fm

Similar documents
fm

93.fm

12.077~081(A12_이종국).fm

10(3)-10.fm

114-01(07-19).fm

°ø±â¾Ð±â±â

fm

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

fm

93-33.fm

농학석사학위논문 폴리페닐렌설파이드복합재료의기계적및열적 특성에영향을미치는유리섬유 환원된 그래핀옥사이드복합보강재에관한연구 The combined effect of glass fiber/reduced graphene oxide reinforcement on the mecha

14.531~539(08-037).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

00....

fm

10.063~070(B04_윤성식).fm

fm

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

fm

139~144 ¿À°ø¾àħ

< DC1A4C3A5B5BFC7E22E666D>

06.fm

43-5.fm

untitled

CaOSiO 2 B 2 O 3 CaO-SiO 2 -B 2 O 3 B 2 O 3 6,7), B 2 O 3 42 mol% CS5B, 84 mol%cs10b in 1) v i t r o (simulated body fluid) C S 10 BC e r a b o n e -

A C O N T E N T S A-132

hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

歯_ _ 2001년도 회원사명단.doc

found in all BBCs. In the animal test, BBC II was more biocompatible as well as osteoconductible than the PMMA. Conclusion: The results of in vitro an

10(1)-08.fm

19(1) 02.fm

fm

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

14.fm

fm

3.fm

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

10(3)-12.fm

44-5.fm

03이경미(237~248)ok

92-07.fm

<30352DB1E2C8B9C6AFC1FD2028C8ABB1E2C7F D36362E687770>


w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

82-01.fm


untitled

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

50(3)-07.fm

歯1.PDF

07.045~051(D04_신상욱).fm

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

16(5)-06(58).fm

( )-94.fm

83.fm

92-06.fm

°í¼®ÁÖ Ãâ·Â

본문.PDF

16(1)-3(국문)(p.40-45).fm

jaeryomading review.pdf

304.fm

fm

27(5A)-07(5806).fm

62.fm

表紙(化学)

07.051~058(345).fm

16(5)-04(61).fm

???? 1

Journal of Educational Innovation Research 2016, Vol. 26, No. 2, pp DOI: * The Mediating Eff

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

605.fm

untitled

-

82.fm

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

DBPIA-NURIMEDIA

416.fm

공학박사학위 논문 운영 중 터널확대 굴착시 지반거동 특성분석 및 프로텍터 설계 Ground Behavior Analysis and Protector Design during the Enlargement of a Tunnel in Operation 2011년 2월 인하대

( )-77.fm

10(3)-02.fm

<C6F7BDBAC5CD2E706466>

/ MH / ch_05-116f

( )-113.fm


서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

10(3)-09.fm

fm

23(2) 71.fm

2 A A Cs A C C A A B A B 15 A C 30 A B A C B. 1m 1m A. 1 C.1m P k A B u k GPS GPS GPS GPS 4 2

µµÅ¥¸àÆ®1

untitled

???? 1

09È«¼®¿µ 5~152s

16(5)-03(56).fm

121_중등RPM-1상_01해(01~10)ok

¸ñÂ÷

27(5A)-13(5735).fm

26(1)-11(김기준).fm

DBPIA-NURIMEDIA

Transcription:

