DBPIA-NURIMEDIA

Similar documents
DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

DBPIA-NURIMEDIA

fm

DBPIA-NURIMEDIA

<3036C0FAC0DAC6AFC1FDBCF6C1A42D3637B1E8B5BFC0B15B315D2E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

14.531~539(08-037).fm

DBPIA-NURIMEDIA

untitled

12.077~081(A12_이종국).fm

패션 전문가 293명 대상 앙케트+전문기자단 선정 Fashionbiz CEO Managing Director Creative Director Independent Designer

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

Lumbar spine

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

???춍??숏

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

10(3)-10.fm

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

012임수진

<30342DC0FAC0DABCF6C1A42DC6AFC1FD3132B9DABFB5B5B55F76312E687770>

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: * The

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

139~144 ¿À°ø¾àħ

DBPIA-NURIMEDIA

<30392DC0FAC0DA2DC3D6B5BFBCF82D2E687770>

DBPIA-NURIMEDIA

<30322DC0FAC0DABCF6C1A42D3630C6AFC1FD5FC0CCC1BEC7A55B315D2DBCF6C1A42E687770>

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

10(3)-09.fm

433대지05박창용

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

DBPIA-NURIMEDIA

Æ÷Àå½Ã¼³94š

DBPIA-NURIMEDIA

<30392DB1B3C1A45FBCF6C1A42DB1E8C3B6C8F E687770>

DBPIA-NURIMEDIA

<31302DC0FAC0DABCF6C1A42D3431B9DAB9CEC8A32E687770>

04_이근원_21~27.hwp

DBPIA-NURIMEDIA

ePapyrus PDF Document

PJTROHMPCJPS.hwp

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

Microsoft Word - KSR2014S039

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할


12(4) 10.fm

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

< B1E8B5BFC0B12E687770>

DBPIA-NURIMEDIA

<31322DB9DAC1A4BFF52DB0EDC0AFBAAFC7FCB5B5B3EDB9AE32356D6D5F B315D2E687770>

82-01.fm

(

08원재호( )

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<30382DC0FAC0DABCF6C1A42D3739B9CEBCBAC8AF5F E687770>

<3039BCF6C1A4C8C42DC6AFC1FD28B8F0B4CFC5D8292DC8B2B5BFBCF62E687770>

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

Microsoft Word - KSR2013A320

<30332DC0FAC0DAC6AFC1FD2DC0CCB1A4C1F85FC7D0C8B8BCF6C1A42E687770>

Transcription:

0 연구논문 추환수 * 조상명 **, * 부경대학교대학원소재프로세스공학과 ** 부경대학교신소재공학부소재프로세스공학전공 A Study on the Buckling in Fillet Welds of Sheets Hwan-Su Chu* and Sang-Myung Cho**, *Dept. of Materials Processing Eng., Graduate School, Pukuong National Univ., Busan 0-739, Korea **Div. of Advanced Materials Sci. and Eng., Dept. of Materials Processing Eng., Pukyong National Univ., Busan 0-739, Korea Corresponding author : pnwcho@pknu.ac.kr (Received November, 200 ; Revised December 11, 200 ; Accepted April 2, 2009) Abstract The structures distorted by welding have to be corrected. Since the correcting work needs a lot of costs and time, it is very important to minimize the buckling distortion due to welding of thin plate structure. Therefore the aim of this study is to investigate the effect of single bead on plate welding and fillet welding on the buckling distortion. In the single bead on plate welding, it was found that the welding speed and welding sequence were the most dominant factors on distortion. In the fillet welding, there were four typical buckling modes observed, and the welding sequence was the most influential factor on the buckling distortion. However typical distortion measuring method is not considered for the distortion correcting process costs of each buckling modes, therefore, in this study, the measuring method is developed to classify the buckling modes for torsion of specimen and buckling distortion depend on nodal point for the bead on plate welding specimen and fillet welds. Key Words : Thin plate, Distortion correcting process cost, Buckling distortion, Single bead on plate welding, Fillet welding, Buckling mode, Welding speed, Symmetric welding sequence 1. 서론 최근선체중량의경량화를위해박판의사용비율이증가하고있으며, 특히여객선이나 PCTC(Pure car and truck carrier) 선과같이다수의갑판을갖는선박에서는상당량의박판이사용되고있다 1). 박판의용접시용접선방향으로의종수축과압축잔류응력으로인한좌굴변형이빈번하게발생되어변형교정작업에많은시간과비용이소모된다 1). 용접조립시에는용접구조물의변형상태를최소로제어하는것이매우중요하다. 용접변형을줄이기위한방법으로는입열량을낮게하는것과 열및기계적하중을이용한용접수축하중의이완등의방법이있다 2). 하지만박판에대한변형교정공수를고려한변형모드의구분과변형량측정방법에대한연구는그다지찾아볼수없었으므로그에대한연구가필요한실정이다. 본연구에서는단일비드온플레이트용접과필릿용접에서의좌굴변형모드구분과좌굴변형량에대해정량적인방법을제시하기위해싱글비드온플레이트마그 (MAG) 펄스용접에서용접조건과구속조건, 냉각조건 3) 및용접순서 ) 에따른좌굴변형과필릿용접에서의변형형태와변형량을측정하여특징을구분하고정량화시켰다.

