Renewable resources Clean energy 1
Company 2
Introduction HANATECH Co., Ltd. Established : February, 2004 Location : Namdong Industrial Complex, Incheon, Republic of Korea Turnover : 6,500 mil. Won (2010) Rewarded with the prize of 5 mil $ export tower in 2008, consistently from 3 mil $ in 2007, 1 mil $ in 2006 Business Area Development & production of Gas Engine Generators [Natural gas, Biogas, Landfill gas, Synthetic gas, Cokes gas etc. ] Providing total engineering solution for gas engine applications Air compressor business Major Import / Export Items Export : Gas engine generators, Screw air end (Screw type air compressor) Import : Diesel engine, Alternator, Air compressor (Piston, Screw) 3
Line-up of HANATECH Gas Engine Generator Natural Gas Generator Set Biogas Generator Set Synthetic Gas Generator Set Option Model Power Range (kw) Model Power Range (kw) Model Power Range (kw) NKS-050 10~50 BKS-040 10~35 SKS-020 8~20 NDS-150 75~180 BDS-100 60~150 SDS-100 50~100 1. Skid Type NDS-250 180~250 BDS-200 150~230 SDS-200 100~200 2. Container Type (Weather & Sound Proof) NDS-400 250~400 BDS-350 250~350 SDS-300 200~300 3. CHP Version NDS-500 400~500 BDS-450 350~450 SDS-400 300~400 4
Contents I 발젂기의종류및열병합발젂특성 II 연료특성에따른엔진발젂기술 III Biogas / Synthetic Gas 발젂기운영사례 5
I 발젂기의종류및열병합발젂특성 6
Prime Mover 의종류 Electric Power Generation Steam turbine cycle Gas turbine cycle Internal combustion engines Alternative processes With back-pressure turbine With extraction condensing turbine With heat recovery Cheng Cycle (STIG Cycle) Microturbine Spark ignition (gas) engine Compression ignition (diesel) engine Steam-engine process ORC process Innovative processes Fuel cell Stirling engine Steam screw-type engine Hot air turbine cycle Inverse gas turbine cycle 7
Prime Mover 종류별특징 / 장단점 Prime Mover Advantages Disadvantages Available sizes Steam turbine High overall efficiency Any type of fuel may be used Ability to meet more than one site heat grade requirement Long working life and high reliability Power to heat ratio can be varied. Slow start up Low power to heat ratio 50 kw to 250 MW Gas turbine High reliability. Low emissions High grade heat available No cooling required Require high pressure gas or in-house gas compressor Poor efficiency at low loading Output falls as ambient temperature rises 500 kw to 250 MW Microturbine Small number of moving parts Compact size and light weight Low emissions No cooling required High costs Relatively low mechanical efficiency Limited to lower temperature cogeneration applications 30 kw to 350 kw Spark ignition engine (gas, gasoline) Compression ignition engine (diesel) High power efficiency with part-load operational flexibility Fast start-up Relatively low investment cost Can be used in island mode and have good load following capability Can be overhauled on site with normal operators Operate on low-pressure gas High maintenance costs Limited to lower temperature cogeneration applications Relatively high air emissions Must be cooled even if recovered heat is not used High levels of low frequency noise < 5 MW High speed (1,200 RPM) 4MW Low speed (60-275 RPM) 65MW Fuel Cells Low emissions and low noise High efficiency over load range Modular design High costs Low durability and power density Fuels requiring processing unless pure hydrogen is used 200 kw to 250 kw 8