Biomaterials Research (2005) 9(4) : 205-211 Biomaterials Research 7 The Korean Society for Biomaterials ³ Bis-GMA Oligolactide w w w x w p Preparation of Biodegradable Hybrid Bone Cements Containing New Bis-GMA Derivatives and Oligolactide w 1 *Á 1,2 Á Ÿ 1 Á 2 Dong Keun Han 1 *, Bang-Ju Park 1,2, Kwang-Duk Ahn 1, and Yong-Ok Chin 2 1 Š Š e tg, 2 Š h Š 1 Biomaterials Research Center, Korea Institute of Science and Technology, Seoul 130-650, Korea 2 Department of Radio Communication Engineering, Kyunghee University, Suwon, Korea (Received October 5, 2005/Accepted November 10, 2005) In order to endow biodegradability to the existing Bis-GMA bone cement, novel biodegradable hybrid 3MA mix bone cements were prepared by using Bis-GMA derivatives (3MA and their mixture) as a prepolymer, AW-GC as a bioactive inorganic filler, and lactide-based oligomer, GL7-Ac as a biodegradable material. The obtained biodegradable bone cements showed suitable curing time of 10-15 min. Polymerization shrinkage of the biodegradable bone cements increased with increasing benzoyl peroxide (BPO) concentrations and decreasing oligolactide contents, whereas their mechanical properties displayed inverse trends with the results of polymerization shrinkage. In addition, the biodegradable bone cements were degraded very slowly after immersion in phosphate buffered saline solution for 28 days, but maintained still high mechanical property. Therefore, newly biodegradable hybrid 3MA mix bone cements containing both AW-GC and GL7-Ac oligolactide are expected to be useful for high-performance biocompatible bone cements that would be replaced with the existing PMMA and Bis-GMA bone cements. Key words: Bone cement, 2,2-Bis[4(2-hydroxy-3-methacryloyloxypropoxy)phenyl]propane (Bis-GMA) derivatives, Apatite and wollastonite containing glass-ceramic (AW-GC), Mechanical property, Biodegradability d ƒ Œf f ƒ(f, implant) ff f sej f hš hœ z j Šf Š. Œf hd ƒ h f f igš ftf e Š Š hd e hhš h h, h r f d Š hf Š. Š l f f Šl f f h f f e Š f Š. f f h r Š g ƒf ŒŠh i, f ŒŠ, h h l Š thš f df f hhš ihf Š ƒ l f h l, Œ, t f f hhf Š f f f. 1,2) g ˆŒ f ƒ e ~} fƒ(pmma), f x 2,2- bis[4(2-hydroxy-3-methacryloyloxypropoxy)phenyl]propane (Bis-GMA) f 3 l f. 3) PMMA ƒ f hš thš f fš Šl *sf hf: dkh@kist.re.kr h f Œ ~. Š tf jš v fh tf dv fš h ~ f hhf l f. 4,5) f Š hf Š eš PMMA ƒf vhg Šf Š PMMA powder h igš f f l vhg thš f ~ lš f. 6) PMMA ƒ jšf ƒ f vhg f f dv l Š f fš hf f Š f xl Š f. 7) Bis-GMA ƒ PMMA ƒ ƒ f vhg f f lh dv hydroxyapatite (HA)wf Œ Š vhg ftf dvf f h f ~ f fš ƒ ff Š thš f Š. 8,9) Kokubo 10,11) f l tœ f vhg[apatite and wollastonite containing glass-ceramic (AW-GC), HA, glass bead β- tricalcium phosphate (β-tcp)] dš if PMMA ƒ Š, vhg dš d h 205