1 2. 사용재료및실험방법 2.1 사용재료 본연구에서는두께 3mm의 SS00박판을사용하였다. 비드온플레이트용접용시험편크기는폭 150mm, 길이 300mm이고, 필릿용접용시험편크기의웹은폭 30mm, 길이 300mm이고, 플렌지는비드온플레이트용접과동일한크기의시험편을사용하였다. 펄스MAG용접에는 Φ1.2mm 의솔리드와이어를썼다. OTC의 DP-500용접기와 YASKAWA의 축다관절로봇으로용접하였다. 본연구에사용된모재의화학조성과기계적특성을 Table 1과 2에나타내었다. Table 3 Materials of insert and distance of steel bars for fixing condition of base metal Fixing condition DSB (mm) Insert Backing plate(t) Free N/A Cu Steel bar only 30 N/A Cu Long distance 0 N/A Cu Heat insulated 30 N/A Insulator Heat conducted 30 Cu Cu 2.2 실험방법 본연구에서는시험편중앙에하나의비드용접을실시한비드온플래이트시험편과 T이음의필릿용접부양쪽에용접하여얻어지는필릿용접시험편으로구분하여실험하였다. 2.2.1 비드온플레이트용접실험방법 FIg. 1은각실험에서이용한구속방법의모식도이며 D SB 는구속재간거리를나타내고구속재간거리의중심에용접비드가놓인다. D SB (Distance of Steel Bar), 삽입재, 백킹플레이트는 Table 3의조건대로구속재의위치와재료를달리하여실험하였다. 대칭법은하나의비드를여러개로나누어용접하며, 나누어 Table 1 Chemical composition of SS00 (Wt. %) Fig. 2 Schematic of symmetric welding sequence (bead on plate) 진비드로인해조그만변형현상을갖는조각들이전체적으로볼때는용접물의형태에중요치않게되는변형형태를가지게만드는후퇴용접기술 5) 의응용이며 Fig. 2는대칭법의용접순서를모식도로나타낸것으로센터우선대칭법은 a, b, c순서로, 엔드우선대칭법은 1, 2, 3의순서로정의하여용접하였다. (1) 구속유 / 무에서용접속도에따른변형실험 구속유 / 무에서용접속도에따른변형을동일용착단면적에서용접속도의증감에따른변형량을관찰하기위해실험을하였으며자세한용접조건은 Table 에나타내었다. C Si Mn P S 0.15 0.2 0.1 0.13 0.17 Table Experimental condition of the effect of welding speed on distortion of bead on plate welding Table 2 Mechanical properties of SS00 Base metal Wire Mild steel(150 500 3t) Solid(ø1.2) Yield strength (MPa) Tensile strength (MPa) Elongation (%) 31 1.7 2 Fixed Deposited metal area 9.02mm 2 Shield gas Ar CO 2 20%(MAG), 20l/min Backing plate Cu Welding speed(cpm) 150 120 90 0 30 Exp.1 Current(A) 337 2 222 150 79 Voltage(V) 2. 22. 22.1 20.2 1. CTWD(mm) 22.5 20.5 17. 15.0 13.0 Progressive angle Forehand 15 0 Fig. 1 Schematic of fixing condition(bead on plate) DSB(mm) (2) 구속거리에따른변형실험 30, 大韓熔接 接合學會誌第 27 卷第 3 號, 2009 年 月

