<30382DC0FAC0DABCF6C1A42D3739B9CEBCBAC8AF5F E687770>

Similar documents
fm

DBPIA-NURIMEDIA

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

DBPIA-NURIMEDIA

<3036C0FAC0DAC6AFC1FDBCF6C1A42D3637B1E8B5BFC0B15B315D2E687770>

<30342DC0FAC0DABCF6C1A42DC6AFC1FD3132B9DABFB5B5B55F76312E687770>

DBPIA-NURIMEDIA

<30392DB1B3C1A45FBCF6C1A42DB1E8C3B6C8F E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

< B1E8B5BFC0B12E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<30332DC0FAC0DAC6AFC1FD2DC0CCB1A4C1F85FC7D0C8B8BCF6C1A42E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<30322DC0FAC0DABCF6C1A42D3630C6AFC1FD5FC0CCC1BEC7A55B315D2DBCF6C1A42E687770>

<30392DC0FAC0DABCF6C1A42D32385FB1E8C3B6C8F15FB1B3C1A42E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

untitled

<30392DC0FAC0DA2DC3D6B5BFBCF82D2E687770>

DBPIA-NURIMEDIA

본문.PDF

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

인문사회과학기술융합학회

< C6AFC1FD28B1C7C7F5C1DF292E687770>

<31302DC0FAC0DABCF6C1A42D3431B9DAB9CEC8A32E687770>

DBPIA-NURIMEDIA

< C0D3BAB4C3B62DBECBB7E7B9CCB4BD20C7D5B1DD28C7A5B9F8C8A320BEE0B7C2C8AEC0CE292E687770>

DBPIA-NURIMEDIA

page 1end

DBPIA-NURIMEDIA

10-60(3)-수정.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

문경만.hwp

DBPIA-NURIMEDIA

Characteristic of Stainless Steel 304 vs. 316 STS 비교 스테인리스강화학성분비교 (ASTM A 479 Standard) Type UNS No. C Si 304 S S max 0.08

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

14.531~539(08-037).fm

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

DBPIA-NURIMEDIA

<30362D322DBCF6C1A42DBDC5BBF3C8A FC7D0C8B8BCF6C1A42E687770>

DBPIA-NURIMEDIA

<3039BCF6C1A4C8C42DC6AFC1FD28B8F0B4CFC5D8292DC8B2B5BFBCF62E687770>

DBPIA-NURIMEDIA

03 장태헌.hwp

DBPIA-NURIMEDIA

12.077~081(A12_이종국).fm

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<31372DC0FAC0DABCF6C1A42DC0BAC1BEB8F E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<4D F736F F F696E74202D20BDBAC5D7C0CEB7B9BDBAB0AD20BFEBC1A2BACEC0C720C0D4BFADB7AEBFA120B5FBB8A520B9CCBCBCB1D5BFADC6F2B0A15F3037B3E2204B494E5320B9DFC7A5C0DAB7E15F E E707074>

012임수진

DBPIA-NURIMEDIA

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

<3036C0FAC0DA2DB1E2BCFAB3EDB9AE2DB1E8BFEB28BCF6C1A4292E687770>

Transcription:

GTAW 펄스용접조건에따른타이타늄정밀관의용입, 변색및굽힘특성 민성환 안성용 박지태 박영도 강남현 大韓熔接 接合學會誌第 32 卷 6 號別冊 2014. 12