206 Š Á já Áld thš f d Šf Š. Š Bis-GMA ƒ jš MMA t Š h f jš f vš h f ef h, ƒ f il(soft tissue)f Œ f f f l lhhf hšš Šl f j f f. 12) f Š gh Š f f Bis-GMA ƒf hhf f f Š Š eš } l f f. tm Bis-GMA ƒ ftf } h fš hdf Š h v eš Bis-GMA urethane dimethacrylate (UDMA) 3) Bis-GMA e t 13,14) dš ff, m Bis-GMA ƒf f eš alumina, 15) nanoscale HA 16) jš lh 17) f t h dš f. Š PMMA ƒ hœd d d ifƒ s hrh lf fš f ef hrh g f f. f t v Š elšl f ƒ, ƒ s f f. Š MMA t ev f j. 18) f PMMA ƒf hf Š e Š ƒf thš f f lšjf. j ƒ Š lf t Š ƒ t Š e Š thš f f f j f. ƒ d Š l starch/ cellulose acetate blend, 19,20) poly(propylene glycol-fumarate), 21) poly(dl-lactic-co-glycolic acid) (PLGA) microparticles, 22) chitosan, 23,24) d lactose 25) f h f. f Š Š ƒ Š lf Š f e ƒ d t f Šj. Š Š ƒ Š h ŠeŠ l hf vf Š f f u Šf lf ff~ Š f. f ƒ f j f Bis-GMA lšf hi ƒf l f f Œ fš. 13,14) l, Bis-GMAf Šo o ~} fƒ xœš ~} fƒ 3 4 f 3MA 4MA hišf Bis-GMAf hf Š f f f ƒ t f h fš tœ vhg vlš f hf h h f } ~ f. t e Š eš Š Š Š lf oligolactide poly(l-lactic acid) (PLLA) t Š f 3MA Šf Œ Š ƒ h iš f, h h Š ƒ f Bis- GMA control Š. ³ v s w ƒf d ƒ d f Bis-GMA e t fh Š f f Š Š. 13) l, Bis-GMA methylene chloride f triethylamine methacrylic anhydride t Š f 1f fš work-upš Bis-GMAf e t(3ma 4MA).» t tœ f vhgf apatite and wollastonite containing glass-ceramic (AW-GC, (j) ƒ, Š )f } 4 µmf f dš. 26) ƒ f Š f f eš AW-GC fff f β-tcp s f f silane coupling agentf 3-(trimethoxysilyl) propyl methacrylate (γ-mps) s Š fj Šf e Š. 13,27) w w Š l dš oligolactidef GL7 triacrylate (GL7-Ac) fh Š Š Š. 28) l, glycerol (G) L-lactide (L) stannous octoate 130 o C 6 f z h GL7 triol (GL7-OH)f Š Š f, f f dichloromethane f triethylamine acryloyl chloride ss 0 o C 6, Š 42 fš uihf fj Šf Še GL7-Ac. Š f PLLA( f : 11, Resomer, Boehringer Ingelheim, Germany) Š eš control dš. w p ƒ e f j f Š Bis-GMA e tf 3MA mixture (3MA mix, Bis-GMA/3MA/ 4MA=45/45/10 wt%)f 2 l i dš. e f ƒ h v vhg ff f ŒŠ h f eš h(triethylene glycol dimethacrylate, TEGDMA, Aldrich)f ef 6:4(wt%) h iš. ƒ t e Š eš Š lf GL7-Ac oligolactide PLLAf Š f 5-10 wt% Š t Š. Š benzoyl peroxide (BPO, 1.5-2.5 wt%, Aldrich) h d, N,N-dimethyl-ptoluidine (DMPT, 1.1 wt%, Aldrich)f hf Œ f j jštlh d f hydroquinone (HQ, 150 ppm, Aldrich)f jš lh d. Š ƒ 30 wt%f ƒ ( TEGDMA) 70 wt%f vhg(aw-gc)f ŒŠ f Figure 1 f hybrid type f ŒŠŠ. l, hybrid type f ƒf e, Š lf ŠŠ e - ŒŠ t h BPO DMPT HQ ŒŠ ff, o f ŒŠ jšf ŠŠ tf gx(ultrasonicator, Fisher Biomaterials Research 2005