2 추환수 조상명 Table 5 Welding speed(cpm) 150 Current(A) 337 Fixed Voltage(V) 2. CTWD(mm) 22.5 Progressive angle Forehand 15 Exp.2 D SB(mm) 30, 0, Exp.3 Exp. Experimental condition of DSB, type of fixture, sequence order Type of fixture Sequence order Steel bar only Heat insulated Heat conducted Sequential Center first Ends first 구속간거리 (D SB ) 에따른변형량을관찰하기위한실험으로 D SB 를 30, 0, 로나누어실험하였다. 자세한용접조건은 Table 5의 Exp.2 에나타내었으며, 이때사용된백킹플레이트는 Cu판이었다. Fixed Exp. 5 Table Welding condition of fillet welding Base metal Mild steel (150 500 3t, 30 500 3t) Leg length 5.25mm Welding speed(cpm) 90 Current(A) 315 Voltage(V) 25.2 CTWD(mm) 20 Progressive angle Forehand 25 Teaching point 0.5mm DSB(mm) 3 Sequence order Same direction : SD Opposite direction : OD Ends first :EF Center first : CF (3) 구속재의열전도도에따른변형실험 Table 5의 exp. 3은구속재의열전도도에따른변형량을알기위한실험조건이며 D SB 는 30mm 로고정시켰다. 이때의구속방법은 Table 3에나타내었다. Fig. 3 Schematic of same direction welding (fillet welding) () 대칭법에따른변형실험 Table 5의 exp.는대칭법에따른변형량을알기위한실험조건으로 D SB 를 30mm 로고정하였다. 먼저순차적으로한번에용접비드를형성한것과 Fig. 2의대칭법으로실험하였다. Fig. Schematic of opposite direction welding (fillet welding) 2.2.2 필릿용접실험방법용접변형량이가장작게나온대칭법을비드온플레이트용접뿐만아니라필릿용접에도적용할수있는지를검토하였다. Table 은필릿용접에사용된용접조건을나타내며비드온플레이트용접과는달리건전한비드를확보하기위해각장 5.25mm로설계하여순방향, 역방향, 센터우선대칭법, 엔드우선대칭법으로실험하였다. 순방향용접은 Fig. 3에보이는것처럼두용접방향을서로같은방향으로, 역방향용접은 Fig. 처럼용접방향을서로반대방향으로하여용접하였다. 대칭법은여러가지용접순서를고려하여, 각변형이최소가되면서입열이대칭적으로되는용접순서를 Fig. 5에나타내었으며센터우선대칭법은 a, b, c, d, e, f의순서로엔드우선대칭법은 1, 2, 3,, 5, 의순서로용접하였다. Fig. 5 Schematic of symmetric welding(fillet welding) 3. 실험결과및고찰 3.1 비드온플레이트시편의변형 실험후변형량은변형된시험편을정반위에옆으로세워용접시작부와끝부분에실을접촉시켜팽팽하게당긴후실과시험편까지의거리를변형량으로정의하여측정하였고용융효율 (Melting Efficiency) 을계산하기위해시험편의단면을연마하여부식한후오토캐드로디지타이징하여식 (1), (2) 를이용하여계산하였다.

