hwp

Similar documents
<C1A4C3A5BAB8B0EDBCAD D325F32B1B32E687770>

<C1A4C3A5BAB8B0EDBCAD2D D30355F33B1B32E687770>

12.077~081(A12_이종국).fm

hwp

Microsoft Word - KSR2012A038.doc

10(3)-10.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

< DC1A4C3A5B5BFC7E22E666D>

untitled

10(3)-09.fm

03이경미(237~248)ok

14.fm

Microsoft Word - KSR2012A103.doc

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

hwp

Microsoft Word - KSR2013A320

03-서연옥.hwp

26(2)-04(손정국).fm

untitled

14.531~539(08-037).fm

d*%7 *%7 Í f. : 6'6 ú: Ð : Ë Í : ä ö{d r üz : 02/<.27(5/$17,)5,&7,21&2$7,1*7+,11(5 r xu : r Ì : Ï Í³ ͳ üz : ý~u(v )ˆõ : j Ú¼v u j u j þñ: n úu : n :

09권오설_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

인문사회과학기술융합학회

<30312DC6AFC1FDB1E2BBE D E666D>

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

hwp

19(1) 02.fm

Microsoft Word - KSR2012A172.doc

DBPIA-NURIMEDIA

07.045~051(D04_신상욱).fm

PDF

82-01.fm

jaeryomading review.pdf

44(4)-06.fm

歯140김광락.PDF

51(2)-06.fm

<30392D B1E2BCFAC0DAB7E1292E687770>

50(1)-09.fm

untitled

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

DBPIA-NURIMEDIA

49(6)-06.fm

139~144 ¿À°ø¾àħ

Microsoft Word - KSR2012A009.doc

16(5)-04(61).fm

source.pdf

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

10(3)-02.fm

16(1)-3(국문)(p.40-45).fm

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종


41(6)-09(김창일).fm


?

10(1)-08.fm

64.fm

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

304.fm

A 001~A 036

<B1E8BBF3B0EF20C0DBBEF72E687770>

歯111


Microsoft Word - KSR2013A291

국706.fm

Microsoft Word - KSR2013A299

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

09.hwp

93.fm

목차

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

개최요강

10(3)-12.fm


<C0FAC5BABCD2BBE7C8B8B8A6C7E2C7D13132B0A1C1F6B9E6C3A E687770>

WOMA Pumps - Z Line

00....

04_이근원_21~27.hwp

hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

18(3)-10(33).fm

untitled

슬라이드 제목 없음

DBPIA-NURIMEDIA

hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

목 차 회사현황 1. 회사개요 2. 회사연혁 3. 회사업무영역/업무현황 4. 등록면허보유현황 5. 상훈현황 6. 기술자보유현황 7. 시스템보유현황 주요기술자별 약력 1. 대표이사 2. 임원짂 조직 및 용도별 수행실적 1. 조직 2. 용도별 수행실적

Getting Started

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: A Study on the Opti

16(5)-03(56).fm

10.063~070(B04_윤성식).fm

hwp

특허청구의 범위 청구항 1 Na-알지네이트(Na-alginate), 합성 제올라이트(synthetic zeolite)와 분말활성탄(powdered activated carbon) 을 혼합하여 2 ~ 6 %의 CaCl 2 용액에서 경화시켜 만들어진 직경 1 ~ 5 mm의

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

하반기_표지

Microsoft Word - KSR2012A132.doc

04.fm


fm

Transcription:

+,PSFBO4PD&OWJSPO&OH _ Original Paper IUUQTEPJPSH,4&& *44/F*44/ Monoethanolamine t szsm5 MS13X CO 2 y m Adsorption of CO 2 on Monoethanol Amine-Impregnated ZSM5 and MS13X Sung-Woo Choi x s vw}s} Department of Environmental Science and Engineering, Keimyung University (Received February 7, 2017; Revised March 23, 2017; Accepted May 12, 2017) Abstract : Adsorption experiments of carbon dioxide were performed on ZSM5 and Molecular Sieve 13X (MS13X) impregnated with Monoethanol Amine (MEA). Adsorption efficiency of CO 2 was investigated in a U type packed column with GC/TCD. The adsorption capacities of adsorbents are estimated in the temperature range of 30-80. The modified adsorbents was characterized by BET surface area, N 2 adsorption/desorption isotherms, X-ray diffraction and FT-IR. Surface analysis results showed that the impregnation method did not affect the crystallinity of any adsorbents. BET surface area of the MS13X impregnated amine decreased to 19.945 m 2 /g from 718.335 m 2 /g. These reults showed that amine molecules were filled with the pore volume in MS13X, as a results restricting access of nitrogen into the pores. The MEA modified MS13X showed improvement in CO 2 adsorption capacity over the ZSM5 impregnated with MEA. The MS13X-MEA showed the highest adsorption capacity due to physical adsorption and chemical adsorption by amino-group content. This results also showed that adsorption capacity of MS13X-MEA increases with the temperature range of 60-80 compared with pristine MS13X. Key Words : Adsorption, CO 2 Capture, ZSM5, Molecular Sieve 13X, Impregnation, MEA. Monoethanolamine (MEA) j jzsm5 Molecular Sieve 13X (MS13X) ¼j m p lj º. m p n U jgc/tcd j º. pp в30~80 p ³ faj º. } mùph d kbet, N 2 p, XRD, FT-IR j º. h j Ùp lk j ÙMS13X BETh718.335 m 2 /g 19.945 m 2 /g q j º. ²MS13X j a pjj²ä º. MS13X-MEA²ZSM5-MEA k m p ³ } n a ²p mj p jä Ùº. jms13x-meam p ³ MS13X k60~80 Ð Ð aú º.. p, m g, ZSM5, Molecular Sieve 13X, j, MEA 1. IPCC (intergovernmental panel on climate change)² mq jccs (carbon capture and storage) ngpp j º. 1) p pbb ºe, pîj p¼j Ð kø º. 2~4) 100 Ña mp g k Ðp a³jp¼j a j jº. d²m Ða mp Ø p a Ð j º. Park î 5) d m jm p l kjda j p ³ a ²ää j º. m p p k Ð ² m p ³ a ºj º. 6) ôña zmp g j k ²pmj p j jº. mj p aj k j jm p n ¼ º. ¼h monoethanolamine (MEA), ethylenediamine (EDA), polyethylenimine (PEI) î í m, d î j j² j dp² j Ð j² a º. 7) d d h } mj mp ³ } j ² a kø º. Lee î 8) ZSM5l d PEI j j m p ³ 1.7 a d 13X MEA j j m p a ² kj º. 9) j Hong î 10) d 13X MEA piperazine Corresponding author E-mail: swchoi@kmu.ac.kr Tel: 053-580-5245 Fax: 053-580-5385

326 +,PSFBO4PD&OWJSPO&OH (PZ) j º jm d j j d Ð a ô p ³ q j p Ð 50 PZj da 1.8, MEAaj Ù d²20p ³ ajºj º. jjadhav î 11) } mj d 13X m p ³ } j, mj p º j º. m mj p p j jº. d p e akøp e ² jº. jò pðj Õ, Õ ô º Ð j º. ô ²MEA j jp j Ò l Õj p j º. p ²ZSM5 MS13Xj j n m p n h d j º. Fig. 1. %JBHSBN PG UIF FYQFSJNFOUBM TFUVQ B $0 C / D NBTTGMPXDPOUSPMMFSENJYJOHDIBNCFSFUFNQFSB UVSF DPOUSPMMFS G GVSOBDF H BETPSCFOU JO 6UVCF I ($5$% J 1$ 2. jzsm5 (ACROS, Belgium) Molecular sieve 13X (Fisher Chemical, U.K) h j ZSM5²SiO2/Al2O3a400~570 d Ål Molecular sieve 13X SiO2/Al2O3² 2.6~3.0 º. mj pj Ð99% MEA (JUNSEI, J.P)jj Xu î 12) j º. 15jº» 15 e nj Ù» 70, 16 eò Õ n j º. Õ je Õ Ð 70 j j nx² j o mj º. j30 wt% j (g) j j (wt%) = 100 p (g) + (g) j º. CO 2 p fa k Ùph p l j º. CO 2 p l GC-TCD (HP6890, Hewlett Packard, U.S.A)jFig. 1 º. lùco 2a в15%j, 30, 60, jj70 º 80 p lj º. ÙU l j 10 mm, ²200 mm º. j MFC (mass flow meter) j cylinder CO 2 10 cm 3 /min j º. m Ù 30 m, 0.32 mm j Þ 3 µm GS-Carbonplot (U.S.A) j º. j GC-TCD Õ 185 injector Ð 150 detector Ðj, oven в35 j j º. Autosorb-iQ & Quadrasorb SI (Quantachrome. U.S.A) jp faj h, j j º. MEAa j Ù p ZSM5-MEA MS13X-MEA² o jj k343k Ð 18 e jn j p d j º. º j k XRD (x-ray diffractometer)² D/max- 2500 (Rigaku, J.P) jbpj Ù j d d j kft-ir (Fouier transform infrared spectroscopy)frontier(perkinelmer, U.S.A) j º. 3. 3.1. MEA j jzsm5 MS13X d d MEA j j ZSM5 MS13X d Fig. 2 º. d l p в30, 60, 80 j Ð d d j º. C o² m Ð C²t ep n m Ð º. Fig. 2(a)MEA j jzsm5² 4 ¼ d a Ø Ð 30 d e 5.2 mp n a º. ²ZSM5 p jä p Ða p ³º. ô p Ð aa 30 p ³d e º. 60 80 ² d e Ñ Ò j p n a º. Fig. 2(b) MEA a j Ø MS13X 2.7 4.6 ¼ d a ØZSM5jd k º. MEAaj ØZSM5 MS13X² jd d amp ³aÑ Journal of KSEE Vol.39, No.6 June, 2017