4 연구논문 ISSN 1225-6153 Online ISSN 228-8955 GTAW 펄스용접조건에따른타이타늄정밀관의용입, 변색및굽힘특성 민성환 * 안성용 ** 박지태 *** 박영도 **** 강남현 **, * 부산대학교하이브리드소재솔루션협동과정 ** 부산대학교재료공학과 *** 삼화스틸소재개발팀 **** 동의대학교신소재공학과 Effects of GTAW Pulse Condition on Penetration, Discoloration and Bending Property for Titanium Tube Seonghwan Min*, Sungyong An**, Jitae Park***, Youngdo Park**** and Namhyun Kang**, *Interdisciplinary Program in Hybrid Materials Solution, Busan National University, Busan 609-390, Korea **Department of Materials Science and Engineering, Busan National University, Busan 609-390, Korea ***Materials development team, Samhwa steel, Busan 61-00, Korea ****Department of Advanced Materials Engineering, Dong-Eui University, Busan 614-14, Korea Corresponding author : nhkang@pusan.ac.kr (Received November 8, 2014 ; Revised November 25, 2014 ; Accepted December 4, 2014) Abstract The purpose of the study is to produce a mechanically improved weld and minimum variation of color through comparing unpulsed and pulsed GTAW (Gas Tungsten Arc Welding) for pure titanium (CP grade) tube. Pulsed GTAW using 60 A peak current and 20 A background current (1:9) achieved the wider window of welding conditions having part and full without burn-through than the case of unpulsed GTAW. Moreover, the pulsed welding reduced a discoloration on the back bead of the weld and the size of microstructures (basket weave and serrated α). That is because the pulsed welding has it's a low heat input and severe weld flow induced from electric current variation. Furthermore, the pulsed welding improved the bending property of the welded Ti tube. The enhanced bending property for the pulsed GTAW was due to the insignificant discoloration on the weld surface with maintaining the metal polish. Key Words : Pulsed welding, Titanium tube, Bending, Discoloration, Hardness 1. 서론 타이타늄정밀관은뛰어난내식성과고강도때문에화학산업, 항공산업, IT 산업및레저산업등특수산업에확대적용되고있다. 그러나소재의난가공성으로인해 seamless tube 로제작이곤란하고, 판재를조관후용접관을제조하고이를이용하여인발공정으로제조되고있다 1-3). 타이타늄용접법으로는 GTAW (Gas Tungsten Arc Welding) 가많이이용되고있으며, 또한 GMAW (Gas Metal Arc Welding), PAW (Plasma Arc Welding), LBW (Laser Beam Welding) 및 EBW (Electron Beam Welding) 등의용융용접법과 FSW (Friction Stir Welding), FW (Friction Welding) 등의고상접합이연구되고있다. GTAW 는수동및자동용접이가능하고스패터가적고용접입열조정이용이하여고품질의박판용접에활용할수있으나, 생산성이낮다 This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Journal of Welding and Joining, Vol.32 No.6(2014) pp4-55 http://dx.doi.org/.581/jwj.2014.32.6.4

48 민성환 안성용 박지태 박영도 강남현 는단점이있다. PAW 는키홀모드를통해완전용입이가능하고, GTAW 및 GMAW 보다기공형성억제에효과적으로알려져있다. LBW 는 GTAW 나 PAW 보다생산성이높고두꺼운판재를한번에용접할수있으나, 설비가매우크고고가라는단점이있다 4). 타이타늄은 500 이상의고온에서산소, 수소, 질소및탄소등의침입형원소와의반응성이매우높아, 접합공정후취약한금속화합물의생성, 산화및기공등의용접결함이발생할수있다. 이는제품수명을단축시키는주요원인이되므로진공분위기또는불활성분위기에서용접이이루어져야한다 5). 한편펄스용접은종래의용접전류에펄스전류를중첩하여용접하는방법으로, 펄스주파수, 베이스전류, 펄스전류, 펄스의폭등을조절함으로써박판등의용접에용이하며타이타늄과같이입열제어가필요한재질에사용된다. 이처럼순수타이타늄및타이타늄합금에적용되는용접공정은다양하며, 국내외에서펄스를이용한용접연구가일부진행되었다 6-14). 그러나플레이트형상을대상으로한레이저용접연구가대부분이고, 두께가 mm 이하의정밀관의경우특정용접기술을적용하기위한연구가미비한수준이다. 따라서본연구에서는타이타늄용접시가장널리쓰이는 GTAW 공정을정밀관에적용하여일반조건과펄스조건에따른용접부의형상, 변색및굽힘특성을연구하였다. 2. 실험방법 성때문에활용도가높은재료이다. 2.2 정밀관용접지그설계및제작타이타늄정밀관의경우조관품질에따라용접수행에여러가지변수가있을수있다. 또한조관품질이우수하다하더라도용접수행중발생하는열변형으로인해직진도에큰문제를일으킬수있다. 따라서시험편의고정및직진도유지를위한지그제작이필수적이다. Fig. 1과같이 Core 부분은열전도성이높은황동으로제작하였고, 다른부분도알루미늄으로제작하여용접열에의한지그손상을최소화하였다. 핸들을이용하여작동용블록을움직여시편을고정하였으며, 시편이열변형될때지그에서분리되는것을방지하기위해 Core 부분홀의깊이는시편외경 (5 mm) 의 2/3 으로제작하였다. Fig. 2는실제제작한튜브용접지그의실물사진이 330 180 Slide guide 29 23 Handle Handle fixting block 2.1 실험재료 실험재료는주로발전기및의료부품미세관을제작하기위한인발공정용순수타이타늄 (CP grade) 관을사용하였다. 관의두께는 mm, 외경은 φ5, 길이는 25 mm 로제작되었다. CP grade 의조성은 Table 1 에나타내었고, 순수타이타늄종류중가장내식성이우수하고강도및연성이적절하며, 또한우수한용접 Fixting block (45) Pipe fixting block Operating block Fig. 1 Jig drawing for tube welding Ø 50 30 55 Table 1 Chemical composition of titanium CP grade Element wt.% O 0.25 B 0.03 C 0.08 H 0.015 Fe 0.30 Pd 0.12~0.25 Residuals 0.40 Ti balanced Fig. 2 Welding jig manufactured for Ti tube 584 Journal of Welding and Joining, Vol. 32, No. 6, 2014

