Chapter6 Properties and Applications of Metals 강의명 : 기계재료공학 (MFA9009) 정영웅창원대학교신소재공학부 YJEONG@CHANGWON.AC.KR 연구실 : #52-208 전화 : 055-213-3694 HOMEPAGE: HTTP://YOUNGUNG.GITHUB.IO
Intro 새로운재료의개발이주업무가아닌엔지니어라면재료와관련된대부분의문제는특정한응용에필요한적절한특성을갖는재료를선택하는것이다. 재료선택의결정에참여하는엔지니어는가능한선택에대한지식을가지고있어야한다. 이번장에서는중요한상용 (commercial) 합금의종류와성질그리고응용에있어서의한계점들을간단히살펴보도록하겠다. 금속합금은크게두종류로나뉜다. 철합금 (ferrous alloy) 과비철합금 (non-ferrous alloy).
철합금 Ferrous alloy 주성분이 Fe. 다른어떤합금보다광범위하게사용되며, 공학구조용재료로써매우중요하다. Fe이광범위하게사용되는이유 : 1) 지구상에풍부 2) 비교적저렴하게 3) 철합금은광범위한영역의기계적 / 물성적성질을갖는다.
Metal alloys Metal Alloys Ferrous Nonferrous Steels <1.4 <1.4wt%C wt% C Cast Irons 3-4.5 wt%c C 1600 δ 1400 1200 1000 T(ºC) γ austenite γ + L 1148ºC L L+ Fe 3 C Eutectic: 4.30 microstructure: ferrite, graphite/cementite Fe 3 C 도사실은 Meta stable; Fe 3 C-> 3Fe+C 로바뀐다 ( 아주긴시간필요 ) α ferrite 800 600 α +γ 727ºC Eutectoid: 0.76 γ + Fe 3 C α + Fe 3 C Fe3C cementite 400 0 1 2 3 4 5 6 6.7 (Fe) C o, wt% C
강鋼 (steel) Fe-C alloy (Carbon wt% < 1.4% - 탄소농도에따라저탄소, 중탄소, 고탄소강분류 ) 탄소외에도상당히많은양의다른합금원소 (alloying element) 를포함한다. 조성 (chemical composition) 과열처리 (heat treatment) 에따라다양한종류가존재한다. 기계적성질은탄소의함량 (carbon content) 에큰영향을받는다. 순탄소강 (plain carbon steel) 은 Carbon 이외에잔류하는미량의타원소존재 ( 그리고약간의망간 Mn) 합금강 (alloy steel) 은상대적으로더많은합금원소를특정농도만큼첨가한다.
탄소농도에따른강분류 저탄소강 중탄소강 고탄소강 <0.25 <0.6 <1.4 0.25 0.6 1.4 Steels <1.4 wt% C Cast Irons 3-4.5 wt% C
탄소외의합금원소여부에따른분류 강 (steel) 의분류법은두가지 : 탄소함유량에의한분류 탄소에합금원소가있는지없는지 저탄소강 중탄소강 <0.25 <0.6 고탄소강 <1.4 Plain-carbon steel (Fe + C) - 순탄소강 Alloy steel (Fe + C + Ni, Cr, Mo, Mn, V, Ti, ) - 합금강
저탄소강 강 (steel) 중에가장많이생산된다 (Carbon ~ 0.4 wt%) Martensite 열처리에반응하지않는다. Microstructure( 미세구조 ) 는주로 Ferrite+Pearlite 우수한연성과인성 기계가공성이좋다 연성이높으니까 용접성이좋다 합금원소가많지않다! 다양한응용 ( 차체, 건축, 판재, 깡통 ) HSLA: High Strength Low-Alloyed carbon steel addition of Cr, V, Ni, Mo. 순저탄소 (plain low-carbon steel) 에비해 hard, strong. 내부식성이상대적으로높다
중탄소강 Medium-carbon steel; 탄소함유량이 0.25~0.60 wt% 열처리과정 : Austenitizing ( 오스테나이트상으로변태 냉각열처리 / 상변태의시작상태로 ) Quenching ( 급랭 martensite 생성 ) Tempering (martensite 의취성을낮추고, 연성과인성을높이는열처리 ) Plain medium-carbon steel ( 즉탄소외의다른합금원소없는중탄소강 ) 의경우위의열처리가표면에국한하여나타난다. 내부까지 tempered martensite 를갖기위해서는 pearlite/bainite nose 를더욱뒤로 shift 할필요 Cr, Ni, Mo 등을첨가. Hardenability ( 경화능개념 )
고탄소강 High-carbon steel; 탄소함유량이 0.60~1.40 wt% 탄소강중에서가장경하고강하다 ( 일반적으로탄소함유량높을수록 ). 그리고가장낮은연성. 높은내마모성이요구될때 (wearability) 공구강 (tool steel), 다이용강 (die steel) Cr, V, W, Mo ( 고탄소합금강 )
스테인리스강 ( 대표적인합금강 ) 내부식성매우우수 ; 표면이미려 필수적인합금원소는 Cr. 적어도 11 wt% 이상필요 (passive film) 주된상이 Martensite or Austenite or Ferrite; 따라서주된상에따라 stainless 세종류로나뉠수있다. Austenite stainless steel 이가장흔하게많이쓰인다. Ni 필요 18-8 (Cr, Ni wt%); 최근 Ni 가격상승으로대체 STS 개발요구된다. Austenite stainless steel 은자성이없다.
