(JBE Vol. 20, No. 2, March 2015) (Special Paper) 20 2, (JBE Vol. 20, No. 2, March 2015) ISSN

Similar documents
(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

09권오설_ok.hwp

À±½Â¿í Ãâ·Â

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

(JBE Vol. 20, No. 6, November 2015) (Regular Paper) 20 6, (JBE Vol. 20, No. 6, November 2015) ISSN

1 : (Su-Min Hong et al.: Depth Upsampling Method Using Total Generalized Variation) (Regular Paper) 21 6, (JBE Vol. 21, No. 6, November 2016)

1 : (Sung-Ho Bae et al.: A Novel Fast and High-Performance Image Quality Assessment Metric using a Simple Laplace Operator) (Special Paper) 21 2, 2016

(JBE Vol. 20, No. 6, November 2015) (Special Paper) 20 6, (JBE Vol. 20, No. 6, November 2015) ISSN

08김현휘_ok.hwp

1. 3DTV Fig. 1. Tentative terrestrial 3DTV broadcasting system. 3D 3DTV. 3DTV ATSC (Advanced Television Sys- tems Committee), 18Mbps [1]. 2D TV (High

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

(JBE Vol. 20, No. 5, September 2015) (Special Paper) 20 5, (JBE Vol. 20, No. 5, September 2015) ISS

19_9_767.hwp

방송공학회논문지 제18권 제2호

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

09박종진_ok.hwp

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

(JBE Vol. 21, No. 6, November 2016) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ISSN

02이주영_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

DBPIA-NURIMEDIA

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

ȲÀμº Ãâ·Â

(JBE Vol. 24, No. 1, January 2019) (Regular Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

07.045~051(D04_신상욱).fm

2 : (Jaeyoung Kim et al.: A Statistical Approach for Improving the Embedding Capacity of Block Matching based Image Steganography) (Regular Paper) 22

5 : HEVC GOP R-lambda (Dae-Eun Kim et al.: R-lambda Model based Rate Control for GOP Parallel Coding in A Real-Time HEVC Software Encoder) (Special Pa

DBPIA-NURIMEDIA

02손예진_ok.hwp

1. 서 론

DBPIA-NURIMEDIA

°í¼®ÁÖ Ãâ·Â

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

03이승호_ok.hwp

(JBE Vol. 24, No. 2, March 2019) (Regular Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

DBPIA-NURIMEDIA

1 : HEVC Rough Mode Decision (Ji Hun Jang et al.: Down Sampling for Fast Rough Mode Decision for a Hardware-based HEVC Intra-frame encoder) (Special P

DBPIA-NURIMEDIA

(JBE Vol. 23, No. 4, July 2018) (Special Paper) 23 4, (JBE Vol. 23, No. 4, July 2018) ISSN

09È«¼®¿µ 5~152s

14.531~539(08-037).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

DBPIA-NURIMEDIA

2 : MMT QoS (Bokyun Jo et al. : Adaptive QoS Study for Video Streaming Service In MMT Protocol). MPEG-2 TS (Moving Picture Experts Group-2 Transport S

15( ) SAV15-18.hwp

표지

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

2 : 3 (Myeongah Cho et al.: Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method) (Special Paper) 23 2

04임재아_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

., 3D HDTV. 3D HDTV,, 2 (TTA) [] 3D HDTV,,, /. (RAPA) 3DTV [2] 3DTV, 3DTV, DB(, / ), 3DTV. ATSC (Advanced Television Systems Committee) 8-VSB (8-Vesti

<333820B1E8C8AFBFEB2D5A B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

인문사회과학기술융합학회

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

<372DBCF6C1A42E687770>

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

09구자용(489~500)