GTAW 펄스용접조건에따른타이타늄정밀관의용입, 변색및굽힘특성 49 Table 2 Welding conditions (a) Open jig (b) Closed jig Fig. 3 Gap control for open and closed jig 다. Fig. 3은튜브를지그에장착후핸들을조이지않아열려있는튜브의모습과핸들을조여닫혀있는튜브를보여준다. 타이타늄미세관의용접에는 Fig. 3b와같이닫혀있는튜브를만들어튜브의직진도와갭을줄여야만우수한용접부를얻을수있었다. 2.3 용접조건언펄스용접은미세관에서용락발생을최소화할수있도록전류 20~40 A, 속도 ~ mm/s, 아크길이 ~1.5 mm 범위에서수행하였다. 펄스용접은언펄스용접과동일한아크길이 ~1.5mm 를유지하면서또한동일한용접생산성을확보하기위하여용접속도를 ~ mm/s로유지하고, 입열량을조절하기위하여 background current (BC) 15~20 A, peak current (PC) 45~60 A, Frequency 6Hz, PC:BC 를 1:9 15) 로설정하여수행하였다. 또한용접부의산화를방지하기위하여아르곤가스를보호가스로사용하여토치부분에서 18 l/min 의유량으로용접부후행에서 l/min 의유량으로보호가스를주입하였다. 그러나 Ti 정밀관내부에는별도의보호가스를주입하지않고실험하였다. 자세한용접조건및이에따른입열량계산은 Table 2에나타내었다. 3. 실험결과및고찰 3.1 용접조건에따른비드건전성용접조건별타이타늄정밀관의비드형상을관찰하였다. 용접전류 20 A의경우아크가불안정하여 ~ mm/s 용접속도구간에서용입발생이없었다. Table 3은정밀관용접후상부비드를나타낸표로써, 40 A 이상의높은용접전류에서는용락 (burn through) 이빈번하게발생하였고, 30 A로용접전류를낮추면용접속도가느 30 40 45/15 (PC/BC, 1:9) 60/20 (PC/BC, 1:9) Weld voltage V Velocity Heat input (J/mm) 42.9 30.0 23.1 5.1 40.0 30.8 25. 18.0.9 34.3 24.0 18.4 * Heat input = Voltage / Velocity Table 3 Top bead and for unpulsed weld condition 30 40 Burn through Burn through Not melted Burn through Burn through Burn through Burn through Burn through 린 mm/s 에서만용락이발생하였고, mm/s의빠른용접속도일때용접불가 (Not melted) 현상이관찰되었다. 펄스용접에서는 Table 4에서와같이언펄스용접보다저입열조건인 45/15 A의경우, mm 아크길이와 mm/s 속도에서만완전용입이발생하였고, 용접불가현상이빈번하게관찰되었다. 입열량을높인 60/20 A 펄스용접의경우, 느린속도 mm/s 조건에서완전용입이가능하였고, 속도를높인 ~ mm/s에서는이면비드까지는용접이되지않은부분용접 (part ) 이가능하였다. Table 2에계산하였듯이 60/20 A 펄스용접의입열량은 30 A 언펄스용접의동일한용접속도에서보다 ~20% 낮은값을가지고있지만, 펄스용접은부분용접및완전용 大韓熔接 接合學會誌第 32 卷第 6 號, 2014 年 12 月 585