Review on nomenclature (North America) Nomenclature for steels (AISI/SAE) 10xx Plain Carbon Steels 11xx Plain Carbon Steels (re-sulfurized for machinability-절삭가공쉽게하기위해 ) 15xx Mn (1.00-1.65%) 40xx Mo (0.20 ~ 0.30%) 43xx Ni (1.65-2.00%), Cr (0.40-0.90%), Mo (0.20-0.30%) 44xx Mo (0.5%) where xx is wt% C x 100 example: 1060 steel plain carbon steel with 0.60 wt% C Stainless Steel >11% Cr
Steels low carbon <0.25 wt%c Low Alloy Med carbon 0.25-0.6wt%C high carbon 0.6-1.4wt%C High Alloy heat Name plain HSLA plain treatable Additions none Cr,V Ni, Mo none Cr, Ni Mo Example 1010 4310 1040 4340 1095 4190 304, 409 Hardenability 0 + + ++ ++ +++ varies TS - 0 + ++ + ++ varies EL + + 0 - - -- ++ Uses auto struc. sheet bridges towers press. vessels crank shafts bolts hammers blades pistons gears wear applic. none wear applic. Cr, V, Mo, W drills saws dies increasing strength, cost, decreasing ductility Based on data provided in Tables 13.1(b), 14.4(b), 13.3, and 13.4, Callister & Rethwisch 9e. plain tool stainless Cr, Ni, Mo high T applic. turbines furnaces Very corros. resistant
Cast iron ( 주철 ) 탄소함량이 2.14 wt% 이상인 ferrous alloy ( 철합금 ) - 대부분주철 : 3~4.5 C wt% Cast iron 은용융온도가 steel 에비해현저히낮다. (1493 <-> 1147) 따라서, 주조 (casting) 에적합 ; 사실 Brittle 한경우가많아서주조외의가공법을적용하기힘든측면도있다.
Fe-C phase diagram (revisited) 앞서 Fe-C 평형상태도에서 metastable 한 Fe 3 C 를평형상이라가정하고나타내었다. 주철의경우 cementite 가열처리에의해평형상인흑연 (graphite) 으로변태하는다음의반응이발생하는경우가종종있다 : Fe # C 3Fe α + C( 흑연 ; graphite) 따라서다음과같이 Fe-C 상태도가더욱적절하다. 다만흑연의생성되는경향은조성과냉각속도 ( 열처리조건 ) 에영향을받는다. Si 가흑연생성을촉진하는역할을하기도. Si forces carbon out of (liquid or solid) solution graphitizing agent Low percentage of Si allows carbon to remain in solution forming iron carbides
회주철 (gray cast iron) 파괴시의단면적 (fractograph) 이회색을띈다 graphite structure 때문에 조성 : Carbon: 2.5~4.0 wt% Silicon : 1.0~3.0 wt% (Si: 흑연생성촉진 ) 미세구조 흑연 (graphite) 이박편의형태 콘후레크 (corn flake) 모양 주로 α- ferrite 나 pearlite 의 matrix 에 graphite 가박혀있는형태 물성 흑연의박편모서리가뾰족하여응력집중인자역할. 인장응력상태에서낮은강도, 그리고 brittle 압축응력상태에서비교적높은강도, 연성. 진동에너지흡수에매우효과적 응용 진동에노출되기쉬운기계의지지구조 ; 무거운장비 ; 기타 : 매우저렴. 마찰에대한내성이좋다. 고온에서유동성이좋아 (Si) 복잡한형태의제조가능.
회주철의미세구조조정 조성변화와다양한열처리를통해 연성 ( 또는구상 ) 주철 백주철 가단주철 ( 단조가가능한주철 ) 조밀흑연주철 (compacted graphite iron; CGI) Fast cooling leads to metastable Fe 3 C over the stable Graphite 연 (ductile) 주철 가단 (malleable) 주철
연성 ( 또는구상 ) 주철 마그네슘 / 세륨첨가 Ductile iron; or nodular ( 덩이덩이 ) iron 일반적으로 pearlite 가 matrix( 모체 ) 이나, 700 C 장시간열처리후 ferrite 기지로바뀐다 (pearlite 의 Fe 3 C 내 carbon 이 diffusion 통해뭉쳐 graphite 형성 ) Ductile 한물성.
