01. 백종현_01~06.hwp

Similar documents
04_이근원_21~27.hwp

14.531~539(08-037).fm

歯전용]

04김호걸(39~50)ok

Microsoft Word - KSR2013A320

82-01.fm

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

Microsoft Word - KSR2012A103.doc

04-다시_고속철도61~80p

공학박사학위 논문 운영 중 터널확대 굴착시 지반거동 특성분석 및 프로텍터 설계 Ground Behavior Analysis and Protector Design during the Enlargement of a Tunnel in Operation 2011년 2월 인하대

16(1)-3(국문)(p.40-45).fm

12(3) 10.fm


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

Microsoft Word - KSR2012A172.doc

Microsoft Word - KSR2012A038.doc

Microsoft Word - KSR2013A299

Microsoft Word - KSR2012A021.doc

03 장태헌.hwp

DBPIA-NURIMEDIA

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

<3136C1FD31C8A320C5EBC7D52E687770>

歯174구경회.PDF

304.fm

10(3)-09.fm

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할


Coriolis.hwp

레이아웃 1

2

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

12(4) 10.fm

untitled

untitled

< C6AFC1FD28B1C7C7F5C1DF292E687770>

Microsoft Word - KSR2013A291

10(3)-10.fm

<31325FB1E8B0E6BCBA2E687770>

Æ÷Àå½Ã¼³94š

< DC1A4C3A5B5BFC7E22E666D>

Microsoft Word - 1-차우창.doc

:,,.,. 456, 253 ( 89, 164 ), 203 ( 44, 159 ). Cronbach α= ,.,,..,,,.,. :,, ( )

<353920C0B1B1E2BFEB2DB0E6B0F1C0DCB1B320BBF3BACEB1B8C1B6C0C720C8DA2E687770>

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: (LiD) - - * Way to

,.,..,....,, Abstract The importance of integrated design which tries to i

DBPIA-NURIMEDIA

<C1A4BAB8B9FDC7D031362D335F E687770>

ISO17025.PDF

44-4대지.07이영희532~

<313120B9DABFB5B1B82E687770>

에너지경제연구 제13권 제1호

보고서(겉표지).PDF

DBPIA-NURIMEDIA

°í¼®ÁÖ Ãâ·Â

... 수시연구 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 권혁구ㆍ서상범...

03이경미(237~248)ok

µµÅ¥¸àÆ®1

< B3E2BFF8BAB828C8AFB0E629312E687770>

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: A study on Characte

09권오설_ok.hwp

03-서연옥.hwp

인문사회과학기술융합학회

디지털포렌식학회 논문양식

12.077~081(A12_이종국).fm

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>


09È«¼®¿µ 5~152s

untitled

11¹ÚÇý·É

16-기06 환경하중237~246p

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

5. Kapitel URE neu

< FC1A4BAB8B9FDC7D D325FC3D6C1BEBABB2E687770>

DC Link Application DC Link capacitor can be universally used for the assembly of low inductance DC buffer circuits and DC filtering, smoothing. They

2013<C724><B9AC><ACBD><C601><C2E4><CC9C><C0AC><B840><C9D1>(<C6F9><C6A9>).pdf

50(1)-09.fm

<BCF6BDC D31385FB0EDBCD3B5B5B7CEC8DEB0D4C5B8BFEEB5B5C0D4B1B8BBF3BFACB1B85FB1C7BFB5C0CE2E687770>

14(4)-14(심고문2).fm

DBPIA-NURIMEDIA

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

Berechenbar mehr Leistung fur thermoplastische Kunststoffverschraubungen

012임수진

황지웅

레이아웃 1

<313920C0CCB1E2BFF82E687770>

~41-기술2-충적지반

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

Getting Started

139~144 ¿À°ø¾àħ

도비라

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

Microsoft Word - KSR2013A303

Æ÷Àå82š

ETL_project_best_practice1.ppt

#Ȳ¿ë¼®

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

분석결과 Special Edition 녹색건물의 가치산정 및 탄소배출 평가 이슈 서 민간분야의 적극적인 참여 방안의 마련이 필요하다. 또한 우리나라는 녹색건축의 경제성에 대한 검증에 대 한 연구가 미흡한 실정이다. 반면, 미국, 영국, 호주 등은 민간 주도로 녹색건축물

<3133B1C732C8A328BCF6C1A4292E687770>

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

27(5A)-07(5806).fm

Transcription:

KIGAS Vol. 15, No. 5, October, 2011 (Journal of the Korean Institute of Gas) 운전압력상향을위한천연가스배관의신뢰성검토 백종현 김우식한국가스공사연구개발원 (2010 년 8 월 6 일접수, 2011 년 8 월 9 일수정, 2011 년 10 월 14 일채택 ) Reliability Assessment for Pressure Uprating of Natural Gas Transmission Pipelines Jong-hyun Baek Woo-sik Kim R&D Division, Korea Gas Corporation, Ansan 426-790, Korea (Received August 6, 2011; Revised August 9, 2011; Accepted October 14, 2011) 요약 국내천연가스주배관의가스공급최대허용운전압력이 6.86 MPa 로제한된현재상황에서배관관말압력저하를해소하기위해서는배관을증설할수밖에없는데이경우상당한비용이수반된다. 따라서기존배관과설비를활용한해결방안으로송출압력을더높여배관운전압력을상향조정하여공급하는방법을검토하였다. 배관에대한건전성검토결과, 현재시공된배관은 7.85 MPa 까지의운전압력에서도사용가능하며, 연성파괴에대한저항성을나타내는충격흡수에너지는 ASME B31.8 에서요구하는수치보다더높은값을가지고있으며, 외부충격손상시배관변형을위한소요하중은배관내압증가에따라증가하였다. 그러나배관의운전압력이증가함에따라가스폭발시피해범위는증가한다. Abstract - It is required to construct the pipelines to eliminate pressure drop at the end of transmission line under limitation of maximum operation pressure of 6.86 MPa, however, it highly costs to build the pipelines and takes time-consuming job. Higher operation pressure compared to current operating pressure has been considered to resolve the problem of pressure drop without modification of the existing pipelines and facilities. As a result of the integrity evaluation, the existing pipelines can be operated up to 7.85 MPa in terms of wall thickness and have higher Charpy impact energy than required value in the ASME B31.8. However, Increment of operation pressure gives rise to increase potential impact area if the pipelines burst due to third party damages. Key words : API 5L X65, charpy impact energy, potential impact area, uprating, wall thickness { 서론 Ý d œ d d Œ} Œ o m e d ds ~ ~ s u s j xv w oú r ~ d ds d ~ x x { 주저자 :jhbaek@kogas.re.kr w d. d } u 6.86MPa s u v ~ ~ s t sœ t ~ s w s. œ ~} v s tv ó ~ t s } s qjs s d [1,2]. 1984ë i 6.89MPa x ~ s 2006ëŸ { } ~ e 55% 2,863km ~ s 7.5~8.5 MPa - 1 -

백종현 김우식 ts, 35ë w} w 30 10.3~15.88 mm API X56, St53.7, St 60.7 ~ s 100km e s u 20% t g s [1,2]. d ~ t jt ~ d d v s Ú t ~} ~ g s d. d h s q s ~ x, p v s i s p odsœ s } p pts Ý, s, Ý } s s,, }s, p s v s t s x p u s h s qjd s s. t vt ~ t o d s ~Ý q ts w, vt ~ t ASME B31G, API 579 BS 7910 t od s{ n v } ~ s ~ p q t d s. s, t n t s s uy å f s qj ASME B31.8 API 5L u v s{, t ~ e s u od s i s } q t s [3-7]. t q s ~ qjt s t x ~, uy å od js nƒ t od, d p st d s t js u s Ý d ~ w 30 API X65 ~ ods. 운전압력상향에대한평가결과 d ~ t ~ p t odsœ s ~, nƒ s t, p st h} s u s ods. 배관두께검토 d ~ t ~ t qj s. Ý d ~ KGS FS451 code t x [8]. d ~ x s œ (1) ASME B31.8 part 841.1.1 os [9]. á Table 1. Required wall thickness with variation of internal pressure for API X65 of location class "Ga" and "Na" in KGS FS451 code Pressure (MPa) 6.86 7.85 8.23 (1) Ï žÿ t : ~ (mm) P : x (MPa) D o : ~ w (mm) S : t f (MPa) E : w (SAW, ERW Seamless ~=1) T : x (121 s=1) F : xx (0.8~0.4) Location class 1, Division 1=0.8 Location class 1, Division 2=0.72 Location class 2=0.6 Location class 3=0.5 Location class 4=0.4 Location classd 4 w xx 0.4 Ý d ~ s{. xx d 0.5 Location class 3 ~ Ú ~ s {. d 4 p j s } Ú s{ [8]. w 30 API X65 d } Ú ~ s x v ~ q 1 ÚhÝ. Ý 6.86MPa d ~ 14.6mm, 8.23MPa 17.5mm ~ d s s. Location Class (D.F) Wall thickness (mm) Thickness tolerance (%) "Ga" 14.60 16.60 "Na" 11.68 18.32 "Ga" 16.68 4.69 "Na" 13.34 6.71 "Ga" 17.50 0.00 "Na" 13.99 2.17 KIGAS Vol. 15, No. 5, October, 2011-2 -