50 민성환 안성용 박지태 박영도 강남현 Table 4 Top bead and for pulsed weld condition 45/15 60/20 Not melted Not melted Not melted Not melted Not melted Not melted Not melted Not melted 입이가능한용접가능조건이넓어진장점을가지고있었다. 또한용락이발생하지않고부분 / 완전용입이발생한언펄스및펄스용접조건의용접부에서는크랙또는기공등의결함이발견되지는않았다. Fig. 4와 5는언펄스용접조건에서상부및이면비드의너비를나타낸다. 용접전류가증가하면비드너비는증가하였고, 용접속도가빨라질때비드너비는감 Top bead width(mm) Top bead width(mm) 3 2.5 2 1.5 1 45/15A, mm/s 0 60/20A, mm/s 60/20A, mm/s 60/20A, mm/s 1 1.5 Fig. 6 Top bead width for pulsed welding 2 1.5 1 45/15A, mm/s 0 60/20A, mm/s 60/20A, mm/s 1 1.5 Fig. Back bead width for pulsed welding Top bead width(mm) 3 2.5 2 1.5 1 0 30A, mm/s 40A, mm/s 1 1.5 30A, mm/s 40A, mm/s 40A, mm/s 30A, mm/s 소하였다. 또한아크길이가길어지면비드너비는감소하였다. Fig. 6과 은펄스용접조건에서부분용접부를포함하여상부및이면비드의너비를표시하였다. 펄스용접또한용접전류가증가하면서비드너비는증가하였고, 용접속도가빨라지면비드너비는감소하였으며, 아크길이가길어지면비드너비는감소하였다. 또한펄스용접의상부및이면비드의너비는언펄스용접에비해낮은입열량을가지므로좁아진것을알수있다. Fig. 4 Top bead width for un-pulsed welding 3.2 용접조건에따른비드변색 Top bead width(mm) 2 1.5 1 0 30A, mm/s 40A, mm/s 30A, mm/s 1 1.5 40A, mm/s 40A, mm/s 30A, mm/s Fig. 5 Back bead width for un-pulsed welding 순수타이타늄의경우산화에의한변색정도에따라금속광택이있는은백색, 금색, 보리색, 보라색, 청색를띄는용접부는양호한산화정도를나타내는것으로보고되고있다 16). 그러나금속광택이없는청백색, 암회색, 백색, 황백색순으로변하면용접부의산화에의한변색으로연성이저하된다고보고되고있다. Table 5는완전용입이된언펄스용접부의이면비드색상변화를나타낸다. 언펄스조건중용접전류 30 A, 용접속도 mm/s, 아크길이 ~1.0 mm의이면부색상은금속광택이있는금색, 보리색을보이고있다. 또 586 Journal of Welding and Joining, Vol. 32, No. 6, 2014

