국립기상연구소수문기상최근연구활동과 보성타워종합관측시스템구축계획 ( 안 ) 장기호 1, 송기옥 2, 김동진 2, 김금란 1, 조영순 2 이미자 2, 최치영 1, 진기범 2, 김병선 2 1. 국립기상연구소 2. 기상청
Contents I. 레이더관련연구활동 II. 기상조절 ( 구름물리 ) 연구활동 III. 장비개발활동 IV. 타워관측시스템계획 ( 안 ) V. 향후계획
I. 레이더(1): 레이더 연구상황도 Radar Research Activities (Southwest Test-bed) C-band radar (KMA) KMA operation (South Korea Region) RAR VSRF Realtime Data X-band Doppler radar (Research) Forecasters S-band Doppler radar (KMA) 3D Wind Ø RAR : Radar-AWS Rainrate Ø VSRF : Very Short-Range Forecast of Prediction Ø 3D Wind : 3-Dimensional Dual-Doppler Radar Wind field Related Companies
I. 레이더 : Radar-AWS Rainrate (RAR) v Purpose : Quantitative Precipitation Estimation v Main Theory : Window Probability Matching Method (Rosenfeld, 1994) v Components : RAR and verification system v RAR field v Verification system Real-time Spatial Verification AWS RAR Difference Real-time Temporal Verification Time series Verification from June to Aug. in 2006 AWS mean (mm/h) Radar mean (mm/h) RMSE (mm/h) Mean Error (mm/h) BIAS (%) RAR 4.88 3.81 4.88-1.18 78 Z=200 R 1.6 4.88 2.89 5.50-1.99 60 (Threshold 0.1 mm/h)
I. 레이더 : VSRF 5km, 1km 시험운영 (11 월 ~) v Purpose : Quantitative Precipitation Forecast v Main Theory : Temporal extrapolation (originally developed by JMA) v Components : Forecast and verification system v Forecast of VSRF v Verification system Spatial Verification Difference VSRF 1hr fcst. AWS obs. Temporal Verification
I. 레이더: 이중도플러 바람장 개발 v Purpose : Estimation of 3-dimensional wind field v Main Theory : Dual-Doppler radar method (Lhermite, 1961; Armijo, 1969) v Components : 3-D wind field and verification system v 3D Wind field Typhoon Nari v Verification system Wind-profiler Dual-Doppler wind field RMSE in the 2006 summer 1) Wind speed: 5 m/s 2) Wind direction: 25 Verification compared with wind-profiler : Munsan, Gangneung, Kunsan, Masan, Haenam
I. 레이더 : Dual-Pol 도입 (2009.5~) Ø Wavelength: 3cm (X-band) Ø Classification of Hydrometeor types Ø Ø Location: Muan / Daegwanllyeong (winter) Dual polarization (Simultaneous), Doppler Ø Ø Improvement of Quantitative Precipitation Estimation Verification of weather modification
II. 기상조절: 연구 추진 개념도 A result of Muklimo Theory & Model l Conceptual Model Develop. - Brownian Motion - Sedimentation, Condensation, Evaporation, Coalescence, Ice Crystallization, Chemistry - Fine-resol. transport model (Muklimo) l Realistic Cloud Model (Yonsei Univ.) - Clark-Hall - Takahashi Daegwallyeong Supersite l Cloud Phys. Obs. Sys. (CPOS) - FSSP-100 - Microwave Radiometer - Micro Rain Radar - Optical Disdrometer (2006.5.18) l 3D AWS l PM10 l 3D Cloud Analysis Obs. & Ana. Unmanned Helicopter l Aircraft Seed l Ground-based Seed l Fog Dissipation l Instrument Develop.(latent) - Pilotless Helicopter - Turbo Diffusion Sys. - Digital Microscope for Droplets - Remote AgI Seeding Diffuser Exps. & Equip.