열병합발전 (CHP) 을적용하는이유 What is Combined Heat and Power (CHP) Technologies? The sequential or simultaneous generation of multiple forms of useful energy (usually mechanical and thermal) in a single, integrated system The potential for a wide range of applications and the higher efficiencies result in the lower emissions compared to SHP generation. (SHP : Separate heat and power) Individual components of CHP systems Prime mover Power generator Heat recovery system Electrical interconnections Condenser, cooling water system, water purifying system, etc. 9
Prime Mover 종류별열병합발전시스템비교 Prime Mover Steam turbine Gas turbine Microturbine Diesel engine Gas engine Fuel cell Power efficiency (HHV) 15 ~ 38% 22 ~ 36% 18 ~ 27% 27 ~ 45% 22 ~ 40% 30 ~ 63% Overall CHP efficiency (HHV) 80% 70 ~ 75% 65 ~ 75% 70 ~ 80% 70 ~ 80% 65 ~ 80% Effective electrical efficiency 75% 50 ~ 70% 50 ~ 70% 70 ~ 80% 70 ~ 80% 60 ~ 80% Typical capacity (MW e ) 0.2 ~ 800 1 ~ 500 0.03 ~ 0.35 0.03 ~ 5 0.02 ~ 5 0.01 ~ 2 Typical power to heat ratio 0.1 ~ 0.3 0.5 ~ 2 0.4 ~ 0.7 0.5 ~ 1 0.5 ~ 1 1 ~ 2 Part load operation OK Poor OK Good OK Good CHP Installed costs ($/kw e ) 300 ~ 900 800 ~ 1,800 1,300 ~ 2,500 900 ~ 1,500 900 ~ 1,500 2,700 ~ 5,300 O&M costs ($/kwh e ) < 0.004 0.003 ~ 0.0096 0.01 (projected) 0.005 ~ 0.015 0.007 ~ 0.02 0.005 ~ 0.04 Hours to overhauls > 50,000 30,000 ~ 50,000 5,000 ~ 40,000 25,000 ~ 30,000 24,000 ~ 60,000 10,000 ~ 40,000 Start-up time 1 hr ~ 1 day 10 min ~ 1 hr 60 sec 10 sec 10 sec 3 hrs ~ 2 days Fuel pressure (psi) (1 atm = 14.7 psi) n/a 120 ~ 500 (compressor) 40 ~ 100 (compressor) < 5 1 ~ 45 0.5 ~ 45 Fuels All Natural gas, biogas, oil Natural gas, biogas, oil Diesel, residual oil Natural gas, biogas, landfill gas, synthetic gas Hydrogen, natural gas, propane, methanol Noise High Moderate Moderate High High Low Uses for thermal output LP-HP steam Heat, hot water, LP-HP steam Heat, hot water, LP steam Hot water, LP steam Hot water, LP steam Hot water, LP-HP steam Power Density (kw/m 2 ) > 100 20 ~ 500 5 ~ 70 35 ~ 50 35 ~ 50 5 ~ 20 NOx, lb/mwh TotalOutput 0.13 ~ 1.3 0.25 0.15 4.3 ~ 8.2 0.8 0.02 10
소형바이오가스엔진열병합발전기의구성및실례 Specification Item 25 kw type 450 kw type Electric Power 25 kw 450 kw Efficiency 32 % 32 % Overall Efficiency 75 % 75 % Electricity Hot Water supply ( T = 20 ) 25.0 l/min 450.0 l/min Genset Controller Hot Water Biogas Consumption 12 m 3 /hr 216 m 3 /hr Alternator Heat Ex. Engine Cold Water Heat for Bio Reactor Size (mm) 2,700 980 1,360 (L x W x H) 3,900 1,460 2,086 (L x W x H) Biogas (Bacteria) * Overall efficiency can be increased to 85 % by the heat exchanging capacity. 11
II 연료특성에따른엔진발젂기술 12
대표적인가스연료특성 Properties Syngas from Medical Waste (high LHV) Syngas (Gasifier using air) Biogas Landfill Gas Natural Gas 구성성분 Methane 0 0 60 % 50 % 90 % Ethane 0 0 0 0 7 % Propane 0 0 0 0 3 % CO 39 % 11 % 0 0 0 CO 2 14 % 0 % 40 % 50 % 0 N 2 6 % 78 % 0 0 0 H 2 41 % 11% 0 0 0 Total 100 % 100 % 100 % 100 % 100 % Methane No. 26 75 140 150 73 LHV (kcal/nm3) 2,200 630 5,140 4,285 10,000 이론공연비 (V/V) 1.9 : 1 0.53 : 1 5.72 : 1 4.76 : 1 10.46 : 1 발젂출력 94 % < 50 % 94 % 92 % 100 % 13