GTAW 펄스용접조건에따른타이타늄정밀관의용입, 변색및굽힘특성 51 Table 5 Discoloration in un-pulsed weld condition 30 40 Burn throughburn through Not melted Burn throughburn through Burn throughburn through Burn through 언펄스용접부이면비드색상변화를관찰한결과, 용접속도가빨라지거나아크길이가길어지면, 용접토치와후행보호가스의역할이감소하여용접부산화정도가심해지는것으로판단된다. 반면펄스용접을수행한경우이면비드의색상은 Table 6에서와같이모든용접조건에서금속광택이있는은백색을보이고있어, 펄스용접이타이타늄산화물생성저감에효과적이라판단된다. 이는저입열펄스용접의조건에서 Ti 증발이줄어들어, TiO x 의산화흄발생이감소한결과로판단된다. 용접조건에따른용접부및열영향부의변색메커니즘을밝히기위한표면산화및질화층에대한정량 / 정성분석은현재진행중이고, 펄스용접조건에따른용접부형상및건전성확보가본연구의주요목적이므로, 차후논문에서발표하겠다. 3.3 용접조건에따른미세조직 Table 6 Discoloration in pulsed weld condition 45/15 60/20 Not melted Not melted Not melted Not melted Not melted Not melted Not melted Not melted 한용접전류 30 A, 용접속도 mm/s, 아크길이 ~ 1.0 mm의조건에서는광택있는은백색또는청색의이면비드색상을보이고있으므로, 이러한용접조건은용접부산화에의한연성저하는없을것으로판단된다. 용접전류 30 A, 용접속도 mm/s, 아크길이 1.5 mm 조건에서도광택있는은백색또는청색의이면비드색상을보이지만, 용접속도를 mm/s 로증가시키면금속광택이없는청백색의용접부이면비드색상을보였다. 용접전류 40 A, 아크길이 1.5 mm의용접조건에서용접속도가 ~ mm/s 인경우금속광택이있는은백색의이면비드색상을가지고있었으나, 용접속도가빠른 mm/s 의조건에서는금속광택이없는청백색을나타내어용접부연성이저하될수있으므로 3.5 절굽힘시험에서이에대한검증이필요할것이다. Fig. 8은순수타이타늄 (CP grade) 정밀관모재부의광학현미경미세조직을나타내며, Fig. 9는언펄스와펄스용접조건의대표미세조직을비교하였다. 공정변수에따라용접부상부비드및이면비드의폭은차이가있지만 (Fig. 4~), 용융부에나타난미세조직의종류는큰변화가관찰되지않았다. 모재부에서는판상 (platelike) 의등방성구조 (equiaxed α phase) 가나타나며, 언펄스용접부에서는 serrated α 상이관찰되었다. 또한용융부표면에서 O, N 같은침입형원소의고용에의해생성되는 basket weave 형태의조직이관찰되었다. 펄스용접부에서도언펄스조건의용접부와비슷한미세조직이관찰되었다. 그러나펄스용접부의경우 Fig. 에서와같이더욱미세한 serrated α 및 basket weave 미세조직을가지는것으로관찰되었다. Fig. 의언펄스용접조건 (40 A, mm/s) 의경우, 입열량은 30.8 J/mm으로계산되었고, 펄스용접조건 (60/20 A, mm/s) 에서는 34.3 J/mm으로계산되 Fig. 8 Microstructure of base metal 大韓熔接 接合學會誌第 32 卷第 6 號, 2014 年 12 月 58

52 민성환 안성용 박지태 박영도 강남현 FZ FZ 10 10 Weld zone (40 A, mm/s, 1.0 mm) Heat affected zone (40 A, mm/s, 1.0 mm) < mm> <1.0 mm> FZ 10 Weld zone Heat affected zone (60/20 A, mm/s, 1.5 mm) (60/20 A, mm/s, 1.5 mm) Fig. 9 Microstructural behavior with respect to pulsed conditions <1.5 mm> Fig. 11 Effects of arc length on hardness distribution for unpulsed conditions (30 A, mm/s) 판단된다. 따라서펄스용접부가미세화된 serrated α 및 basket weave 조직을보이는것은, 저입열량에의한영향보다는펄스에의한용융액의활발한유동현상이더욱큰영향을끼친것으로판단된다. 3.4 용접조건에따른경도 <40 A, mm/s, 1.0 mm, Unpulsed condition> <60/20 A, mm/s, 1.5 mm, Pulsed condition> Fig. Weld microstructure at different pulsed conditions 었다 (Table 2). 즉, 펄스용접이언펄스용접보다큰입열량을가지고있었지만, 펄스용접의펄스에의한용융액의유동이활발해져결정립핵생성이활발해지고성장은억제되었기때문에미세한조직을보이는것으로 Fig. 11은언펄스 30 A, mm/s 용접조건에서아크길이를 ~1.5 mm로변화함에따라용접부단면의중심부를따라측정한경도를비교하였다. 모재에비하여열영향부와용접부의경도가증가하는거동을보인다. 이는용접부와열영향부에서 O, N 같은침입형원소의고용에의해생성되는미세조직으로알려진 basket weave 또는 serrated α 결정립이관찰되는것과연관성이있다. 동일전류및속도의언펄스용접조건에서아크길이가증가함에따라용접부경도값은큰변화없이 190~2 Hv 범위의값을가지는것으로판단된다. Fig. 12는언펄스 40 A, 1.5 mm 아크길이용접조건에서용접속도 ~ mm/s 변화에따른경도변화를비교하였다. 30 A 언펄스용접에서와동일하게열영향부와용접부의경도가모재에비하여증가하는거동을보인다. 그러나용접속도가증가함에따라냉각속도가증가하고보호가스의역할이감소하여 O, N 같은침입형원소의고용에의해생성되는미세조직이증가하고, 이에따라용접부의경도가증가할것으로예상하였다. 그러나용접속도 ~ mm/s 범위에서용접부경도값은큰변화없이 190~2 Hv 범위의일정한값을가지는것으로보인다. 588 Journal of Welding and Joining, Vol. 32, No. 6, 2014