3 M = A C SW ρ (1) 여기서, M은용융속도 (g/sec), Ac는용융단면적 (mm 2 ), S W 는용접속도 (mm/sec), ρ는밀도 (g/mm 3 ) 이다. (a) type distortion (b) U type distortion Melting efficiency = t 0 M E t I U dt 여기서, E는감열 + 잠열 (J/g), I는전류 (A), U는전압 (V), t는시간 (sec) 이고전류와전압은계측장비를통해측정된측정값을사용하였다. 3.1.1 구속유 / 무에서용접속도에따른변형의경향 Table 7은자유상태의시험편의변형을나타낸모식도로토치가용접시작부, 50%, 그리고끝에있을때를나타내었다. 아크개시후토치가 50% 위치에서용접이완료된부분이응고되면서발생하는인장응력으로시작부가떠올랐고, 토치가용접선의끝에가까워지면시험편의끝부분이인장응력으로인해변형이이미발생되어떠오른것이관찰되었다. 0cpm 과 30cpm 속도에서는용접완료후비드가있는면을위로하여 U 자형태로변형이완료되었으나 90cpm 이상의용접속도에서는용접완료후 50초정도를기점으로변형이 형태로변형이완료되었으며그형태를 Fig. 에모식도로나타내었다. 변형량은 Table 과 9에서보이듯이용접속도가증가할수록변형량은감소를하였고용융효율이증가하였다. 이는용접속도의증가로용융효율이증가하고그로인해변형량이감소하였다는 S. J. Yun ) 과 Y. D. Moon 7) 의연구결과와일치한다. Fig. 7과 은용접속도에따른변형량과용융효율을나타낸다. Table 7 Distortion motion with torch position on welding process on free fixing condition (2) Fig. Schematic of distortion motion after welding by the passage of time ( : just after arc off, : after 50s, : after 0s) Table DSB 30 Table 9 DSB Distortion and welds shape with various welding speed on D SB welding speed (cpm) Welds shape Distortion (mm), type 30 19.0, U 0 1.0, U 90 13.0, 120 11.0, 150 12.0, 30 7.5, U 0 7.2, U 90 7.2 U 120.0, U 150 5.0, U Cross section, ME and Heat input with various welding speed on D SB Welding speed (cpm) Cross section Cross section area (mm2) Heat input (J/mm) ME (%) 30 13.01.0 5. 0 1.22 7.52 53.1 Torch position on BM Shape of specimen 90 15.1 7.27 5. 120 15.57 7.05 2.1 Start 150 1.2.9 5. 30 12.5.05 3. 50% 0 13.79 7.53 51.5 30 90 15. 7.25 59.9 End 120 1.9 7.11 59.2 3.1.2 구속거리에따른변형실험결과 150 15.91.9.1 大韓熔接 接合學會誌第 27 卷第 3 號, 2009 年 月

추환수 조상명 20 1 1 1 12 0 30 0 90 120 150 10 Welding speed(cpm) Free 30mm fixed Fig. 7 Distortion with various welding speed on free & 30mm fixed 20 1 1 1 12 30 0 [free] D SB (mm) Fig. 9 Distortion and melting efficiency with DSB 5 0 55 50 5 0 Melting efficiency(%) 5 Melting efficiency(%) 0 55 50 2 5 0 30 0 90 120 150 Welding speed(cpm) Free 30mm fixed Fig. Melting efficiency with various welding speed on free & 30mm fixed 0 Steel bar Heat conducted Heat insulated Fig. Distortion with type of fixture 용접속도가빠를수록용융효율의증가로인해변형량이감소하므로가장빠른용접속도인 150cpm으로용접이실시되었다. Fig. 9에 D SB 에따른변형량을그래프로나타내었다. 비슷한입열량이라하더라도 D SB 가짧은경우변형량이더감소하였으며, 이는용접부가자유롭게변형할수있는공간이 D SB 가긴경우보다더작으므로변형이더작게된것으로보인다. 2 0 Sequential Ends first Center first Fig. 11 Distortion with various welding sequence 3.1.3 구속재의열전도도에따른변형실험결과 Fig. 은구속재별변형량을나타내었다. 단열 (heatinsulated) 구속, 스틸바구속, 흡열 (heat conducted) 구속순으로변형량이감소하였다. 즉입열량은비슷하더라도열전달이잘되는구속재를사용하면변형량은더욱감소하였다. Ju Li et al. 는 GTAW 용접에서용접중용접부바로뒤에 CO 2 가스를분사시켜용접부의를급랭시켜변형량을획기적으로줄인바 3) 가 있으며본실험에서도냉각속도를빠르게하기위해열전도도가스틸바보다 5배정도높은구리판을사용하여용접을하였으나 CO 2 가스로냉각시키는것보다냉각효율이떨어져변형량의감소폭이작은것으로판단된다. 3.1. 용접순서에따른변형실험결과구리판을삽입재로넣는방법이변형량이가장작지

