+,PSFBO4PD&OWJSPO&OH _ Original Paper IUUQTEPJPSH,4&& *44/F*44/ s dt mœ y t } ( Cs) y od Synthesis of Adsorbent Fixed with Prussian Blue Based by Illite and Adsorption of Soluble Radioactive Cesium ( Cs) * v * **, ** ¼ ** ** ** m n*** n ***, Sol Kim* Sung-won Kang* **, Bok-seong Kim Dae-min Oh, Youngsug Kim Yoon-suhn Chung Yuhoon Hwang Hyobin Wei *}sœ t s s m m p t } **s p œ j *** }sœ s vw}s} *Smart City & Construction Engineering, University of Science & Technology **Department of Land and Water Conservation Research, Korea Institute of Civil Engineering and Building Technology ***Department of Environmental Engineering, Seoul National University of Science and Technology (Received December 17, 2018; Revised December 27, 2018; Accepted January 11, 2019) Abstract : Prussian blue (PB) is a selective and highly adsorptive material for cesium. However, it is difficult to recover after adsorption and there is a possibility of secondary environmental pollution. In this study, the surface of illite powder was modified by using acrylic acid (AA) as a crosslinking agent for stable fixation of PB to illite powder. The aim of this study was development of adsorbent with stabilized PB at illite using AA (AA-illte-PB). In XRD analysis and FT-IR analysis results of AA-illte-PB, PB characteristic peak was founded. Those results show presence of PB in AA-illte-PB. TGA analysis was performed to confirm the polymer and PB content of the adsorbent. It was judged that AA was effectively synthesized on the surface of illite modified with AA (AA-illte) through the SEM (EDS) analysis. The PB adsorption performance of AA-illte-PB was evaluated after pretreatment of NaCl for immobilization of PB on AA-illte surface. In the case of AA-illte-PB pretreated with NaCl, the maximum adsorption amount of cesium was 5.09 mg/g and the maximum adsorption amount of cesium in AA-illte-PB without NaCl pretreatment was 2.01 mg/g. Also, results of cesium adsorption analysis using Cs standard source solution showed 99% removal rate for AA-illte-PB pretreated with NaCl and 88% for AA-illte-PB un-pretreated with NaCl. The efficiency of AA-illte-PB pretreated with NaCl found to be effective for cesium adsorption. UV-vis analysis was performed to identify the desorbeed PB during washing. Illite attached with PB without AA (illite-pb) was detached from a large amount of PB through 5 washes. AA-illte-PB showed a small amount of PB desorbed by the first wash. As a result, an adsorbent with stable PB immobilization was developed. Key Words : Cesium, Adsorption, Desorption, Prussian Blue, Illite. Prussian blue (PB)² ¼j p d a, p nm a 2 m a º. ô ² d PB m j acrylic acid (AA) a j d h } j (AA-illte) PBa Ùp (AA-illte-PB) } j j º. AA-illte-PB XRD FT-IR PB d ²j í Ú PB m j, p PB j m j j TGA j º. jsem (EDS) kaa-illte h AAan j Ø º dºj º. j ÙAA-illte h º PB j j NaCl j kj, kj jaa-illte-pb p ³fa kj º. NaCl kjaa-illte-pb ¼p 5.09 mg/g, NaCl kj AA-illte-PB ¼p 2.01 mg/g º. j Cs h jp l NaCl kjaa-illte-pb 99% Ñ, NaCl kj AA-illte-PB 88% Ñn NaCl kjaa-illte-pba p n ä º. a AA-illte h PB d j j UV-vis kj º. Acrylic acid PB d j (illite-pb) 5m Ù º PBa Ø, AA-illte-PB 1m PBa Ùn Ø ² ä º. Cs Ñj j PBa mùp a} Ø º.., p,, i, d 1. 