Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology

Similar documents
À±½Â¿í Ãâ·Â

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

09권오설_ok.hwp

<4D F736F F D20C3D6BDC C0CCBDB4202D20BAB9BBE7BABB>

°í¼®ÁÖ Ãâ·Â


(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

07.045~051(D04_신상욱).fm

<BFACBCBCC0C7BBE7C7D E687770>

<4D F736F F D20C3D6BDC C0CCBDB4202D20BAB9BBE7BABB>

정보기술응용학회 발표

08원재호( )

45-51 ¹Ú¼ø¸¸

3. 클라우드 컴퓨팅 상호 운용성 기반의 서비스 평가 방법론 개발.hwp

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

감각형 증강현실을 이용한

04-다시_고속철도61~80p

<30382E20B1C7BCF8C0E720C6EDC1FD5FC3D6C1BEBABB2E687770>

½Éº´È¿ Ãâ·Â

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

김기남_ATDC2016_160620_[키노트].key

DBPIA-NURIMEDIA

hwp

#Ȳ¿ë¼®

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

WHO 의새로운국제장애분류 (ICF) 에대한이해와기능적장애개념의필요성 ( 황수경 ) ꌙ 127 노동정책연구 제 4 권제 2 호 pp.127~148 c 한국노동연구원 WHO 의새로운국제장애분류 (ICF) 에대한이해와기능적장애개념의필요성황수경 *, (disabi

Á¦1-1ºÎ

07_À±ÀåÇõ¿Ü_0317

00내지1번2번

±¹Á¦ÆòÈŁ4±Ç1È£-ÃÖÁ¾

63-69±è´ë¿µ

±èÇö¿í Ãâ·Â

hwp

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

1. 서론 1-1 연구 배경과 목적 1-2 연구 방법과 범위 2. 클라우드 게임 서비스 2-1 클라우드 게임 서비스의 정의 2-2 클라우드 게임 서비스의 특징 2-3 클라우드 게임 서비스의 시장 현황 2-4 클라우드 게임 서비스 사례 연구 2-5 클라우드 게임 서비스에

04김호걸(39~50)ok

(JBE Vol. 23, No. 5, September 2018) (Special Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

DBPIA-NURIMEDIA

11¹Ú´ö±Ô

<91E6308FCD5F96DA8E9F2E706466>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A S

untitled

2017 1

DBPIA-NURIMEDIA

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

???? 1

해외과학기술동향

<C0CCBCBCBFB52DC1A4B4EBBFF82DBCAEBBE7B3EDB9AE2D D382E687770>

DBPIA-NURIMEDIA

Ⅱ. Embedded GPU 모바일 프로세서의 발전방향은 저전력 고성능 컴퓨팅이다. 이 러한 목표를 달성하기 위해서 모바일 프로세서 기술은 멀티코 어 형태로 발전해 가고 있다. 예를 들어 NVIDIA의 최신 응용프 로세서인 Tegra3의 경우 쿼드코어 ARM Corte

30이지은.hwp

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

歯1.PDF

Data Industry White Paper

<BEF0B7D0C1DFC0E B3E220BABDC8A32E706466>

2 / 26

DBPIA-NURIMEDIA

14.이동천교수님수정

<C7D1B1B9B1A4B0EDC8ABBAB8C7D0BAB85F31302D31C8A35F32C2F75F E687770>

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

27송현진,최보아,이재익.hwp

I

0125_ 워크샵 발표자료_완성.key

,.,..,....,, Abstract The importance of integrated design which tries to i

우리들이 일반적으로 기호

삼교-1-4.hwp

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

<303038C0AFC8A3C1BE5B315D2DB1B3C1A42E687770>

04서종철fig.6(121~131)ok

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

<31325FB1E8B0E6BCBA2E687770>

01이정훈(113~127)ok

IKC43_06.hwp

10 이지훈KICS hwp

融合先验信息到三维重建 组会报 告[2]

장양수

2 I.서 론 학생들을 대상으로 강력사고가 해마다 발생하고 있다.범행 장소도 학교 안팎을 가리지 않는다.이제는 학교 안까지 침입하여 스스럼없이 범행을 하고 있는 현실 이 되었다.2008년 12월 11일 학교에 등교하고 있는 학생(여,8세)을 교회 안 화장 실로 납치하여

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

Ch 1 머신러닝 개요.pptx

Output file

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: (LiD) - - * Way to

홍익3월웹진PDF

홍익노사5월웹진용

(JH)

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

02신현화

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2


09구자용(489~500)

03±èÀçÈÖ¾ÈÁ¤ÅÂ

<313220BCD5BFB5B9CCC1B6BFF8C0CF2E687770>

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

DBPIA-NURIMEDIA

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

< BB0E6C1A65DB0F8B0B32DC1F6BDC4C0E7BBEAC0CEB7C220BCF6B1DEC0FCB8C120BFACB1B85FC0CCC1D6BFAC28C3D6C1BE292E687770>

DBPIA-NURIMEDIA


Transcription:

Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology 이승욱 (S.W. Lee, tajinet@etri.re.kr) 황본우 (B.W. Hwang, bwhwang@etri.re.kr) 임성재 (S.J. Lim, sjlimg@etri.re.kr) 윤승욱 (S.U. Yoon, suyoon@etri.re.kr) 김태준 (T.J. Kim, taejoonkim@etri.re.kr) 김기남 (K.N. Kim, rlskal@etri.re.kr) 김대희 (D.H Kim, kdh60243@etri.re.kr) 박창준 (C.J. Park, chjpark@etri.re.kr) CG/Vision연구실책임연구원 CG/Vision연구실책임연구원 CG/Vision연구실책임연구원 CG/Vision연구실선임연구원 CG/Vision연구실선임연구원 CG/Vision연구실선임기술원 CG/Vision연구실위촉연구원 CG/Vision연구실책임연구원 / 실장 ABSTRACT Recent technological advances in three-dimensional (3D) sensing devices and machine learning such as deep leaning has enabled data-driven 3D applications. Research on artificial intelligence has developed for the past few years and 3D deep learning has been introduced. This is the result of the availability of high-quality big data, increases in computing power, and development of new algorithms; before the introduction of 3D deep leaning, the main targets for deep learning were one-dimensional (1D) audio files and two-dimensional (2D) images. The research field of deep leaning has extended from discriminative models such as classification/segmentation/ reconstruction models to generative models such as those including style transfer and generation of non-existing data. Unlike 2D learning, it is not easy to acquire 3D learning data. Although low-cost 3D data acquisition sensors have become increasingly popular owing to advances in 3D vision technology, the generation/acquisition of 3D data is still very difficult. Even if 3D data can be acquired, post-processing remains a significant problem. Moreover, it is not easy to directly apply existing network models such as convolution networks owing to the various ways in which 3D data is represented. In this paper, we summarize technological trends in AI-based 3D content generation. KEYWORDS 딥러닝, 3D 콘텐츠, 3D 딥러닝, 3D 딥러닝표준 Ⅰ. 서론 Hand Crafted Feature 1 2014 2015 DOI https doi org 10 22648 ETRI 2019 J 340402 2018 R2018030391 3D 본저작물은공공누리제 4 유형출처표시 + 상업적이용금지 + 변경금지조건에따라이용할수있습니다. 2019 한국전자통신연구원

16 34 4 2019 8 5 4 5 Convolution 2 II 2 Hand Craft Feature Discriminative Model 1 X Y P Y X X Y Generative Model 2014 Ian J Goodfellow 3 GAN Generative Adversarial Network Y X 1 P X Y X Y Many to One Mapping One to Many Mapping GitHub Cumulative number of named GAN papers by month https deephunt in the gan zoo 79597dc8c347 3 2015 2017 2018 350 3D 1

17 3D 3D II 1. 학습데이터 1 2 3 3D 3D 2 2 a b c remesh 4 2 3 3 3D 2 a 3D ShapeNet Annotated 3D ShapeNetCor 55 51 300 ShapeNetStem Shape Net Core 12 000 https www shapenet org Human3 6M 6 5 17 3 6 DB http vision imar ro human3 6m ModelNet CAD 3D 662 127 915 http modelnet cs princeton edu CAESAR DB 5 http store sae org caesar 2 3D

18 34 4 2019 8 3 Ⅱ. 인공지능기반 3D 콘텐츠기술 1. 3D 데이터표현방법 2 3 5 6 4 2 RGB 1 6 3D 5 2 4 2D 5 vs

3D 19 6 3D 3D 7 RGB D 3D 360 3D 3D 3D 3D 3D Vertex 3D 2. 표현방법에따른학습방법 7 6 3D 5 6 3D 2D RGB D

20 34 4 2019 8 7 3D 3 3D 3D 2 8 GPU 8 2 3 9 3D 16 8 RGB skip connection latent code L1 L2 loss 9 8 3D 3D Eman 6

3D 21 8 3D 3D 3. 표준화동향 10 informative NNEF Neural Network Exchange Format https www khronos org nnef 1 0 TTA Telecommunication Technology Association PG 610 2D 3D 3D http tta or kr 3D 2D 3D 9 2D 3D XML Ⅲ. 결론 3D 3D 3D 3D

22 34 4 2019 8 용어해설 Hand Crafted Feature 기존영상인식등에서사용되는특징점. 예를들어, 얼굴인식의경우외곽선의모양비율등알고리즘에서정의한몇가지요소유클리디언평면고대의수학자유클리드가정의한평면으로유클리드의기하법칙 ( 예를들어, 임의의한점에서다른점으로직선을그을수있고, 직각은모두같다 ) 이적용되는공간 Latent Code 잠재변수로차원이축소된데이터특징벡터 [1] S. Khan and S.P. Yong, A Comparison of Deep Learning and Hand Crafted Features in Medical Image Modality Classification, in Proc. Int. Conf. Comput. Inform. Sci., Kuala Lumpur, Malaysia, Aug. 15-17, 2016, pp. 633-638. [2] Taewan. Kim, CNN, Convolution Neural Network 요약, Tawan.Kim Blog, Jan. 4, 2018, Available: http://taewan.kim/ post/cnn/ [3] I.J. Goodfellow et al., Generative Adversarial Nets. in Proc. Adv. Neural Inform. Process. Syst., Montreal, Canada, Dec. 8-13, 2014, pp. 1-9. [4] https://skymind.ai/wiki/open-datasets CNN GPU RGB D Convolutional Neural Network Graphics Processing Unit Red Green Blue Depth [5] 이승욱외, 3D 딥러닝기술동향, 전자통신동향분석제 33 권제 5 호, 2018,, pp. 103-110. [6] E. Ahmed et al., A survey on Deep Learning Advances on Different 3D Data Representations, 2018, arxive 1808.01462. [7] Z. Cao et al., 3D Object Classifcation via Spherical Projections, 2017, arxiv 1712.04426. [8] H. Su et al., Multi-view Convolutional Neural Networks for 3D Shape Recognition, Sep. 2015, arxiv 1505.00880. [9] 임성재외, 한장의 RGB 영상을이용한다시점뎁스맵생성기 술, 대한전자공학회 2019 년도하계종합학술대회, 2019. 6. [10] 강대기, 딥러닝을위한인공신경망표준포맷동향, TTA 저널, vol. 179, 2018, pp. 85-90.