GTAW 펄스용접조건에따른타이타늄정밀관의용입, 변색및굽힘특성 53 10 FZ 10 FZ 미미하기때문으로판단된다. 그러나용접시산화물생성에의한변색과경도변화에대한연관성에대해서는더욱체계적인연구가필요할것으로판단된다. 3.5 용접조건에따른굽힘특성 < mm/s> < mm/s> 10 FZ < mm/s> Fig. 12 Effects of welding velocity on hardness distribution for unpulsed conditions(40 A, arc length 1.5 mm) FZ 10 10 FZ < mm> <1.0 mm> 10 FZ <1.5 mm> Fig. Effects of arc length on hardness distribution for pulsed conditions (60/20 A, mm/s) Fig. 은펄스 60/20 A, mm/s 용접조건에서아크길이를 ~1.5 mm로변화함에따른경도변화를비교하였다. 언펄스용접부에서와동일하게아크길이 ~1.5 mm 변화에따라용접부경도값은 ~ 220 Hv 범위의일정한값을가지는것으로판단된다. 용접조건별경도는 Fig. 11~ 에서와같이유의수준이상의큰변화를나타내지않았고, 이는본연구에서사용한모재가 CP grade 의순수타이타늄이므로용접후응고시상변태가없고및편석발생도매우 관형상의경우, 인장강도평가가어려운경우굽힘시험 (bending) 이나평편시험 (flattening) 을실시하여기계적강도를평가한다. 본연구에서는직경 5 mm의정밀관용접부를 ASTM E290 의 V-굽힘을모사하여, 시험편을 90도구부린후용접부상부비드의균열여부를관찰하였다. Table 에서와같이언펄스완전용입용접부를평가한결과, 용접전류 30 A, 용접속도 mm/s, 아크길이 1.5 mm 및용접전류 40 A, 용접속도 mm/s, 아크길이 1.0~1.5 mm 조건의용접부에서파단현상이관찰되었다. 펄스조건에서는 Table 8과같이용접전류 60/20 A, 용접속도 mm/s, 아크길이 1.0 mm 조건에서국부적으로비드폭이아주좁게생성된이면비드부분에미세한파단이발생하였다. 용접부표면의변색정도를나타낸 Table 5와 Table 의굽힘실험결과를비교하면, 용접부상부비드표면이금속광택을잃고청백색으로변색이된모든펄스용접부에서굽힘시험후크랙이발견되었다. 지난연구에서 Ti 용접부표면이금속광택없는청백색으로변하면산화에의해연성이저하된다고보고하였다 16). 따라서용접부산화물또는질화물형성에의한변색을방지또는저감할수있는펄스용접조건에서보다우수한굽힘특성을가지는용접부를확보할수있었다. Table Bended tubes for unpulsed conditions 30 40 大韓熔接 接合學會誌第 32 卷第 6 號, 2014 年 12 月 589