2011 3, Ò ¼ kn 1 a Ø º. ¼ Ø, 1) Ù l ¼ Ø º. Ù ² Ñapí je Corresponding author E-mail: kangsw93@kict.re.kr Tel: 031-910-0773 Fax: 031-910-0291
+,PSFBO4PD&OWJSPO&OH i aj Ù d p j $T p fa 25 p k p Ø jk º. dpk l k j² k j Cs q a30 Ø j²d j p e Ù jg jº. ô m ز, mj k ¾ m ز ¼j a ز º. 2,3) l Cs mj ÑÒ j 133 Cs j Ñj j í kø, Ñ k m, î m j í kø º. z í Ø º Ñ } ز º. 4,5) Ñj j p Ñ n dºùº. 2,6) ô m,, Prussian Blue (PB) î p } m j Ñj² am p kø º. 7) PB² ¼j p a³jd ² p n a ²ä º. 2,8) PB² a k p Ù ² j e jº. e K + gjj, K + (1.25 Å) º (1.19 Å) ¼ p a³jº. 9) j PB e p jñ PB jù m kpb p jº. 10) PB²p Ùnm a 8) 2 m l º. 11) j PB polyvinyl alcohol, 12) carbon nanotube, 13) magnetite, 14) alginate 15) / î j² a kø º. PB j ² j ô º j k jùpb j² a Ø º. d(illite)² ²hm kl ز a j, m h j ¼ º j m m Ø º. 16) j kù n p j²ä º. 17) Illite² ÐÐa Ù j m j mj²è j j a kù, 18) illite j Ñj² kø º. 19) Illite² K + gjj, illite interlayer frayed edge ²K + m k p jº. 20) illite a p jí زÈ, dp illite hmù frayed edge p Ø e Ù interlayer Òj² p jº. j illite² p j ¼ j² d a º. 21) ² z ³ j ¾ î k ² j kacrylic acid (AA) j } jillite PB in-situ j j h d ¼ j p, d j º. 2. l 2.1. l ²AA illite j (AA-illte) j j k acrylic acid (SAMCHUN, CH 2CHCOOH, 99.0%), potassium persulfate (SAMCHUN, K 2S 2O 8, 98.0%), ethyl alcohol (SAMCHUN, C 2H 5OH, 70.0-75.0%) DI water, illite( d) j º. AA illite j PB j j k sodium chloride (SAMCHUN, NaCl, 99.0%), iron(iii) chloride hexahydrate (SAMCHUN, FeCl 3 6H 2O, 97.0%) potassium ferrocyanide (SAMCHUN, K 4Fe(CN) 6 3H 2O, 97.0%) in-situ AA, illite, PB j (AA-illte-PB) j j º. p l kcesium chloride (SAMCHUN, CsCl, 99.0%) j h j jradioactive cesium ( Cs) h j º. Fig. 1. R y sp th ƒ hpi ƒp q f 44tww p fyi g 44tww pi5 ty t ¼jm jm 41 1m 2019 1
26 +,PSFBO4PD&OWJSPO&OH v ¼ m n n Fig. 1 AA-illte AA-illte-PB j º. Fig. 1(a)²AA-illte j AA-illte²3º Ù j Ùº. 1º illite 2.5 g 60 ml ò } potassium persulfate 0.06 g 5 e illite OH O ò } nacrylic acid 6 ml j 5 e º. 2º illite acrylic acid, potassium persulfate mj Ð 0 n 20 e mj Ñj º. 3º mj 6 eò 60-70 j a j º. n Ù Ñj j, h } Ùillite DI Water 1m nethanol DI Water 1:1 mj j 80 6 eõ j AA-illte j j º. Fig. 1(b)²AA-illte-PB j AA-illte-PB j kaa-illte 2.5 g 0.5 M sodium chloride (NaCl) ² j AA-illte h COOH COONa m, p î ³ k j º. naa-illte iron(iii) chloride hexahydrate (FeCl 3 6H 2O) 20 mm 25 ml 24 e, potassium ferrocynide 20 mm 25 ml 5, iron(iii) chloride hexahydrate (FeCl 3 6H 2O) 20 mm 25 ml 5 e ² j PB in-situ j jn m j 60 6 e Ò Õ j º. 2.2. l AA-illte-PB d j