운전압력상향을위한천연가스배관의신뢰성검토 Table 2. Required wall thickness and constructed wall thickness for API X65 at location class "Ga" and "Na" Location class (D.F) Ga (0.4) Na (0.5) Pressure (MPa) Calculated thickness (mm) Constructed thickness (mm) 6.86 14.60 17.5 7.85 16.68 17.5 6.86 11.68 14.3 7.85 13.34 14.3 Ú ~ Ý 6.86MPa ~ 11.68mm, 8.23MPa 13.99mm ~ d s s. d ~ ~ d 17.5mm œ ods Ý 8.23MPa 6.86MPa f s 16.6%Ÿ ds. u Ý d ~ } 17.5mm d ~ 8.23MPa Ý Ÿ d s. q 2 w 30 API X65 ~ d } Ú t x ~ } ~ Ý ÚhÝ. 7.85MPa w } ~ u s q ª ~ }. u } ~ 7.85MPa d s. 연성파괴에대한저항성 w 16 d ~ t f 40~80% ÚhÝ nƒ n s nƒ s s s [9]. nƒ s v jt s nƒ u API 5L SR5 ( u u ) API 5L SR6 (DWTT u ) s. u u w o 60% n, DWTT u w 40% n ÚhÝ s f q ods. nƒ s uy å (2)~ (5) s x s ASME B31.8 part 841.1.2 Fracture Control and Arrest" [9]. (a) Battelle Columbus Laboratories (BCL) œ á í Î Õ Ï Þ«ß ÎîÐ (2) Table 3. Minimum impact energy to arrest ductile fracture (unit: Joule) Location class (D.F) Ga (0.4) Na (0.5) Eqs. Pressure 6.86MPa 7.85MPa BCL 7.27 9.50 AISI 9.54 11.66 BGC 8.73 9.98 BSC 4.78 6.24 BCL 10.08 13.17 AISI 12.80 15.63 BGC 11.71 13.38 BSC 7.07 9.23 (b) American Iron and Steel Institute (AISI) œ á í ÐÎÒ ÎíÒ Þ«ß íò (3) (c) British Gas Council (BGC) œ á í ÐÎÒ «î íò (4) (d) British Steel Corporation (BSC) œ á í ÎÎÖ Ï «(5) CVN : uy å (ft-lb) R : ~ w (in.) t : ~ (in) P D o : (ksi), á Ï : x (ksi) : ~ w (in). (2)~ (5) ~ w, Ý t. (2) d uv, (4) d u v s, w Ú (3)} (5) fuv t q œ ~ t. q 3 w 30 API X65 ~ s d } Ú t v ~ uy å (2)~ (5) t ÚhÝ. d ~ t Ú ~ w d ó uy å ÚhÝ{. ASME B31.8 4 d ó uy å s (3) 7.85MPa ~ w 30 API X65-3 - ï d 15 5 2011 10

백종현 김우식 500 ) ( J y r g e n E t c a p Im y p r a h C 400 300 200 100 0 X65 - LT X65-45 o X65 - TL Design Temp. (-29 o C ~ 38 o C) -120-100 -80-60 -40-20 0 20 40 60 Test Temp.( o C) Table 4. Effect of internal pressure on the potential impact area Outer Diameter (in) 30 26 20 Operation pressure (MPa) Radius of potential impact (m) 6.86 199.1 7.85 212.8 6.86 172.5 7.85 184.5 6.86 132.7 7.85 141.9 Fig. 1. Charpy impact energy for API X65. ~ nƒ n s uy å 15.63J od. 1 ASTM E23 u o Ý d ~ API X65 ~ v uy å v s uv} Úh Ý q [10]. X65-LT u u ð t t ~ t, 45 o ~ t 45 o, X65-TL ~} ots t. Ý t ~ nƒd s w ~ t nƒd s, ð t t ~} ots TL uy å f nƒ t od. 1 x e X65-TL uy å vd g Ú, w uy å d uy f s{ -60 w nƒ o ÚhÝ. d ~ x uy å 350J ÚhÝ{, 350J uy å Ý 7.85MPa ASME B31.8 nƒ t s uy å 15.63J s y ó f. u } d ~ w 6.86MPa 7.85MPa t nƒ n s uy å u s{ s y ó f d {. 가스폭발시피해범위 d ~ t ~ p st u ASME B 31.8S ods. u { d } {v} t t v { d v} f u f s. { d s w d p t t w (6) t [11]. d p s st ~ w } ~ ~ w} Ý dt ds. á í ÐÎÒ ö (6) r = radius of the impact circle (m) d = outside diameter of the pipeline (mm), p = pipeline segment s maximum allowable operation pressure (kpa) q 4 Ý d d p st (6) t x v}. w 30 ~ Ý 6.86MPa w st w 199.1m Ý 7.85 MPa w 212.8m Ý 0.99MPa dt st w 13.7m ds., d ~ 6.86MPa 7.85MPa t w d p s st w 6.9% ds. 외부충격손상시소요하중효과 d ~ v mvt s v odsœ s h t ABAQUS Ver. 6.9 s s t [12]. ~ w 30, 17.5 mm w (D/t) d 43.54 p t ods. ~ s 8 g d (8-nodes isoparametric brick reduced integration KIGAS Vol. 15, No. 5, October, 2011-4 -