가스연료의연소특성 Natural Gas 연소식 이론공연비상태 : CH4 + 2 (O2 +3.773 N2) CO2 + 2 H2O + 2 3.773 N2 공기과잉상태 : CH4 + λ 2 (O2 +3.773 N2) CO2 + 2 H2O + 2 (λ-1) O2 + λ 2 3.773 N2 Biogas 연소식 (CH4 60 % 기준 ) 이론공연비상태 : CH4 + 0.67 CO2 + 2 (O2 +3.773 N2) 1.67 CO2 + 2 H2O + 2 3.773 N2 공기과잉상태 : CH4 + 0.67 CO2 + λ 2 (O2 +3.773 N2) 1.67 CO2 + 2 H2O + 2 (λ-1) O2 + λ 2 3.773 N2 Syngas 연소식 (H2 30%, CO 30%, 나머지 CO2 포함가스경우 ) 3 H2 + 3 CO + 4 CO2 + 3 (O2 +3.773 N2) 7 CO2 + 3 H2O + 3 3.773 N2 Cf) λ = 이론공연비에대한실제공연비의비율 = Equivalence ratio ( 당량비, Φ ) 의역수 λ > 1 : 희박연소 (lean burn) λ = 1 : 이론공연비연소 (stoichiometry) λ < 1 : 농후연소 (rich burn) 14
일반적인가스엔진의배기유해성분억제방법 삼원촉매 (Three Way Catalyst; TWC) 사용 (Rich Burn 또는이론공연비상태 ) (1) CO 산화반응 (Oxidation Process) CO + (1/2) O2 CO2 CO + H2O CO2 + H2 (2) 산화반응 HnCm + (n/4 + m) O2 m CO2 + (n/2) H2O HnCm + 2 m H2O m CO2 + (n/2 + 2 m) H2 (3) NO 홖원반응 (Reduction Process) NO + CO (1/2) N2 + CO2 (2m + n/2) NO + CmHn (m + n/4) N2 + (n/2) H2O + m CO2 NO + H2 (1/2) N2 + H2O 15 15
가스엔진출력및배기유해성분제어시스템구성 16
공연비, 공기과잉율과배기중유해성분상관관계 17
Lean Burn & Rich Burn Engine Lean Burn 500 kwe (1200, 650 ) Rich Burn 330 kwe (1400, 760 ) 18
III Biogas / Synthetic Gas 발젂기운영사례 19
Biogas 발젂시스템사례 (I)- 베트남 20
돈분을이용한바이오가스생성및발전단계 [1/2] Pig manure dropped under slit floor by flushing water Manure with water collected on the inclined trench on the pig house Waste water pumped to separator / Organic solid separated from the waste water Bio-reactor Transport feed material by submersible pumps Ground surface Waste water transported to the 1st pit by gravity flow Pig House & Waste Water Connection Lines 1 st Pit Solid Water Separator Some of waste water supplied to control the concentration of solid 2 nd Pit Feed material prepared for anaerobic digester (Bio-reactor) Waste water transported to WWT (Load in WWT decreased) 21
돈분을이용한바이오가스생성및발전단계 [2/2] Feed material stayed for 25 days / 50% produced as biogas / Others extracted as fertilizer (bio solid) Biogas Biogas Biogas Pretreatment Corrosive & toxic H2S gas removed provided for generator fuel Biogas Generator Electric power supply by biogas engine generators High Quality Fertilizer 2 nd Pit Bio solid collected after anaerobic digestion Anaerobic Digester (Biogas Production Facility) Sold to farmers as the high quality fertilizers 22
베트남의바이오가스발전설비설치현황 Total number of pigs ~ 16,000 heads Site #2 : Southern Location Bio-reactor Site #1 : Northern Location Bio-reactor Bio-reactor Two locations were designated for biogas generation plants inside Vietnam pig farm. 23
Biogas 발젂시스템사례 (II)- 한국 24
Biogas Generation Process in Livestock Muck Site Biogas Generation Plant Biogas Generator 25
Generator Specifications in Food Waste Treatment Site 1. Site location : Jang-Su 2. Fuel Type : Biogas 3. Generator Capacity : 60kW/each X 2 set 4. CHP, Sound & weather type canopy 26
Syngas 발젂시스템사례 27
Small Scale Syngas Generator 개발시험사례 시험목적 양산용발젂기시험 data 추출용으로 small scale 의 proto type 선시험수행 NOx, CO 배기규제만족여부확인 연료 / 공기비율검토 측정항목 Lean burn limit Knock limit Achievable power Suitable spark timing CO limit 28