04 최진규.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

<31362DB1E8C7FDBFF82DC0FABFB9BBEA20B5B6B8B3BFB5C8ADC0C720B1B8C0FC20B8B6C4C9C6C32E687770>

10 이지훈KICS hwp

<31325FB1E8B0E6BCBA2E687770>

03-서연옥.hwp

012임수진

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

???? 1

Æ÷Àå½Ã¼³94š

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

03-16-김용일.indd


04 박영주.hwp

Æ÷Àå82š

DBPIA-NURIMEDIA

untitled

01이국세_ok.hwp

06박영수.hwp

10신동석.hwp

???? 1

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

63-69±è´ë¿µ

04김호걸(39~50)ok

1 : S-JND HEVC (JaeRyun Kim et al.: S-JND based Perceptual Rate Control Algorithm of HEVC) (Regular Paper) 22 3, (JBE Vol. 22, No. 3, May 2017)

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

3. 클라우드 컴퓨팅 상호 운용성 기반의 서비스 평가 방법론 개발.hwp

<B8F1C2F72E687770>

Left Center Right 3차원 L 비디오 C 부호화시스템 R LCR 가상시점영상 N- 시점영상출력 깊이정보맵생성 L C R 깊이정보맵 가상시점영상합성 1. 3 N- Fig. 1. N-view system with the 3-view configuration.

$08.Tech&trend

Transcription:

(Special Paper) 20 2, 2015 3 (JBE Vol. 20, No. 2, March 2015) http://dx.doi.org/10.5909/jbe.2015.20.2.204 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) 3D a), a), a) Comparison of Objective Metrics and 3D Evaluation Using Upsampled Depth Map Saeed Mahmoudpour a), Changyeol Choi a), and Manbae Kim a)., 3D. PSNR,.,.. 3D,.. DSCQS., SSIM Edge-PSNR. Abstract Depth map upsampling is an approach to increase the spatial resolution of depth maps obtained from a depth camera. Depth map quality is closely related to 3D perception of stereoscopic image, multi-view image and holography. In general, the performance of upsampled depth map is evaluated by PSNR (Peak Signal to Noise Ratio). On the other hand, time-consuming 3D subjective tests requiring human subjects are carried out for examining the 3D perception as well as visual fatigue for 3D contents. Therefore, if an objective metric is closely correlated with a subjective test, the latter can be replaced by the objective metric. For this, this paper proposes a best metric by investigating the relationship between diverse objective metrics and 3D subjective tests. Diverse reference and no-reference metrics are adopted to evaluate the performance of upsampled depth maps. The subjective test is performed based on DSCQS test. From the utilization and analysis of three kinds of correlations, we validated that SSIM and Edge-PSNR can replace the subjective test. Keyword : Depth map, Upsampling, Objective metric, 3D subjective test, Correlation

2 : 3D (Saeed Mahmoudpour et al.: Comparison of Objective Metrics and 3D Evaluation Using Upsampled Depth Map). 3D. Time of Flight(ToF) (depth map)., RGB, [1-5]. HD(High Definition) FHD (Full HD), FHD UHD(Ultra High-Definition) (upsampling). RGB+Depth, (encoder), (decoder) [1]. 3D,. (bilinear upsampling, BLU) 4. (bicubic upsampling, BCU) 16. (bilateral upsampling, BU) [2]. BU a) (Dept. of Computer and Communications Engineering, Kangwon National University) Corresponding Author : (Manbae Kim) E-mail: manbae@kangwon.ac.kr Tel: +82-33-250-6395 ORCID:http://orcid.org/0000-0002-4702-8276 / () [KI002058, IP ], [10041082]. 2014. Manuscript received December 2, 2014; revised January 27, 2015; accepted January 27, 2015. (joint bilateral upsampling, JBU) [3]. (variance based upsampling, VBU), [4]. JBU, (non-edge).,, (adaptive bilateral upsampling, ABU) [5]. (gradient) (blur) (distance transform-based bilateral upsampling, DTBU) [6]. (quality assessment, QA) PSNR(Peak Signal-to-Noise Ratio). PSNR, 3D RGB DSCQS, SSCQS (subjective evaluation),. QA,. PSNR, 3D. [7] PSNR, (Blur metric) (sharpness degree) 3D., 3D. 3D. 7 3D (correlation),.,,