killite, AA-illte, AA-illte-PB XRD FT-IR (Bruker, TENSOR27, Germany) j j º. kj fd ²bb10-90 degree, 400-4000 cm -1 j º. j AA-illte-PB j ktga (TA instrument, SDT, USA) Õ, 0-1000 degree j º. a AA j} apbp ² k j ksem (TESCAN, VEGA3, Czech republic) j EDS kp j² j j º. NaCl acrylic acid ô AA-illte-PB PB j j j acrylic acid º í j j j AA-illte ¼j Fe 3+ p l kj º. AA-illte PB j PB j²fe 3+ p jº a j º. AA-illte 2.5 g 0.5 M NaCl n 20 mm FeCl 3 25mL NaCl kjaa-illte AA-illte 2.5 g NaCl 20 mm FeCl 3 25mL NaCl kj AA-illte ¼j Fe 3+ p j j ICP-MS (Perkin-Elmer SCIEX, NexION 350D, USA) j º. p l 50 ml CsCl illite 0.01-5 g j 24 eò Cs p n m j p n ICP-MS (Perkin-Elmer SCIEX, NexION 350D, USA) k m j º. AA-illte-PB Cs p l j 200 Bq/L Cs j AA-illte-PB 0.01 g 24 eò º. Cs Ñn RAD IQ FS200 (Nucare, Korea) j j º. j ÙAA-illte-PB PB m k AAillte-PB } illite PB j (Illite-PB) j PB Ð UV-vis j j º. 3. 3.1. AA-illite-PB j AA-illite j d Illite AA-illte AA-illte-PB XRD k AAillte-PB PB m j Fig. 2 º. PB k¼j²d j ²17.4 degree, 24.7 degree, 35.3 degree zº. 22) Illite, AA-illte, AA-illte-PB XRD j, Þillite k¼j² j, AA-illte-PB j Ù jpb j a Ø º. k AA-illte PBa j Ù ä m j º. AA-illte-PB PB ²illite, AA-illte, AA-illte-PB FT-IR spectrum Ðm Ø º. ²Fig. 3 zº. Illite² 1,000 cm -1 Si-O j a ² ä m Ø, AA-illte AA-illte-PB FT-IR Ð1,000 cm -1 Si-O j m Ø º. j AA-illite AA-illite-PB Þ illite d ² ä dºj º. j AA-illte-PB CN j ²2,060-2,080 cm -1 j am Ú ô AA-illte-PB PBa j² ä m j º. Fig. 2. 93% QBUUFSO PG JMMJUF ""JMMUF ""JMMUF1# Journal of KSEE Vol.1, No.1 January, 2019
J. Korean Soc. Environ. Eng. 프러시안블루가 함침된 일라이트 기반 흡착제의 합성과 용존 방사성 세슘( Cs)의 흡착 평가 Table 1. Fig. 3. FT-IR spectrum of illite, AA-illite, and AA-illite-PB prepared by solution polymerization with acrylic acid and potassium persulfate. Quantitative EDS analysis of the element proportion in the Items (weight %) Items O K Si Al Fe Illite 42-58 0.24 - Illite-PB 30 14 31 19 5 AA-illte-PB 32 2 16 10 40 가 가속화되어 1,000 부근에서 약 3.3%의 무게감소를 확 인할 수 있다. 이를 통하여 AA-illte에서 AA가 차지하는 무 게분율은 약 3%임을 확인할 수 있다. 또한 AA-illte-PB의 온도가 증가함에 따라 PB 탈착이 이루어지는 것을 확인할 수 있다. AA 개질이 illite와 PB의 고정에 미치는 영향을 파악하기 위하여 illite, illite-pb, AA-illte-PB를 SEM image 분석을 수행하였다. 분석 결과를 에 나타내었으며 의 (a), (b), (c)는 비개질 illite와 illite-pb, AA-illte-PB의 SEM image를 나타낸다. SEM image 분석을 통해 비개질 illite의 표면에 PB 입자가 적게 결합되어있으나 AA로 개질된 illite 의 표면에 PB의 입자가 다량 결합된 것을 확인할 수 있다. 이는 EDS 분석을 통한 원소분석결과에서 역시 확인이 가 능하였고 그 결과를 에 나타내었다. 실험에 사용한 illite의 경우 산소(O)와 규소(Si)로 구성이 되어 있으며 in-situ 방식을 통하여 합성한 illite-pb의 경우 Fe의 함량이 5% weight을 차지함으로써 PB가 합성된 것을 확인할 수 있다. 또한 AA-illte-PB의 경우 Fe의 함량이 40% weight로 illite-pb 와 비교하여 약 8배 높은 수치를 보이는 것을 확인할 수 있 다. 이는 AA를 통해 개질된 illite가 비개질된 illite 표면보다 많은 양의 PB를 더 효율적으로 고정하는 것을 의미한다. Fig. 5 Fig. 5 Table 1 Fig. 4. TGA analysis for Illite, AA-illte, AA-illte-PB. AA-illte-PB와 AA-illte의 고분자 함유량을 파악하기 위하 여 illite, AA-illte, AA-illte-PB를 대상으로 TGA 분석을 실 시하였으며 그 결과를 Fig. 4에 나타내었다. Illite의 경우 온 도의 증가에 따라 서서히 분해가 진행되는 것을 확인할 수 있다. 