Syngas Generator 개발시험조건 설비조건 2300 CC 천연가스엔진 - Turbocharged-intercooled engine, 압축비 15 : 1 - Lean burn & stoichiometric operation 배기중유해가스저감장치 ( 자동차용삼원촉매장치 ) 부착 Test Gas 특성 성분 : CO 30%, H2 30%, CO2 30%, N2 10% Methane No. : 53 (cf. 천연가스 73, 수소 0, 메탄 100) 이론공연비 : 1.43 : 1 (Fuel 41.2 %) (cf. 천연가스 10.46 : 1 (Fuel 8.7%) ) 연료공급조건 - 온도 : 30-40 - 압력 : 500 mmh2o ( 감압밸브통과후 125 mmh2o) 29
Syngas Generator 개발시험결과 배기중산소농도조정 UEGO 값조정으로안정된연소및배기상태유지 이론공연비에서 UEGO 값 : 0.35 ma Lean Burn 운젂결과 - UEGO 값 1.05 ma = 5.5% O2 (NOx 50 PPM 만족 ) - UEGO 값 1.25 ma = 8.3% O2-11% O2 까지 Misfire 없이운젂가능 (cf. UEGO = Universal Exhaust Gas Oxygen) 연료공급량조정및배기측정장치구성 Lean burn 운젂시배기중 O2 농도대비 NOx 값비교 30
Syngas Generator 시험결과비교분석 CO, H2, CO2 gas composition (%, dry) 100 80 60 40 20 CO H2 CO2 Power Efficiency 고등기술연구원 / HANATECH 제작가스엔진발젂기효율 ~ 35% 60 50 40 30 20 10 Power (kw), Efficiency(%, LHV basis) 0 0 03:30 03:50 04:10 04:30 04:50 05:10 05:30 Time (hr : min) GE-Jenbacher Data 상기가스엔진운젂결과는고등기술연구원에서홖경부차세대핵심홖경기술개발사업으로추진중인 저탄소합성가스제조및가스엔진발젂기술개발 사업의일홖으로수행된연구결과임 31
국내외발젂시스템운영현황 32
References of Biogas / LFG Generators Biogas, 280kWe, Korea Biogas, 100kWe CHP, Korea LFG, 25kWe x 2 sets, Korea Biogas, 25kWe CHP, Korea Biogas, 75kWe CHP, Korea Biogas, 25kWe, Uzbekistan 33
References of Synthetic Gas Generators Medical Waste, 335kWe, Korea Organic Waste, 20kWe, Korea Wood Waste, 20 kwe x 3 sets, Korea Rice Husk, 20 kwe, Korea 34
Business Reference List [1/2] Contract Date Fuel Type Unit Power (kwe) Q ty Service Power (kwe) Customer (Country) Remark April, 2008 Synthetic Gas 335 1 335 Etin system (Korea) In Operation September, 2008 Synthetic Gas 20 1 20 Korea Institute of Energy Research (Korea) In Operation November, 2008 Biogas 300 1 300 December, 2008 Biogas 25 4 100 February, 2009 Synthetic Gas 20 1 20 May, 2009 LFG 25 2 50 May, 2009 LFG 25 8 200 July, 2009 Biogas 25 1 25 July, 2009 Synthetic Gas 20 1 20 July, 2009 LFG 450 1 450 September, 2009 Synthetic Gas 25 3 75 LOTUS (ANSAN Food Waste Site, Korea) SAGRI (Pig Farm, HCMC, Vietnam) Korea Institute of Industrial Technology (Korea) Eagle Power System (USA) Eagle Power System (USA) Korea Polytechnic University (Uzbekistan) Institute for Advanced Engineering (Korea) Eagle Power System (USA) Uzin Advance Technology (Hwacheon, Korea) In Operation In Operation In Operation In Operation In Test Run In Operation In Operation In Test Run In Operation [continued to the next page] 35
Business Reference List [2/2] Contract Date Fuel Type Unit Power (kwe) Q ty Service Power (kwe) Customer (Country) Remark October, 2009 Biogas 100 1 100 ENR Solution (Jeong-Eup, Korea) In Operation October, 2009 Biogas 75 1 75 ENR Solution (Bo-Sung, Korea) In Operation October, 2009 Biogas 25 1 25 October, 2009 Biogas 25 1 25 March, 2010 Biogas 65 2 130 March, 2010 Synthetic Gas 25 1 25 April, 2010 Biogas 25 2 50 May, 2010 Biogas 25 1 25 ENR Solution (Mil-Yang, Korea) Yonsei University (Korea) KoKun (Jang-Su, Korea) Daewon GSI (Go-Ryeong, Korea) EXA EnC (Kimpo, Korea) SaeHan (Pocheon, Korea) In Operation In Operation In Operation In Operation In Operation In Operation July, 2010 Biogas 50 1 50 Darby CJ (Vietnam) In Test Run SUM - 35 2,100 - - 36
THANK YOU 37