+,PSFBO4PD&OWJSPO&OH.POPFUIBOPMBNJOF j j;4..49 $0 p d 327 B ;4. C.49 D ;4..&" E.49.&" Fig. 2. 5IF CSFBLUISPVHI DVSWFT PG $0 BETPSCFE CZ UZQF PG BETPSCFOTUT BU EJGGFSFOU BETPSQUJPO UFNQFSBUVSF º. Fig. 2(c)² 30 wt% MEAa j Ù ZSM5 bp Ð d k p MEAaj Ø ZSM5 k jñ p ² k º. Lee î 7) ô PEI j j ZSM5a j jzsm5 k mp ³ ² jº. ²MEA j nzsm5 hq p l p h j ²sitea mj p d e p ³ q Ùä Ùº. Fig. 2(d)²30 wt% MEA j jms13x p Ð 10 ¼ d a Ø30, 60, 80 p n aú º. ²MS13X-MEA k m mj p ³ aø 80 Ð mp ³ aú º. m º zº. 2RNH 2 + CO 2 RNHCOO - + + RNH 3 RNHCOO - - + H 2O RNH 2 + HCO 3 3.2. MEA j jzsm5 MS13X p ZSM5 MS13X CO 2 p MEA 30 wt% j j ZSM5 MS13X CO 2 p Fig. 3 º. Î CO 2 p á ª Z Þœ à œ ß j õ m p í(g) Q² a(ml/min), C i C oø²co 2 Ð(ppm), t² e(sec) jº. ZSM5 CO 2 pp 0.5 g ¼30 21.1 mg, 60 17.4 mg, 80 16.7 mg pa i p º. ZSM5-MEA30 18.1 mg, 60 16.8 mg, 80 16.4 mg k ZSM5 j MEA j jð j p p e ² k º. Lee î 8) ZSM5 PEI (polyethylenimine) j jôm pfaj º. ²PEIaj Ù ZSM5a ZSM5 k m p ¼jm jm 39 6m 2017 6

328 +,PSFBO4PD&OWJSPO&OH B ;4. C.49 Fig. 3. $PNQBSJTPO PG UPUBM BNPVOU PG $0 BETPSCFE POUP BETPSCFOUT BOE.&"JNQSFHOBUFE BETPSCFOUT º j ²PEI mj p jº j º. ² j ²È ²j SiO 2/Al 2O 3 Ùº. dpfrantz î 13) ôd Si/Al a m p n a º j º. ÙZSM5² a400 Ð kk mp n q Ùä bùº. MS13X CO 2 p 30 19.93 mg, 60 19.4 mg, 80 15.7 mg ZSM5j k Þp e CO 2 p ² Ñj º. MEA j jms13x CO 2 p 30 34.2 mg, 60 35.9 mg, 80 37.6 mg MS13X kco 2 p 2 p Ð ô ² º. ²j ÙMEAaMS13X hn ³ p ³ aùäbùº. dpp h j MEA j j j j p kppe m Ø MEA² p Ñh dk ºj º. 9) dpchatti î 14) d j j ímgj z j jº j º. } mù p m e Ò jº j 2 mol 1 mol m a w²º. ² l ja³l Ù d ä bùº.» j j pchatti î 14) a l jº p l º º. ² amj p jº²a j p l º n l kj j a ä Ùº. 3.3. MEA EDA j MCM41 h j Ùph d p n p j k BET, XRD, FT-IR j º. Table 1 p hj º. ZSM5 230 m 2 /g Lee î 8) j ZSM5 271~328 m 2 /g Frantz î 13) jj h º. ZSM5-MEA h 88 m 2 /g3q jä º. ² ZSM5 MEAaj Ø l jíq j º. Lee î 8) j ZSM5 m jn aq jº j º. j ZSM5-MEA aj jð jmp n ä Ùº. jxu î 15) β- d MEA j jh574 m 2 /g 15 m 2 /g j² 0.230 cm 3 /g 0.074 cm 3 /g q j, Hong î 10) Chatti î 14) ² d13x 30 wt% MEA 50 w t% MEA j j hbb613.5 m 2 /g, 386.4 m 2 /g 0.4 m 2 /g, 14.9 m 2 /g q j j² bb 0.2935 cm 3 /g, 0.2335 cm 3 /g 3.19 10-4 cm 3 /g, 0.0441 cm 3 /g q j ºj º. ²MEA j n MS13X h718.335 m 2 /g 19.945 m 2 /g j² Table 1. 4VSGBDF BSFB BOE QPSF WPMVNF PG UIF QSFQBSFE BE TPSCFOUT YRF" YRF"F84 FR W FR WF84 58SR ƒqfhpfƒpf x r!" %%!% $% " &&!" I ƒp w xp hx r $! # && Journal of KSEE Vol.39, No.6 June, 2017