. (full-reference metric) (no-reference metric). PSNR, SSIM, (sharpness degree), sharpness degree, blur metric, BIQI, NIQE. [7],,.. 2. 3, 4. 5 3 4, 6. 7.., 3D, 3D., 3D. 1. RGB (low-resolution depth map, LRD), (high-resolution depth map, HRD)., 7. HRD. DIBR(depth image based rendering) RGB HRD, [1][5]. 1(a) QA (correlation), 1(b). (Pearson), (Spearman), (Kendall) QA.. (full-reference quality assessment, FRQA) (a) 1.. (a) (b) 3D Fig. 1. Block diagram of the experiment methodology. (a) Correlation between two measurements and (b) measurement of 3D perception using objective metric (b)

2 : 3D (Saeed Mahmoudpour et al.: Comparison of Objective Metrics and 3D Evaluation Using Upsampled Depth Map) (no-reference quality assessment, NRQA)..,. FRQA NRQA. 1. FRQA 1.1 PSNR PSNR(Peak Signal to Noise Ratio) (1). log., PSNR PSNR, Edge PNSR, Non-edge PNSR. 1.2 SSIM SSIM(structural similarity index measure) [8]. SSIM,,. f, g SSIM., SSIM lfgcfgsfg l(f,g), c(f,g) s(f,g),. σ f σ g,μ f μ g, σ fg (covariance). C 1, C 2 C 3 0. SSIM [0,1], 1. 1.3 VIF VIF(Visual Information Fidelity) (fidelity) [9]. (natural scene statistics), HVS(human visual system). 2. NRQA 2.1 (Sharpness degree) [10] (3).. 2.2 (blur) (blur metric) [10]., (local maximum), (local minimum). 1., BM (4). SD

BM 2.3 BIQI BIQI(blind image quality index), NSS [11]., JPEG, JPEG2000, white noise(wn), Gaussain Blur(Blur) Fast fading(ff). p i.. BIQI q i 5 5. 2.4 NIQE NIQE(natural image quality evaluator) [12]. BIQI NIQE [0,100], 0.. 3D DIBR 3D. 423DTV DSCQS(Double Stimulus Continuous Quality Scale) [14],[15]. 12. 7, 5. 3D 3D.,. (visual fatigue). 10. 5.0,. 1. 1. Table 1. Visual fatigue evaluation 5 (slight) 4 (moderate) 3 2 (severe) 1. 3 4 3D 3. 1. (Pearson Correlation) (Pearson's correlation coefficient). [-1,1].,. 0. ρ p.

2 : 3D (Saeed Mahmoudpour et al.: Comparison of Objective Metrics and 3D Evaluation Using Upsampled Depth Map) Cov(x,y), σ x σ y. 2. (Spearman Correlation). n 1, n, 1 n. ρ s. i f x i f x i f x. 3. (Kendall's Tau Correlation) (τ) [-1, +1],... MSR, Middlebury [13], HHI, GIST 16. RGB 2., (downsampling),. 3 4 Bowling, Ballet 7. 2. RGB. MSR, Middlebury, GIST HHI. Fig. 2. RGB images and related depth maps. (Provided by MSR, Middlebury, GIST and HHI)

3. Middlebury Bowling. (a) (b)~(h) 7. (BLU, BCU, BU, JBU, VBU, ABU, DTBU ) Fig. 3. Upsampled depth maps of Middlebury Bowling using seven upsampling methods. (a) is an original depth map and (b)~(h) are upsampled depth maps obtained by seven methods. (BLU= bilinear upsampling, BCU=bicubic upsampling, BU= bilateral upsampling, JBU=joint bilateral upsampling, VBU=variance-based bilateral upsampling, ABU=adaptive bilateral upsampling, and DTBU=distance transform-based bilateral upsampling) 4. MSR Ballet. (a) (b)~(h) 7. Fig. 4. Upsampled depth maps of MSR Ballet using seven upsampling methods. (a) is an original depth map and (b)~(h) are upsampled depth maps obtained by seven methods