Bis-GMA e t Oligolactide ŠeŠ Šf Œ Š ƒf hi 207 Figure 1. Preparation scheme using hybrid mixing method of biodegradable bone cements. Scientific, ) dš e - f v Š f e Š. w p p sƒ Bis-GMA e tf 3MA 4MA ŠeŠ 3MA mixf ŒŠh i Proton Nuclear Magnetic Resonance ( 1 H-NMR, 600 MHz, Bruker, f) Fourier Transform Infrared Spectroscopy (FTIR, Bruker, f) ŒfŠ f, Š lf GL7-OH GL7-Acf Š 1 H-NMR ŒfŠ. e - ŠŒ fš hi ƒf Œ jš v f Linometer RB404 (R&B, Š ) whš. Š ƒf h j v ( : l 6mm f 12 mm) ( : 2 10 15 mm) Instron fg (0.5 mm/min, Instron, ) dš Š. ƒf Š ƒ f phosphate buffered saline (PBS, ph 7.4) d f 37 o C 28f xl ~ f iš j f Š. m f 5-6 whš unpaired Student t-test ŠŠ. š 3MA Mix v s w Bis-GMA f igš f Šf fš f h f l f. f Š hf fš Bis-GMA f ƒ hd w f hh f h d f f Œ f hf f. Bis-GMAf (-OH) ~} fƒ xœ f Bis-GMA e t(3ma 4MA) Bis-GMAf ghf f, xœ f jš f l Š f h f l f f e ( ƒ )f d f. 3MA mix Š Bis-GMA methacrylic anhydridef ef ihšf Šl Bis-GMA, 3MA 4MA 45:45:10 wt% f 3MA mix Š Š f. 3MA mixf Š e f 90%f f, f Š f w} (TLC) y f Š ŠŠ f ŒŠh i 1H-NMR FTIR ŒfŠ. 1 H-NMR controlf Bis-GMA Š 3MA mix fj Šf l Š f Š FTIR 3MA mix 3500 cm 1 sf Šf Š f g ff ŒfŠ f. w Oligolactide w ƒf Š lf t Š ƒ f Š e Š d ilf tš Š j f. Š l d oligolactidef GL7-Ac glycerol L-lactide fdš h GL7-OH Š Š f fj Šf fš GL7-Ac Š Š. 28) Š GL7-OH GL7-Ac f ŒŠh i 1 H-NMR ŒfŠ f, GL7-Acf f f 3,168f. l, GL7-OHf d, G-CH 2 OH (δ 3.73) peakf l L-CH (δ 5.16) L-CH-OH (δ 3.73) peakf h e f glycerolf l f 3 f arm Š lactidyl unit 7 f h, glycerol GL7 triol hf hœ ff f. f glycerol f 3 f hydroxyl groupf L-lactide t jš ff ~. Š GL7-Acf d r l, L-OH (δ 2.85) peakf l Ac-CH 2 =CH (δ 5.91-6.44) L-CH 3 (δ 1.56) peakf h e f GL7-OH f h acrylate hœ ff ŒfŠ f. w p p Figure 2 jš hf BPOf Š ƒf Œ jš v f ~ f. t Š ƒ 10-15 jšf Œ f f BPOf l Š Œ f Š. f if Š l Še Bis-GMA ƒf d h Œ (6-8 )f ~ f Š lf Œ f g f. 14) g ˆŒ PMMA ƒ hd e rf ff 10 h f Œ f f f f Š lf ŠeŠ ƒf Œ h Š f. Š ƒf Œ jš v f BPOf Vol. 9, No. 4

208 Š Á já Áld Figure 2. Curing time and polymerization shrinkage of biodegradable bone cements as a function of BPO concentration: (A) 2.0, (B) 2.3, and (C) 2.5. 2.0 2.5% l Š 5.3 7.2% l Š. jš h dš BPOf jš v Œ h hš f. BPOf l Š Œ f e l l h f l Šl jš v f hf l Š hth f f x f. h Š f BPO Š f ŠdŠ jštlhf DMPT 1.1 wt%, jš lhf HQ 150 ppmf d BPOf 2.3% uhi f. Figure 3f Š lf GL7-Ac oligolactidef Š Š ƒf Œ jš v f ~ f. Œ f Š lf oligolactidef Š f l Š g f f Š t Š lf oligolactide e Š h f f f tg fš jšf ŠŠ f l. Š j Š v f Š lf oligolactidef Š f l Š 8 5.5% Š if f jš v f f jšf g l hf h f l f. h Š f f hf ƒf jš v f h f f h f f ŒŠi f uhœšf f h ~ f. 13) f d f jš v f l h f d Š ƒ lš Š l f oligolactide ŠeŠ Š ƒf d GL7-Ac Š f 5% h Š. w p» p Figure 4 jš hf BPOf Š ƒf v ~ f. Š ƒf v BPOf l Š l Š 2.3% f Š f. f BPOf h f h f l f f Š BPOf 2.3%f u f v ~. Figure 5 Š lf GL7-Ac oligolactidef Š Š ƒf v ~ f. Š ƒf v Š lf ŠeŠl f Š ƒ g f GL7-Ac oligolactide t Š f l Š v Š. f GL7-Ac oligolactide l Š ƒf Š f l Š hf e f l fš h f l f. Figure 6f l i f Š ƒf v ~ f. Š ƒf d Bis-GMA 3MA mix, Š lf ŠeŠ ŠeŠ f, PLLA GL7-Ac Š GL7-Ac oligolactidef Š f hf v l Š. hthf Š lf ŠeŠ 3MA mix ƒf v u f f Figure 3. Curing time and polymerization shrinkage of biodegradable bone cements as a function of GL7-Ac contents: (A) 0, (B) 1, (C) 5, and (D) 10. Figure 4. Compressive strengths of biodegradable bone cements as a function of BPO concentration (p < 0.05, N=5). Biomaterials Research 2005