5 만그감소폭이미미하여작업성이비효율적이므로여기서는스틸바만을사용하여용접을실시하였다. Pierluigi Mollicone et al. ) 은박판용접의좌굴변형감소 에있어 균형적입열 (Balanced heat input) 을강조하였고, 용접접합편람 ) 에서는변형감소를위해용접선길이의감소를강조하였다. 이에본연구에서는동일한용접선의길이를 3개로나누어용접선중심을기준으로균형적으로입열을주는방법을선택하였다. Fig. 11에용접순서별변형량을나타내었다대칭법을사용할떄가변형량이가장작았고, 변형량은순차적용접, 엔드우선대칭법, 센터우선대칭법순으로감소하였다. 센터우선대칭법이엔드우선대칭법과비교하여센터에먼저형성된용접비드가나머지부분을용접할때발생하는인장응력에대해저항하여변형량이더감소한것으로판단된다. 비드온플레이트에서변형량이가장많은자유상태용접에비해변형량이가장작은센터우선대칭법을비교했을때변형량은 70% 정도감소하였다. 3.2 필릿용접시편의변형실험결과 앞서비드온플레이트로용접한실험결과에서변형량이가장작게형성된대칭법이필릿용접에서도적용가능의여부를확인하였다. 필릿용접은비드온플래이트와는달리용접선이 2개가되어비드온플래이트에서나타나지않은비틀림변형도나타났다. 수치해석을통해박판의필릿용접에서가장지배적인 개의좌굴모드 1) 를 Fig. 12에나타내었으며본실험에서 SD는 (a) Mode 1 형태로, OD는 (c) Mode 3, EF와 CF는웹을기준으로한면은 (d) Mode 다른한면은 (b) Mode 2의형태로나타났다. 기존의좌굴변형량측정법은고저편차를이용하는고저편차변형 (Distortion from High point to Low point : D HL ) 측정법으로 Fig. 13에서보이 (a) Mode 1 (b) (a) Mode 2 Fig. 13 Nodal point Schematic of nodal point and δ with deformed flange 는것처럼시험편용접된시험편의 δ값의최대값만을나타내어필릿용접에서의좌굴변형량 1,2,9) 으로정의하였다. 그러나실제산업현장에서용접변형이생긴곳은변형교정이필요하고, 변형교정은좌굴형태에따라특히절점의수에비례하여교정에드는공수가증가되므로반드시절점수를고려한좌굴변형량과또다른변형형태인비틀림변형으로구분하여나타내어야한다. 본연구에서는변형량측정방법을절점수를고려한고저변형량 (Distorion from High point to Low point by considering Nodal point : D HLN ), 비틀림각 (Twist Angle : TA) 으로세분화시켰다. TA측정은 Fig. 1에서처럼플랜지의횡방향의한쪽끝부분을정반위에고정시키고반대쪽의비틀림각을측정하였다. D HLN 의절점수와변형량은 Fig. 13에서나타낸것처럼플랜지의길이방향의양끝아랫부분을잇는직선을기준으로절점까지의수직거리와절점의수를정의하여측정하였고아래의식 (3), () 로계산되었다. X = δ N D HLN = X R + 2 NP X 여기서, X는플랜지의길이방향쪽한면에대한변형량, δ는기준선에서절점까지의수직거리 (mm), NP는절점의수이다. Table 은용접후변형형상과측정방법에따른변형량을조건에따라나타내었으며 D HL 은 OD, SD, EF, CF순으로작아졌고, D HLN 은 EF, CF, SD, OD순으로작아졌으며 TA는 EF, OD, SD, CF순으로작아졌다. L (3) () (c) Mode 3 (d) Mode Fig. 12 Buckling modes for fillet welding 1) Fig. 1 Schematic of measuring twisted angle 大韓熔接 接合學會誌第 27 卷第 3 號, 2009 年 月

