있다. 탄화규소 (SiC) 는기존반도체응용분야를대체할물질로각광을받고있고, 원자로및 trisol의코팅제로사용이되고있다. Si과 C의결합에너지가높기때문에, 탄화규소는화학적, 물리적으로매우안정적이고이러한특성으로고온, 고선량의극환경에서도동작할수있는소자개발이가능하다. 또한탄화규소의고유특성은다른반도체물질로제작이불가능또는효율적인못한분야에적용가능한소자및센서제작에도적용되고있다.
Silicon carbide(sic) is the best candidate to replace conventional semiconductors in applications and is making use of coating material of nuclear reactor and trisol. Because of strong Si-C binding energy, SiC has high chemical stability and mechanical strength, and is capable of resisting high temperature and radiation. Due to its unique properties of Silicon carbide(sic) is currently under intensive investigation as an enabling material for variety of new semiconductor device applications in areas where other semiconductors cannot effectively compete.