Bis-GMA e t Oligolactide ŠeŠ Šf Œ Š ƒf hi 209 Figure 5. Compressive strengths of biodegradable bone cements as a function of GL7-Ac contents (p < 0.05, N=5). Figure 7. Bending strengths of various biodegradable bone cements (p < 0.05, N=6). Figure 6. Compressive strengths of various biodegradable bone cements (p < 0.05, N=5).. Figures 7 8f Š ƒf h j ef ~ f, Figure 6f v f f e Š f ~. h ƒ f i Š, 3MA mix Bis- GMA } h f ~ f 3MA mixf ƒ fj Šf Œ vhg fj Šf l Š l f Š f } f. Š fj Šf f Š lf GL7-Ac t Š f fj Šf PLLA t Š f h f. fe ƒf e f jš PLLA fj Šf l fl jš r Š l f GL7-Ac lh jš r Š f. fj Šf f Š lf GL7-Acf Š f l Š ƒ Figure 8. Young's modulus of various biodegradable bone cements (p < 0.05, N=6). f e f Š f l h f hf Š f. f hf ƒf h vhgf i Œ ~f ~ f, dš AW- GC Š ƒf d HA β-tcp f tœ vhg h f d Š f, 14) f Š g fxš. 8,9) f AW- Vol. 9, No. 4