2 : 3D (Saeed Mahmoudpour et al.: Comparison of Objective Metrics and 3D Evaluation Using Upsampled Depth Map) 5. RGB Fig. 5. Stereoscopic images in interlaced format generated by original RGB images and upsampled depth maps. 6. 5 Fig. 6. Close-ups of images in Fig. 5 5 DIBR. 5 6,.., Image PSNR, Edge PSNR, Non-edge PSNR, Sharpness Degree (SD), Blur Metric (BM), SSIM, VIF, BIQI, NIQE, 16 2.

2.. PSNR db. (BLU, BCU, BU, JBU, VBU, ABU, DTBU ) Table 2. Average results of objective QA metrics. (BLU= bilinear upsampling, BCU=bicubic upsampling, BU= bilateral upsampling, JBU=joint bilateral upsapling, VBU=variance-based bilateral upsampling, ABU=adaptive bilateral upsampling, and DTBU=distance transform-based bilateral upsampling) Depth map BLU BCU BU JBU VBU ABU DTBU Image PSNR Edge PSNR Non-edge PSNR Sharpness Degree 35.85 35.71 35.64 34.15 35.64 33.16 34.86 23.68 23.55 23.66 22.82 23.38 20.97 22.93 38.07 37.94 37.78 37.50 37.93 35.43 36.92 39.5 42.2 49.51 49.09 31.92 88.31 68.14 Blur Metric 8.48 11.38 10.29 10.87 10.51 9.00 9.89 SSIM 0.946 0.955 0.975 0.956 0.971 0.962 0.972 VIF 0.518 0.539 0.424 0.422 0.478 0.398 0.438 BIQI 57.8 66.34 61.11 32.81 41.94 29.15 72 NIQE 15.95 13.11 13.94 11.82 12.47 13.41 13.82 non-edge PSNR... (high frequency) [14]. SSIM PSNR. SSIM, 3.. VIF. BIQI. BIQI,. NIQI VIF. 3. SSIM Edge-PSNR. 4.,, Table 4. Correlations of Pearson, Spearman and Kendall for visual fatigue and objective metrics 3.. scale=[1,5]. Table 3. Average results of 3D subjective test at scale [1,5] visual Fatigue BLU BCU BU JBU VBU ABU DTBU 3.76 3.64 3.89 3.84 4.03 3.46 3.99 3. 3.76(BLU), 3.64(BCU), 3.89(BU), 3.84(JBF), 4.03(VBU), 3.46(ABU) 3.99(DTBU). 0 1,,, 4. 7. 4, 3 PSNR Edge-PSNR PSNR Pearson Spearman Kendall Sum PSNR 0.582 0.0357 0.0476 0.6653 Edge-PSNR 0.608 0.1429 0.1429 0.8938 Non-edge PSNR Sharpness Degree 0.554 0.0357 0.0476 0.6373-0.522-0.3214-0.1429-0.9863 Blur Metric 0.293 0.1429 0.0476 0.4835 SSIM 0.505 0.3571 0.1429 1.005 VIF 0.019 0.1071 0.1429 0.269 BIQI -0.339-0.3214-0.2381-0.8985 NIQE 0.132 0.1071 0.1429 0.382