백주철 (white cast iron) 낮은 Si (1.0wt% 미만 ) 주철에서급속냉각을통해 cementite 상을얻는다. 이합금의파단면 (fractograph) 이백색의외관을띄어백주철 (white cast iron) 이라고부른다 (due to cementite) 두꺼운주철의생산공정중에급속히냉각될수있는표면층에백주철이보일수도있다. 그경우회주철은내부 (interior) 의더욱느리게냉각되는영역에서생성. Cementite 상의비율이높다 ( 낮은 Si). 매우 brittle 하지만매우강하다. 응용 : 매우단단하고표면의강한내마모성이필요한분야. 압축기의롤러 가단주철생산의주원료. Fast cooling leads to metastable Fe 3 C rather than the stable Graphite
회주철/백주철 미관 Fe + Graphite Moderate/slow cooling + High Si Fe + Cementite Fast cooling + low Si
가단주철 백주철을 800~900 C 에서가열하면 cementite 가분해되어흑연생성 ( 하루 / 이틀가열 + 하루 / 이틀냉각 ). 흑연상은냉각속도에따라응집형 (cluster) 또는장미형 (rosette) 으로나타난다. 매우낮은냉각속도하에서 surface tension 의작용으로 spheroidal shape 으로흑연이석출된다. 높은강도와상당한연성 ( 따라서단조가능 가단이라는명칭 )
조밀흑연주철 (compacted graphite iron, CGI) 회주철 ( 박편 ) 과연성 ( 구상 ) 주철의중간형태의미세조직을가진다.
Graphite vs. Cementite in Cast Iron Phase Stability Graphite Stable Cementite Meta-stable Cooling rate Si effect Type of Cast iron Prefers slow High Si promotes Graphite formation Gray Prefers fast White
Non ferrous alloys 철합금의단점 상대적으로높은밀도 낮은전기전도도 일상분위기에서의낮은내부식성 ( 스테인레스제외하고 ) 더이상적인물성을가진합금이필요한곳이있다. 성형 / 가공성에따른분류 주조합금 (cast alloy); brittle 하여가공에필요한소성변형이어렵다. 단조합금 (wrought alloy): 소성변형이가능한경우 열처리에의해기계적강도가높아질수있는합금을우리는 열처리가가능한합금 이라한다 heat treatability ( 열처리가능성 )
다양한비철합금 내화합금 귀금속
구리및구리합금 순수구리는연성이높아냉간가공이매우쉽다. 하지만절삭 (machining) 이어렵다. 내부식성이높다. 구리합금은대부분열처리에의해경화나강화되지않는다. 따라서냉간가공을통한물성향상이주로행해진다. 합금 : 황동 (brass): Substitutional alloy with Zinc 청동 (bronze): Cu + Tin, Al, Si, Ni 황동보다단단하고좋은내부식성. Be-Cu: 우수한특성 ; 높은인장강도와전기적성질. 내부식성, 내모마성등이높다. Heat-treatable. 하지만제조원가가높다 (Be 비쌈 )
알루미늄및알루미늄합금 FCC 결정구조 밀도가낮다 (2.7 g/cm 3 ; steel: 7.9 g/cm 3 ) 높은전기 / 열전도성 대기에서높은내부식성 ; 비교적높은연성으로성형가공이용이하다 알루미늄호일 기계적강도는냉간가공과합금화에의해증가. 석출경화를일으키는합금도있다. 저밀도경량합금 (+Mg, Ti) 명명법 네자리숫자 ( 합금 ) + 열처리기호
마그네슘및마그네슘합금 밀도가매우낮은구조용금속 (1.7 g/cm 3 ) 비행기부품, 차체의경량화를위한금속으로써많은연구가활발히. 내부식성낮고, 점화가쉽다 ( 발화가능성높음 ) 각종모바일기기, 컴퓨터, 자동차등등.
타이타늄과타이타늄합금 비교적낮은밀도 (4.5 g/cm 3 ) 높은용융점 (1668 C) 인장강도가 1400 MPa 연성이높고, 단조, 기계가공이가능하다. 상온에서안정한 # 상의경우 HCP 결정구조. 883 C 에서 HCP상이 BCC-$ 상으로로변태 합금원소에의해 # $ 상의안정성이달라진다. 합금으로인해상온에안정화된 $ 상타이타늄합금
고용융점금속 특별히높은용융온도 (melting temperature) 를갖는금속들을 refractory metal( 고용융점금속 ) 이라고부른다 내열금속 Nb, Mo, W, Ta 등이대표적인고용융점금속 Melting T of Nb: 2468 C, W: 3410 C 텅스텐이금속중가장높은용융점가진다.
초합금 (superalloy) 최상의성질을갖는합금 - 고온과가혹한산화분위기에장시간노출되는비행기의터빈부품등에사용된다. Co, Ni, Fe. Inconel, Rene 등이널리알려진 superalloy.
귀금속 (noble metal) 산화와부식에강하고, 비싸고 ductile. 열에강한특징. Ag, Au, Pt, Pd, Rh, Ru, Ir, Os
Summary Steel / Cast iron Low/medium/high carbon steels. Plain carbon steel / alloy steel (such as stainless steel) Cast iron Gray cast iron Ductile cast iron White cast iron Malleable cast iron Non ferrous alloys