추환수 조상명 Table Welds shape and distortion with various welding sequence Weld shape D HL (mm) D HLN (mm) TA ( ) OD.3 3.2 5.2 2 SD 5.3 5.2.1 2 EF 5.5. 7.0 3 CF 3.2 7.5 1.7 NP 려한좌굴변형과비틀림변형이라는두형태의좌굴변형모드로구분하여변형교정공수를효과적으로고려할수있는방법을제안하였다. 5) 비틀림변형에대한구속또는보강재가잘고려된필릿용접부에서는절점수를고려한좌굴변형량이가장작은역방향용접 (OD) 방법으로용접하는것이유리하고, 비틀림에대해민감한구조물이라면비틀림각 (TA) 이가장작은센터우선대칭법 (CF) 을선택하는것이교정에사용되는공수를감소시킬수있는한가지방법이될수있을것이다. 참고문헌 기존의변형량측정법인 D HL 을사용한경우 CF가변형량이가장작다고말할수있지만절점이고려되지않은변형량이므로실제산업현장에서변형교정공수까지고려한경우이용접법은최선의용접방법이라할수없다. 비틀림변형에대한구속또는보강재가잘고려된필릿용접부에서는절점수를고려한변형량이가장작은 OD의방법으로용접을하고, 비틀림에대해민감한구조물이라면 TA가가장작은 CF방법을선택하여용접하는것이변형에사용되는공수를최소화시킬수있는한가지방법이될수있을것이다.. 결론 두께3mm의박판에비드온플레이트용접과필릿용접을구속조건과용접순서를변경하여용접한후그변형특성에대해검토한결과다음과같은결론을얻었다. 1) 용접속도가증가할수록용융효율이증가하고그에따라변형량이감소하였다. 2) 비슷한입열량이라하더라도구속간거리가가까울수록변형량이감소하고, 열전달이잘되는구속재를사용하면변형량은더욱감소하였다. 3) 단일비드온플레이트용접에서대칭법을사용하였을때가장작은변형이발생하였고, 엔드우선대칭법에비해센터우선대칭법이좀더변형이작게발생하였다. ) 필릿용접부의종방향좌굴변형에서좌굴변형형태는통상 가지로나누지만, 본연구에서는절점수를고려한좌굴변형과비틀림변형이라는두형태의좌굴변형모드로구분하여변형교정공수를효과적으로고려할수있는방법을제안하였다. 1. Joo-Sung Lee and Jae-Woo Park : Application of Tensioning Method to Deformation Control of Thin Plate Fillet Weld, Journal of The Korean Society of Ocean Engineers, 22-1(200), - (in Korean) 2. Kyoung-Bok Jang, Jung-Gu Park, Jin-Hyuk Yang, Si-Hoon Cho, Tae-Won Jang : Study on the Analysis of Welding Induced Buckling Distortion in Thin Plate Block, Proceedings of the 2005 Autumn Annual Meeting of Korean Welding Society, Vol., (2005) 23-25 (in Korean) 3. Ju Li, Qiao Guan, Yaowu Shi, Delun Guo, Yuxiao Du, Yongchun Sun : Studies on characteristics of temperature field during GTAW with a trailing heat sink for titanium sheet, Journal of Materials Processing Technology, 17 (200) 32-335. Pierluigi Mollicone, Duncan Camilleri, Tom Gray : Procedural influences on non-linear distortions in welded thin-plate fabrication, Thin-Walled structures, (200) 21-3 5. Pearson Education Korea : MODERN WELDING TECHNOLOGY, 2002, 97-700 (in Korean). Seung-Jong Yun : Development of The Optimum Fillet Welding Process Considering Distribution of Penetration and Angular Distortion in Consumable Electrode Arc Welding, Master's Thesis of Pukyong National Univ. (2007) (in Korean) 7. Young-Duk Moon : The Effect of Process Parameters on Melting Efficiency in High Speed Plasma Arc Welding of EGI Thin Plate, Master's Thesis of Pukyong National Univ. (200) (in Korean). Korean welding society : Welding and Joining Handbook, Korean welding society, (199) 397-39 (in Korean) 9. Myoung-Soo Han, Hyun-Uk Kim : Prevention of Welding-induced Free Edge Buckling Distortion in Thin-plated Panels, Proceedings of the 2007 Autumn Annual Meeting of Korean Welding Society, Vol., (2007) 20-22 (in Korean)