+,PSFBO4PD&OWJSPO&OH.POPFUIBOPMBNJOF j j;4..49 $0 p d 329 f YRF" g FR W Fig. 4. G fi ƒ t yip ƒ t yt spƒx qfi ƒgpy fyif84tx ƒpryf pifi ƒgpy 0.360 cm 3 /g 0.099 cm 3 /g q jk j k º. dp Bezerra î, 9) Hong î 10) Chatti î 15) j aj hj² q jºj ²MEAa jø p kj j º. ZSM5 MS13X ZSM5-MEA MS13X-MEA N 2 î p Fig. 4 º. Þ pþ P/P oa0.1 0.8 m IUPAC ô Ilî º. ²bp l Bezerra î 9) Hong î 10) j º. jfrantz î 13) ZSM5 j m p N 2 p ajº H3l ² p km j º j º. ZSM5 MS13X } mùpxrd Fig. 5 º. Frantz î 12) ô ZSM5 XRD j 2θ s 7.9, 8.9, 23.13, 23.8 24.8 ºj Ð7.9, 8.7, 23.04, 23.89, 24.37 j ld XRD eº. dpzsm5ms13x MEA j n XRD j e j ²È ² j MEA j jð j d k jm k ²ºj º. 13) jhong î 10) j30 wt%, 50 wt%, 70 wt% aj ô XRD j qðaºj ²j aa d jq Ùº j º. ZSM5 MS13X j ÙpFT-IR Fig. 6 º. ZSM5 MS13X950~1,060 cm -1 Si-O ¼hj a º. MEA j j 1,515~1,651 cm -1 N-H 2 ìa Ø j m j Hong î, 10) Pham î 16) jp ìd a º. Bezerra î 9) ô ² 1,200 1,700 cm -1 º j º. Hong î 10) 3,278 cm -1 O-H alcoholj a 2,934~2,874 cm -1 C-H stretchj a1,648~1,581 f YRF" g FR W Fig. 5. WQ7 f pƒy q ƒt typ fi ƒgpy fyi fxtyptx ƒpryf pi fi ƒgpy ¼jm jm 39 6m 2017 6