또한 AA-illte의 경우 초기무게와 비교하여 350 부 근에서 분해가 가속화되어 1,000 부근에서 약 3%의 무 게감소를 확인할 수 있으며 AA-illte-PB는 점진적으로 분해 Fig. 5. 전처리에 따른 AA-illte의 Fe3+ 흡착성능 평가 3.2 NaCl AA-illite의 PB 함량을 증가하기 위해 카르복실기의 음전 하를 극대화하고자 NaCl 전처리를 수행하였다. NaCl 전처 리 여부에 따른 AA-illte 내 PB 합성량을 비교하기 위하여 AA-illte를 0.5 M NaCl 용액으로 전처리한 AA-illte와 NaCl 전처리를 수행하지 않은 AA-illte의 Fe 흡착량을 비교하 여 그 결과를 에 제시하였다. AA-illte의 합성과정 중 acrylic acid의 주입량을 증가시킴에 따라 Fe 의 흡착량이 3+ Fig. 6 3+ SEM image of (a) illite, (b) illite-pb and (c) AA-illte-PB. 대한환경공학회지 제41권 제1호 년 1월 2019 27
28 +,PSFBO4PD&OWJSPO&OH v ¼ m n n Fig. 6. "ETPSQUJPO BNPVOU PG 'F JPO PO ""JMMUF EFQFOEJOH PO /B$MUSFBUNFOUBOEJOKFDUJPOBNPVOUPGBDSZMJDBDJE Fig. 8. "ETPSQUJPO JTPUIFSN GPS UIF PG $FTJVN JPO PO /B$M VO USFBUFE ""JMMUF1# BOE GJUT PG -BOHNVJS 'SFVOEMJDI NPEFMT aj² k º. acrylic aicd 10% (v/v) AA-illtea mø Fe 3+ p jø º. NaCl kjaa-illte Fe 3+ ¼p 57.5 mg/g, NaCl kj AA-illte Fe 3+ ¼p 8.1 mg/g º. k NaCl a j ¼m j AA-illite PB j a º. Table 2. -BOHNVJS JTPUIFSN BOE 'SFVOEMJDI JTPUIFSN QBSBNFUFST GPS DFTJVN BETPSQUJPO POUP UIF ""JMMUF1# Spx p Efyrx tƒt spƒx 9ƒp yiwthst spƒx 44tww pi5 ƒf ƒp D N D - Q D G y Q Gf6w ƒpf pi "& $& &!## ##!!&" &#" Gf6w y ƒpf pi #"" & #$$ ""# %## 3.3. AA-illte-PB p ³fa j Ù AA-illte NaCl j n iron(iii) chloride hexahydrate potassium ferrocyanide j in-situ PB j jaa-illte-pb j ( 133 Cs) ¼jp l j º. 133 Cs ¼j p l p î Fig. 7 j NaCl jaa-illte-pb ¼p 5.09 mg/g º. Fig. 8 NaCl j AA-illte-PB p Ò j º. NaCl kj AA-illte- Fig. 7. "ETPSQUJPO JTPUIFSN GPS UIF PG $FTJVN JPO PO /B$M USF BUFE ""JMMUF1# BOE GJUT PG -BOHNVJS 'SFVOEMJDI NPEFMT PB ¼p 2.01 mg/g, NaCl kjaa-illte-pb NaCl kj AA-illte-PB flè ² Langmuir Freundlich î p È º. Langmuir î p È îjp Š k îjd p ²ä a j Freundlich î p È p h º p Š a º a j º. p l kj Ð Õ Langmuir î p È Freundlich î p È p Table 2 º. q m (mg/g) º ¼p, K L Langmuir constant p Š, Freundlich î p È K f²p ² h, n p vð ² º. p NaCl jaa-illte-pb Freundlich p jj, NaCl j AA-illte-PB Langmuir î p È jj p l ² ä m j º. AA-illte-PB Cs ѳ j k p l j Fig. 9 j º. 200 Bq/kg Cs j j 50 ml AA-illte-PB illite-pb 0.01 g j 24 eò p Cs ز662 kev -rayap n ² Ø ²ä m j º. k Cs AA-illte-PB k ÑØ m j º. ( Cs) ¼j Ñn (%) Table 3 º. j j Journal of KSEE Vol.1, No.1 January, 2019
+,PSFBO4PD&OWJSPO&OH i aj Ù d p j $T p fa 29 j illite AA-illte ¼j bbin-situ PB j n, bb p ¼j 5m j j j º. ²PB d j j UV-vis Fig. 9. R ph ƒ x fy t f t p fyfw t q 6 kj ²Fig. 10 zº. Fig. 10 m j î } illite jillite-pb² 1-2m º PBa زä m j º. n5 Ù j j Ð PBa k زä m j º. AA illite } jaa-illte-pb 1m PB a زä m j n5m Ù Ò PBaÑ Ø ²ä m j º. ² illite h j Ù AA j PBa mj jø Ø n mø º. kaa-illte-pb l j² PB j2 m j ä º. 4. ² p j kpbaj Ùp } j j º. k l illite AA j h } j AA-illte j j PB in-situ j j PB Ñj ² p } j º. Fig. 10. TU ph ƒ x q 44tww pi5 fyi Bwwt pi5 fq pƒ ˆf styr Table 3. 