54 민성환 안성용 박지태 박영도 강남현 Table 8 Bended tubes for pulsed conditions 45/15 60/20 4. 결론 본연구는두께 mm 외경 φ5의순수타이타늄 (CP grade) 정밀관을사용하여, 펄스및언펄스 GTAW 조건에따른용접부의건전성, 변색, 굽힘파단을연구하였다. 1) 타이타늄정밀관의조관품질및용접열변형을극복하여용접부의직진도와갭을개선할수있는지그를설계및제작하여, 언펄스및펄스용접조건을최적화하였으며, 크랙, 용락및기공이없는부분 / 완전용입용접부를획득하였다. 2) 용접전류가높고용접속도가느리며아크길이가짧은용접조건에서용접부의비드너비가증가하였다. 또한언펄스용접에비해펄스용접은동일한용접속도일경우낮은입열량을가지고있어용락현상이감소하여, 넓은공정윈도우를가지고서부분 / 완전용입이가능하였다. 3) 완전용입언펄스용접 Ti 정밀관의굽힘시험에서크랙을보인용접부의이면비드는모두금속광택을잃은청백색으로의변색이있었다. 금속광택을잃은청백색으로의변색은용접부의연성을저감할수있으므로, 금속광택을유지하는은백색의이면비드를얻을수있는저입열펄스용접기술을이용하여더욱우수한굽힘특성을가진용접부를제작할수있었다. 4) 타이타늄용접부는 O, N 등침입형원소의고용에의해생성되는 basket weave 및 serrated α 미세조직이관찰되었다. 저입열의펄스용접조건에서는펄스에의한용융액의활발한유동때문에결정립성장이억제되어, 언펄스용접부의미세조직보다미세화된결정립이관찰되었다. 5) 본실험의용접조건범위에서는용접속도및아 크길이의차이, 펄스용접으로인한결정립미세화가경도에미치는영향이크지않은것을확인하였다. 그러나 Ti 용접시산화또는질화물생성에의한변색과경도및굽힘특성의연관성은더욱체계적인연구가필요할것으로판단된다. Reference 1. 이용태 : 타이타늄, 한국철강신문, 9 (in Korean) 2. R. L. Little : Welding and Welding Technology, Mcgraw- Hill Book Co., (193) 21 3. W.R. Oates, A.M. Saitta : Welding Handbook, vol. 4, eighth edition., AWS, (1998) 488 4. Yoon, Byoung-Hyun, Kim, Suk-Hwan, Chang, Woong- Seong : Recent Trends of Welding Technology for Ti and Ti Alloys, Journal of KWJS, 25-5 (), 22-28 (in Korean) 5. Thomas BG, Beckermann C : Modeling of casting, Welding and advanced solidification process VIII. Warrendale, PA, The minerals, Metals and Materials Society (1998) 6. Kawahito Yousuke, Kito Masayuki, Katayama Seiji : In-process monitoring and adaptive control for gap in micro butt welding with pulsed YAG laser, Journal of physics. D, applied physics, 40-9 (), 292-298. Richter K., Behr W., Reisgen U : Low Heat Welding of Titanium Materials with a Pulsed Nd:YAG Laser, Materialwissenschaft und Werkstofftechnik, 38-1 (), 51-56 8. LIN Mau-Chin, LIN Sheng-Chieh, WANG Yu-Tsai : Fracture Resistance of Nd:YAG Laser-welded Cast Titanium Joints with Various Clinical Thicknesses and Welding Pulse Energies, Dental materials journal, 26-3 (), 36-32 9. Balasubramanian M., Jayabalan V., Balasubramanian V. : Optimizing pulsed current parameters to minimize corrosion rate in gas tungsten arc welded titanium alloy, International journal of advanced manufacturing technology, 39-5/6 (8), 44-481. Casalino G, Ludovico A.D : Finite element simulation of high pulse welding of high specific strength metal alloys, Journal of materials processing technology, 19-1/3 (8), 301-305 11. Jong-Do Kim, Myung-sub Kwak : Lab Weldability of Pure Titanium by Nd:YAG Laser, Journal of the Korean Society of Marine Engineering, 32-2(8), 315-322 (in Korean) 12. Yang Mingxuan, Qi Bojin, Cong Baoqiang : Effect of pulse frequency on micro-structure and properties of Ti-6Al-4V by ultrahigh-frequency pulse gas tungsten arc welding, International journal of advanced manufacturing technology, 68-1/4 (20), 19-31. Yang Z., Qi B., Cong B. : Effect of pulse frequency on weld appearance behavior of TC4 titanium alloys, 590 Journal of Welding and Joining, Vol. 32, No. 6, 2014

GTAW 펄스용접조건에따른타이타늄정밀관의용입, 변색및굽힘특성 55 Transactions of the China Welding Institution, 34-12 (20), 3-40 14. Torkamany M.J, Malek Ghaini F., Poursalehi R : Dissimilar pulsed Nd:YAG laser welding of pure niobium to Ti-6Al-4V, Materials & design, 53 (2014), 915-920 15. S. Sundaresan, Janaki Ram G.D., Madhusudhan Reddy G : Microstructural refinement of weld fusion zones in α-β titanium alloys using pulsed current welding, Materials science & Engineering, A262 (1999), 88-0 16. Chae-Hun, Lee : Electron beam weldability of commercially pure titanium and Ti-6Al-4V alloy, Proceedings of KWJS, 48 (), 360-362 (in Korean) 大韓熔接 接合學會誌第 32 卷第 6 號, 2014 年 12 月 591