210 Š Á já Áld Figure 9. Biodegradable behaviors of various biodegradable bone cements. GC vhh ft dv f f Ca P fš HAw f Œ f tl z h f f h f. 9) w p w p Figure 9 l i f ƒf Š f ~ f. ƒ 28f PBS d xlš f l Š Š f h l Š j f f f f 1% fš }l. Š Š lf Še 3MA mix ƒ f l Š Š f f l f PLLA Š lf Še Š 3MA mix ƒ g f Š f. h thf 3MA mix Bis-GMA, GL7-Ac PLLA Š GL7-Ac oligolactidef Š f f Š f l Š f, 29) f h Š h h f h f f Š l f f. Š lf ŠeŠ ƒ t Š e Š Œ f tlš f f. f Š f Š ƒ hiš eš l s Š f lf d f. 19-25) f Š Š ƒ t jf t l sf ihf llš j f l Š f. f e ƒ if Šf Œ f. Š f Š Š ƒ l ff u ŒŠ f Š h Š eš l hf vš f. 30) g l Š l Š h dš 3MA ƒ hiš f Š Š h f v f j f. Bis-GMA e t Š lf GL7-Ac oligolactide Š Š f f f ŠeŠ f Š 3MA ƒ hiš. hi Š 3MA mix ƒ 10-15 f Œ h f jš v f l hf h f h Š. Š lf t Š f h f Š f Š f l Š tœ lf Š h f t Š f ƒ hi f f f. f f Bis-GMA e t oligolactide Še Š ƒ if PMMA Bis-GMA ft ƒf hhf Š Šf h f dš ff f. fe r f (2M15430)le fš f hf f. š x 1. J. B. Park, The Biomedical Engineering, J. D. Bronzino (Ed.), CRC Press, Boca Raton, 1995, p. 704. 2. J. A. Planell, M. M. Vila, F. J. Gil, and F. C. M. Driessens, Encyclopedic Handbook of Biomaterials and Bioengineering, D. L. Wise (Ed.), Marcel Dekker, New York, 1995, Vol. 2, p. 879. 3. S. Deb, L. Aiyathurai, J. A. Roether, and Z. B. Luklinska, Development of high-viscosity, two-paste bioactive bone cements, Biomaterials, 26, 3713-3718 (2005). 4. S. Torrado, P. Frutos, and G. Frutos, Gentamicin bone cements: characterisation and release (in vitro and in vivo assays), Int'l J. Pharm., 217, 57-69 (2001). 5. D. F. Williams Materials Science and Technology, in Medical and Dental Materials, R. W. Cahn, P. Haasen, and E. J. Kramer (Eds.), VCH, Weinheim, 1992, Vol. 14. 6. S. Shinzato, T. Nakamura, T. Kokubo, and Y. Kitamura, A new bioactive bone cement: Effect of glass bead filler content on mechanical and biological properties, J. Biomed. Mater. Res., 54, 491-500 (2001). 7. F. Miyaji, Y. Morita, T. Kokubo, and T. Nakamura, Surface structural change of bioactive inorganic filler-resin composite cement in simulated body fluid: Effect of resin, J. Biomed. Mater. Res., 42, 604-610 (1998). 8. M. Kobayashi, T. Nakamura, J. Tamura, T. Kokubo, and T. Kikutani, Bioactive bone cement: Comparison of AW-GC filler with hydroxyapatite and β-tcp fillers on mechanical and biological properties, J. Biomed. Mater. Res., 37, 301-313 (1997). 9. M. Kobayashi, T. Nakamura, Y. Okada, A. Fukumoto, T. Furukawa, H. Kato, T. Kokubo, and T. Kikutani, Bioactive bone cement: Comparison of apatite and wollastonite containing glass-ceramic, hydroxyapatite, and β-tricalcium phosphate fillers on bone-bonding strength, J. Biomed. Mater. Res., 42, 223-237 (1998). 10. Y. Okada, K. Kawanabe, H. Fujita, K. Nishio, and T. Nakamura, Repair of segmental bone defects using bioactive bone cement: Comparison with PMMA bone cement, J. Biomed. Mater. Res., 47, 353-359 (1999). 11. S. Shinzato, M. Kobayashi, W. F. Mousa, M. Kamimura, M. Neo, Biomaterials Research 2005