6 ƒpx fw pƒq ƒxfyhp q 44tww pi5 ""JMMUF1# $TBDUJWJUZ ""JMMUF1# JOKFDUJPO #RLH 1FSGPSNBODF BNPVOU H- *OJUJBM 'JOBM 3 %- /B$MUSFBUFE /B$M VOUSFBUFE Cs NaCl j AA-illte-PB k Ð 265.28 Bq/kg 99.21% ÑÙ2.07 Bq/kg Ø NaCl j AA-illte-PB k Ð 59.48 Bq/kg 88.21% ÑÙ 7.01 Bq/kg Ø º. Fig. 9² fd p ² Cs Š j 662 KeV j a Øp n ² Cs j a ä m j Cs p p Ù ä m j º. 3.4. Illite-PB AA-illte-PB PB AA j} ô PB j 1) AA-illte-PB d AA k illite } j p PB j n PB j º dºø º. k m PB jm j dºø º. 2) 133 Cs jp l, NaCl j AAillte-PB ¼p 5.09 mg/g NaCl j AA-illte-PB p 2.01 mg/g º p n p È Langmuir î p È Å jjº dºø º. 3) j Cs ¼jp l, 0.01 g AA-illte-PB 200 Bq/kg Cs 50 ml 24 e 98% Cs Ñزä k Ñj j AA-illte-PB p m j º dºø º. Acknowledgement 2019 ( j ) a j m l j (No. CAP-15-07- KICT) kù, q ì º. ¼jm jm 41 1m 2019 1
30 +,PSFBO4PD&OWJSPO&OH v ¼ m n n References 1. Kim, H. J., Hyun, Y. J., Kim, Y. J. and Hwang, S. I., A Study on Effective Management Scheme for Soil and Groundwater Contaminated by Radioactive Materials Due to Nuclear Accidents, J. Soil and Groundwater Environ., 16(6), 113~121(2011). 2. Chen, G. R., Chang, Y. R., Liu, X., Kawamoto, T., Tanaka, H., Kitajima, A. and Lo, Y. K., Prussian blue (PB) granules for cesium (Cs) removal from drinking water, Sep. Purific. Technol., 143, 146~151(2015). 3. Relman, A. S., Lambie, A. T., Burrows, B. A. and Roy, A. M., Cation accumulation by muscle tissue: the displacement of potassium by rubidium and cesium in the living animal, J. Clinical Invest., 36(8), 1249~1256(1957). 4. Bibler, J. P., Wallace, R. M. and Bray, L. A., Testing a new cesium-specific ion exchange resin for decontamination of alkaline high-activity waste, Westinghouse Savannah River Co., Aiken, SC, United States (1989). 5. Chmielewski, A. G., Harasimowicz, M., Tyminski, B. and Zakrzewska-Trznadel, G., Concentration of low-and mediumlevel radioactive wastes with three-stage reverse osmosis pilot plant, Sep. Sci. and Technol., 36(5-6), 1117~1127 (2001). 6. Awual, M. R., Yaita, T., Miyazaki, Y., Matsumura, D., Shiwaku, H. and Taguchi, T., A reliable hybrid adsorbent for efficient radioactive cesium accumulation from contaminated wastewater, Scientific Reports, 6, 19937(2016). 7. Bostick, B. C., Vairavamurthy, M. A., Karthikeyan, K. G. and Chorover, J., Cesium adsorption on clay minerals: An EXAFS spectroscopic investigation, Environ. Sci. & Technol., 36(12), 2670~2676(2002). 8. Hu, B., Fugetsu, B., Yu, H. and Abe, Y., Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium, J. Hazard. Mater., 217, 85~91(2012). 9. Kim, H, W., Kim, J, S., Oh, D, M. and Hwang, Y, H., Development of Filter-Type Adsorbent Containing Prussian Blue for Adsorption of Cesium in Aqueous Phase, J. Korean Soc. Environ. Eng., 40(8), 334~340(2018). 