330 +,PSFBO4PD&OWJSPO&OH B ;4. C.49 Fig. 6. '5*3TQFDUSBPGQSJTUJOFBETPSCFOUBOEBNJOFJNQSFHOBUFEBETPSCFOU cm -1 N-Hj a Ø º j MEA j aj ô FT-IR j a ajº j º. Frantz î 13) ô ZSM5450, 790, 1,080 1,220 cm -1 SiO 4 d ìa 1220 cm -1 ZSM5dº j 550~ 450 cm -1 p ìa ZSM5l d d j º. Acknowledgement ²2016 Ð ¼j kø º. References 4. ² m pk¼h MEA ZSM5 MS13X j j m p l hj º z º., m p l ZSM5 ZSM5-MEA² j nams13x²j Ù MS13X-MEA p 2 aj²ä º. dpms13x-mea mp30 34.2 mg, 60 35.9 mg, 80 37.6 mgð a ô e aj² k p j º. ß, BET h ÞpÞj n í MS13X²718.335 m 2 /g MEA j n 19.945 m 2 /g j j 0.360 cm 3 /g 0.099 cm 3 /g q j º. XRD FT-IR ² l ZSM5 MS13X j e j Ùp d j a Ø º. MS13X MEA j jp a m p n60-80 p Ð Ðnmp j º. ² nco 2 p } m Ùä ¼Ùº. 1. IPCC, IPCC special report on carbon dioxide capture and storage, Cambridge University Press, New York, pp. 105~ 178(2005). 2. Feng, B., An, H. and Tan, E., Screening of CO 2 adsorbing materials for zero emission power generation systems, Energy and Fuel., 21, 426~434(2007). 3. Wang, X. P., Jun J. J., Cheng, J., Hao, Z. P. and Xu, Z. P., High-temperature adsorption of carbon dioxide on mixed oxides derived from hydrotalcite-like compounds, Environ. Sci. Technol., 42, 614~618(2008). 4. Belmabkhout, Y., Serna-Guerrero, R. and Abdelhamid Sayari, A., Adsorption of CO 2 from dry gases on MCM41 silica at ambient temperature and high pressure. 1: pure CO 2 adsorption, Chem. Eng. Sci., 64(17), 3721~3728(2009). 5. Park, I. G., Hong, M. S., Kim, B. S. and Kang, H. G., Ambient CO 2 adsorption and regeneration performance of zeolite and activated carbon, J. Korean Soc. Environ. Eng., 35 (5), 307~311(2013). 6. Chena, C., Sona, W. J., Youb, K. S., Ahnb, J. W. and Ahna, W. S., Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity, Chem. Eng. J., 161, 46~52(2010). 7. Brandani, F. and Ruthven, D. M., The effect of water on the adsorption of CO 2 and C 3H 8 on type X zeolites, Ind. Eng. Chem. Res., 43(26), 8339~8344(2004). 8. Lee, C. H., Hyeon, D. H., Jung, H., Chung, W., Jo, D. H., Shin, D. K. and Kim, S. H., Effects of pore structure and PEI impregnation on carbon dioxide adsorption by ZSM-5 zeolites, J. Ind. Eng. Chem., 23, 251~256(2015). Journal of KSEE Vol.39, No.6 June, 2017

+,PSFBO4PD&OWJSPO&OH.POPFUIBOPMBNJOF j j;4..49 $0 p d 331 9. Bezerra, D. P., Silva, F. W. M., Moura, P. A. S., Sousa, A. G. S., Vieira, R. S., Castellon, E. R. and Azevedo, D. C. S., CO 2 adsorption in amine-grafted zeolite 13X, App. Surf. Sci., 314, 314~321(2014). 10. Hong, M. S., Pankaj, S., Jung, Y. H., Park, S. Y., Park, S. J. and Baek, I. H., Separation of carbon dioxide using pelletized zeolite adsorbent with amine impregnation, Korean Chem. Eng. Res., 50(2), 244~250(2012). 11. Jadhav, P. D., Chatti, R. V., Biniwale, B., Labhsetwar, N. K., Devotta, S. and Rayalu, S. S., Monoethanol amine modified zeolite 13X for CO 2 adsorption at different temperatures, Energy and Fuel., 21, 3555~3559(2007). 12. Xu, X., Song, C., Andresen, J, M., Miller, B, G. and Scaroni, A, W., Preparation and characterization of novel CO 2 molecular basket adsorbents based on polymer-modified mesoporous melecular sieve MCM-41, Micro & Meso. Mat., 62, 29~45(2003). 13. Frantz, T. S., Ruiz, W. A., Rosa, C. A. and Mortola, V. B., Synthesis of ZSM-5 with high sodium content for CO 2 adsorption, Micro. and Meso. Mat., 222, 2009~2017(2016). 14 Chatti, R., Ransiwal, A. K., Thote, J. A., Kumar, V., Jadhav, P., Lokhande, S. K., Biniwale, R. B., Labhsetwar, N. K. and Rayalu, S. S., Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies, Micro. and Meso. Mat., 121, 84~89(2009). 15. Xu, X., Zhao, X., Sun. L. and Liu. X., Adsorption separation of carbon dioxide, methane and nitrogen on monoethanol amine modified β-zeolite, J. Natu. Chem., 18, 167~172(2009). 16. Pham, T. H., Lee, B. K. and Kim, J. T., Novel improvement of CO 2 adsorption capacity and selectivity by ethylenediaminemodified nano zeolite, J. Tai. Ins. Chem. Eng., 66, 239~248 (2016). ¼jm jm 39 6m 2017 6