운전압력상향을위한천연가스배관의신뢰성검토 (a) indenter diameter : 80 mm (b) indenter diameter : 160 mm s u Ô w 80, 160 320mm s. mvt ~} u usœ s 0.3 x s surface p s. Brooker w 914mm, 6.4mm 12.5 mm API X70 ~ s s ~ ~j s s t jt ods Ý 0 12 MPa dt ~ ~j s 409kN 461kN ds, API X42 ~ w Ý 0 3MPa dt 162kN 165 kn ds { {s [13]. Liu w 24, 6.35mm w 36, 12.5mm API X52 API X65 ~ s s t v} ~ w, ~x mvt s Ý dt ds { {s [14]. 2 w 80, 160 320mm w s Ý w Ý 4, 8 16MPa w m Ÿ v s } s s t v}. s t ~ m Ÿ w, os, jt o w ~ u Ÿ ods. Ÿ os ~ Ÿ f s ~ h v t q. Ý w d Ý w s Ÿ m vt sœ t s. d ~ Ý w d s s t d q od, s Ý d t s s dt. 결론 d ~ t ~ t ods v} s g. (c) indenter diameter : 320mm Fig. 2. Force-dent depth with variation of initial internal pressure during denting element, C3D8R) s, ~ œss u, s p } s t w s 1/4 s. mvt 1) ~ xœ qjv}, u } API X65 ~ 7.85 MPaŸ d s. 2) u } API X65 ~ 7.85 MPa nƒ t ÚhÝ uy å d ASME B31.8 s ó f d {. - 5 - ï d 15 5 2011 10

백종현 김우식 3) ~ Ý dt d p st ds, 6.86 MPa 7.85 MPa ds st w 6.9% d s 4) u ~ u s s s ~ Ý d ds. 참고문헌 [1] Howard G. Murphy, Jr., Reconsideration of Maximum Allowable Operating Pressure: Costs and Benefits -Macroeconomic View, Proceeding of Reconsideration of Maximum Allowable Operating Pressure for Class Locations, March 21, (2006) [2] Mark Docherty, Experience with the Pressure Uprating of Gas Transmission Pipelines in the United Kingdom, Proceeding of Reconsideration of Maximum Allowable Operating Pressure for Class Locations, March 21, (2006) [3] Charanjit Jandu, Paul Cousens, Steve Wheat and Neil Bramley, An integrated integrity management approach to uprating high pressure gas transmission pipelines and above ground installations, IPC04-0604, Proceedings of International Pipeline Conference 2004, Calgary, Alberta, Canada, American Society of Mechanical Engineers, (2004) [4] Francis, A, Edwards, A.M. & Espiner, R.J., Guidelines For The Use of Structural Reliability and Risk Based Techniques To Justify Operation of Onshore Pipelines at Design Factors Greater Than 0.72, Proceedings of 21st World Gas Conference, Nice, (2000) [5] Rainer H., Thomas P., Two-step method verifies uprating of older german gas pipeline, Oil & Gas Journal, March 1, (2004) [6] API RP 579, Fitness-for-Service, American Petroleum Institute, (2007) [7] BS 7910, Guide to methods for assessing the acceptability of flaws in metallic structures, British Standards Institution, (1999) [8] Facility / Technical / Inspection / Safety Diagnosis Code for Pipes Outside of Producing and Supplying Places of Wholesale Gas Business, KGS FS451, (2009) [9] ASME B31.8 Gas Transmission and Distribution Piping Systems, (2010) [10] KOGAS Research Report, A study on fracture behavior of natural gas pipelines, (1997) [11] ASME B 31.8S Managing System Integrity of Gas Pipelines, (2010) [12] ABAQUS version 6.9, ABAQUS Inc., Rhode Island, USA, 2009. [13] Brooker D.C., Numerical modelling of pipeline puncture under excavator loading. Part II: Parametric study, Int. J. Pressure Vessels and Piping, Vol. 80, Issue 10, pp. 727~735, (2003) [14] J.H. Liu, A. Francis, Theoretical analysis of local indentation on pressured pipes, Int. J. Pressure Vessels and Piping, Vol. 81, pp. 931~939, (2004) KIGAS Vol. 15, No. 5, October, 2011-6 -