10. Ishizaki, M., Akiba, S., Ohtani, A., Hoshi, Y., Ono, K., Matsuba, M. and Kawamoto, T., Proton-exchange mechanism of specific Cs + adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules, Dalton Trans., 42(45), 16049~16055(2013). 11. Dechojarassri, D., Asaina, S., Omote, S., Nishida, K., Furuike, T. and Tamura, H., Adsorption and desorption behaviors of cesium on rayon fibers coated with chitosan immobilized with Prussian blue, Int. J. Biological Macromolecules, 104, 1509~1516(2017). 12. Lai, Y. C., Chang, Y. R., Chen, M. L., Lo, Y. K., Lai, J. Y. and Lee, D. J., Poly (vinyl alcohol) and alginate crosslinked matrix with immobilized Prussian blue and ion exchange resin for cesium removal from waters, Bioresour. Technol., 214, 192~198(2016). 13. Li, J., Qiu, J. D., Xu, J. J., Chen, H. Y. and Xia, X. H., The Synergistic Effect of Prussian-Blue-Grafted Carbon Nanotube/Poly (4-vinylpyridine) Composites for Amperometric Sensing, Adv. Funct. Mater., 17(9), 1574~1580(2007). 14. Yang, H. M., Jang, S. C., Hong, S. B., Lee, K. W., Roh, C., Huh, Y. S. and Seo, B. K., Prussian blue-functionalized magnetic nanoclusters for the removal of radioactive cesium from water, J. Alloys and Compounds, 657, 387~393(2016). 15. Mihara, Y., Sikder, M. T., Yamagishi, H., Sasaki, T., Kurasaki, M., Itoh, S. and Tanaka, S., Adsorption kinetic model of alginate gel beads synthesized micro particle-prussian blue to remove cesium ions from water, J. Water Proc. Eng., 10, 9~19(2016). 16. Hwang, J., Choung, S., Park, C., Han, J. and Jeon, S., Application of Yeongdong Illite to Remove Radiocesium for Severe Nuclear Accidents, J. Mineralogical Soc. Korea, 29(4), 229~238(2016). 17. Brouwer, E., Baeyens, B., Maes, A. and Cremers, A., Cesium and rubidium ion equilibriums in illite clay, The J. Phys. Chem., 87(7), 1213~1219(1983). 18. De Pourcq, K., Ayora, C., García-Gutiérrez, M., Missana, T. and Carrera, J., A clay permeable reactive barrier to remove Cs- from groundwater: column experiments, J. Environ. Radioact., 149, 36~42(2015). 19. Jing, C., Li, Y., Cui, R. and Xu, J., Illite-supported nanoscale zero-valent iron for removal of 238U from aqueous solution: characterization, reactivity and mechanism, J. Radioanalyt. and Nuclear Chem., 304(2), 859~865(2015). 20. Kim, B., Kim, Y., Chung Y., Knag, S., Oh, D. and Choi, H., Removal Characteristic of Soluble Cs in Water Using Natural Adsorbent and High Basicity Coagulant Poly Aluminium Chloride, J. Korean Soc. Environ. Eng., 39(7), 385~390(2017). 21. Fuller, A. J., Shaw, S., Ward, M. B., Haigh, S. J., Mosselmans, J. F. W., Peacock, C. L. and Burke, I. T., Caesium incorporation and retention in illite interlayers, Appl. Clay Sci., 108, 128~134(2015). 22. Thammawong, C., Opaprakasit, P., Tangboriboonrat, P. and Sreearunothai, P., Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment, J. Nanoparticle Res., 15(6), 1689(2013). Journal of KSEE Vol.1, No.1 January, 2019