2 : 3D (Saeed Mahmoudpour et al.: Comparison of Objective Metrics and 3D Evaluation Using Upsampled Depth Map) 7.,, Fig. 7. Bar diagram of correlations of Pearson, Spearman and Kendall. 3D 3D. 2D, 3D.., SSIM. SSIM. : IW-PSNR, NQM, UQI, MS-SSIM, IWSSIM, IFC, VIF, M-SVD, PSNR-HVSM, VSNR, MAD, FSIM, GSM, IGM, GMSD, VSQA.. (References) [1] A. B. Dehkordi, M. T. Pourazad, P. Nasiopoulos, "A study on the relationship between depth map quality and the overall 3D video quality of experience," IEEE 3DTV Conference, 2013. [2] C. Tomasi and R. Manduchi, "Bilateral Filtering for Gray and Color Image", In Proc. IEEE Int. Conf. on Computer Vision, pp.836-846(1998). [3] J. Kopf, M. F. Cohen, D. Lischinski and M. Uyttendaele, "Joint bilateral upsampling", ACM Trans. on Graphics, Vol. 26, No. 3, pp.1-6, 2007. [4] C. Pham, S. Ha, and J. Jeon, "A local variance-based bilateral filtering for artifact-free detail and edge-preserving smoothing", PSIVT, Part, LNCS 7088, 99.60-70, 2011. [5] D. Yeo, E. Haq, J. Kim, M. Baig, H. Shin, "Adaptive Bilateral Filtering for Noise Removal in Depth Upsampling", SoC Design Conf., pp. 36-39, 2010. [6] S. Jang, D. Lee, S. Kim, H. Choi, M. Kim, "Depth Map Upsampling with Improved Sharpness", Journal of Broadcast Engineering, Vol. 17, No. 6, pp. 933-944, 2012. [7] J. Gil, S. Mahmoudpour and M. Kim, "Analysis of relationship between objective performance measurement and 3D visual discomfort in depth map upsampling", Journal of Broadcast Engineering, Vol. 19, No. 1, pp. 31-43, Jan. 2014. [8] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity", IEEE Trans. On Image Processing, Vol. 13, No. 4, 2004. [9] H. R. Sheikh and A. C. Bovik, "Image information and image quality", IEEE Trans. On Image Processing, Vol. 12, No. 2, pp. 430-444, 2006. [10] P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, "Perceptual blur and ringing metrics:applicaation to JPEG2000", Int. Workshop on Multimedia Signal Processing, pp. 403-408, 2008. [11] A. K. Moorthy and A. Bovik, "A two-step framework for constructing

blind image quality assessment", IEEE Signal Processing Letters, Vol. 17, No. 5, pp. 513-516, 2010 [12] A. Mittal, R. Soundararajan, and A. C. Bovik, "Making a completely blind' image quality analyzer", IEEE Signal Processing Letters, Vol. 20, No. 3, pp. 209-212, 2013. [13] D. Scharstein and R. Szeliski, "A taxonomy and evaluation of dense two-frame stereo correspondence algorithms", Int. J. of Computer Vision, Vol. 47, No.1-3, pp. 7-42, 2002. [14] E. Lee, H. Heo, and K. Park, "The comparative measurements of eye strain caused by 2D and 3D displays", IEEE Trans. on Consumer Electronics, Vol. 56, No. 3, pp. 1677-1683, 2010. [15] D. Kim and K. Sohn, "Visual fatigue prediction for stereoscopic image", IEEE Trans. Circuits Syst. Video Technol., Vol. 21, No. 3, pp. 231-236, 2011. - 2007 9 : B.S degree, Islamic Azad University, Iran - 2011 9 : M.S degree, Islamic Azad University, Iran - 2013 3 ~ : Ph.D student, Kangwon National University, Repubic of Korea - : 3D image processing, 3D human factor, human detection - 1979 : - 1981 : - 1995 : - 1984 ~ 1996 : ETRI / - 2009 ~ 2011 : IT - 1996 ~ : - ORCID : http://orcid.org/0000-0002-8340-4195 - :, 3D, - 1983 : - 1986 : University of Washington, Seattle - 1992 : University of Washington, Seattle - 1992 ~ 1998 : - 1998 ~ : - ORCID : http://orcid.org/0000-0002-4702-8276 - : 3D,,