Bis-GMA e t Oligolactide ŠeŠ Šf Œ Š ƒf hi 211 K. Choju, T. Kokubo, and T. Nakamura, Bioactive bone cement: Effect of surface curing properties on bone-bonding strength, J. Biomed. Mater. Res. Appl. Biomater., 53, 51-61 (2000). 12. T. Yamamuro, T. Nakamura, H. Iida, K. Kawanabe, and Y. Matsuda, Development of bioactive bone cement and its clinical applications, Biomaterials, 19, 1479-1482 (1998). 13. H. J. Im, K.-D. Ahn, J.-M. Kim, and D. K. Han, Preparation and characteristics of novel organic-inorganic hybrid bone cements containing Bis-GMA derivatives, Biomater. Res., 7, 45-50 (2003). 14. B.-J. Park, K.-D. Ahn, Y.-O. Chin, and D. K. Han, Preparation of novel bioactive hybrid bone cements containing Bis-GMA derivatives as a prepolymer, to appear. 15. K. Nishio, M. Neo, H. Akiyama, Y. Okada, T. Kokubo, and T. Nakamura, Effects of apatite and wollastonate containing glassceramic powder and two types of alumina powder in composites on osteoblastic differentiation of bone marrow cells, J. Biomed. Mater. Res., 55, 164-176 (2001). 16. Q. Fu, N. Zhou, W. Huang, D. Wang, L. Zhang, and H. Li, Preparation and characterization of a novel bioactive bone cement: Glass based nanoscale hydroxyapatite bone cement, J. Mater. Sci. Mater. Med., 15, 1333-1338 (2004). 17. M. Kobayashi, T. Nakamura, T. Kikutani, K. Kawanabe, and T. Kokubo, Effect of polymerization reaction inhibitor on mechanical properties and surface reactivity of bioactive bone cement, J. Biomed. Mater. Res. Appl. Biomater., 43, 140-152 (1998). 18. M. Santin, A. Motta, A. Borzachiello, L. Nicolais, and L. Ambrosio, Effect of PMMA cement radical polymerization on the inflammatory response, J. Mater. Sci. Mater. Med., 15, 1175-1180 (2004). 19. I. Espigares, C. Elvira, J. F. Mano, B. Vazquez, J. S. Roman, and R. L. Reis, New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers, Biomaterials, 23, 1883-1895 (2002). 20. L. F. Boesel, J. F. Mano, and R. L. Reis, Optimization of the formulation and mechanical properties of starch based partially degradable bone cements, J. Mater. Sci. Mater. Med., 15, 73-83 (2004). 21. D. D. Frazier, V. K. Lathi, T. N. Gerhart, and W. C. Hayes, Ex vivo degradation of a poly(propylene glycol-fumarate) biodegradable particulate composite bone cement, J. Biomed. Mater. Res., 35, 383-389 (1997). 22. P. Q. Ruhe, E. L. Hedberg, N. T. Padron, P. H. M. Spauwen, J. A. Jansen, and A. G. Mikos, Biocompatibility and degradation of poly(dl-lactic-co-glycolic acid)/calcium phosphate cement composites, J. Biomed. Mater. Res., 74A, 533-544 (2005). 23. S. B. Kim, Y. J. Kim, T. L. Yoon, S. A. Park, I. H. Cho, E. J. Kim, I. A. Kim, and J.-W. Shin, The characteristics of a hydroxyapatitechitosan-pmma bone cement, Biomaterials, 25, 5715-5723 (2004). 24. L.-C. Lin, S.-J. Chang, S. M. Kuo, S. F. Chen, and C. H. Kuo, Evaluation of chitosan/β-tricalcium phosphate microspheres as a constituent to PMMA cement, J. Mater. Sci. Mater. Med., 16, 567-574 (2005). 25. M. Otsuka, M. Sawada, Y. Matsuda, T. Nakamura, and T. Kokubo, Effects of water-soluble component content on cephalexin release from bioactive bone cement consisting of bis- GMA/TEGDMA resin and bioactive glass ceramics, J. Mater. Sci. Mater. Med., 10, 59-64 (1999). 26. N. J. Dunne and J. F. Orr, Influence of mixing techniques on the physical properties of acrylic bone cement, Biomaterials, 22, 1819-1826 (2001). 27. S. Shinzato, T. Nakamura, T. Kokubo, and Y. Kitamura, Bioactive bone cement: Effect of silane treatment on mechanical properties and osteoconductivity, J. Biomed. Mater. Res., 55, 277-284 (2001). 28. D. K. Han and J. A. Hubbell, Synthesis of polymer network scaffolds from L-lactide and poly(ethylene glycol) and their interaction with cells, Macromolecules, 30, 6077-6083 (1997). 29. C. H. Kim, K. O. Park, and J. K. Kim, Synthesis and characterization of bone ingrowth associated with bone cement co-polymerized with a biodegradable material, Biomater. Res., 9, 71-76 (2005). 30. J. G. E. Hendriks, J. R. van Horn, H. C. van der Mei, and H. J. Busscher, Backgrounds of antibiotic-loaded bone cement and prothesis-related infection, Biomaterials, 25, 545-556 (2004). Vol. 9, No. 4