3 II. 기상조절 : 대관령구름물리관측시스템 (CPOS) Fog collector PM10 3D AWS Micro Radiometer FSSP Web camera Calibration and Verification (Cal/Val) with the Sonde data of Sockcho (Micro Radiometer) 1.5 1.2 0.9 (a) (b) MRR MWR (cm) 0.6 0.3 clear cloudy r ² - 0.88 r ² - 0.79 0.0 0.0 0.3 0.6 0.9 1.2 1.5 RS (cm) Calibration and Verification (Cal/Val) with the AWS(Rainfall) data of Deagallyoung (MRR) Calibration and Verification (Cal/Val) with the PM10 data of Deagallyoung (FSSP) Comparison of the (a) 15-min, (b) 20-min, (c) 30-min è R 2 = 0.84 (d) 60-min accumulated precipitation PM10, μg / m3 1000 900 1000 900 PM10 800 900 FSSP 800 800 700 700 700 600 600 600 500 400 300 200 100 0 1st seeding 2nd seeding 17:05 17:10 17:15 17:20 17:25 17:30 17:35 17:55 18:00 18:05 18:10 18:15 18:20 18:25 18:30 18:35 18:40 0 0 100 200 300 400 500 600 700 800 900 1000 Time, hh:mm observed by AWS and MRR. Mass concentration - PM10 Sampler, ug/m 3 500 400 300 200 100 0 FSSP, μg / m3, ug/m 500 400 Y = 0.89X + 67.89 300 r 2 = 0.64 Mass concentration 200 100
II. 기상조절 : 안개조절실험 Exp. Site : Daegwallyeong Cloud Phys. Obs. Sys. (CPOS) Exp. Period : June July in 2005-2008 (Foggy day) Method of Exp.: Two seeding paths of CaCl 2 A Single Flare : Flaring Time = 2.5 min, CaCl 2 = 150 g Exp. Results EXP-1 EXP-2 Average No. of Exps. 9 7 8 Impact time (time to the first peak) 8.64 14.76 12.08 Mean Improvement Period (min.) 17.26 28.06 23.33 Mean Visibility Factor (Exp.) 1.18 1.27 1.23 Mean Visibility Factor (Thy*) 1.54 1.78 1.68 *Jiusto s condensation scheme (1968)
II. 기상조절 : 지상증설실험 Exp. Design Exp. Results Objective: To verify the fast (~1 min) forced condensation process (Li & Pitter, 1996) Weather Conditions: Weak easterly-advection cold fog (easterly fog, below 5 m/s, < ~-5 o C) Location, Period: Daegwallyeong, Winter in 2006 Method: Ground-based AgI seeding è Accepted in AAS (2008.6)
II. 기상조절 : 목표지역인공증설 1 차비행실험 Exp. Design Exp. Results: (4 March) Objective: To examine the target experiment for snow enhancement using slow (~1 hr ) contact freezing process (Zhidong & Pitter, 1996) Weather Conditions: Weak easterly-advection cold cloud ascended by Taeback mountains Target, Period: Yongpyong ski resort, March in 2008 Method, Number: Airborne AgI seeding, 3 times Before Exp. à à Distinct difference after seeding à Snow enhanced from the seeding line After Exp. à è Good results in the first airborne target exp.
III. 장비개발 : 터보확산실험기 vobjective Ignition apparatus for hygroscopic material seeding Ignition possibility form 1 to 9 of Hygroscopic Flare Flare Hole Importance Function - Ventilation - Possibility of Seeding angle - Portable àpatent Number: 10-0679713 àregistration Date: 31 Jan. 2007 Ignition Apparatus of Hygroscopic Flare
III. 장비개발 : 구름 / 안개입자영상포착기 vobjective Observation of cloud and fog particle distribution Measurement of radius and number concentration of cloud and fog particle Possibility of real-time analysis Microscope Slide Lighting Blast Importance Function - Remote control - Image expression of cloud and fog particle Cloud and Fog Particle Distribution Observation System àpatent Number: 10-0715360 àregistration Date: 30 Apr. 2007 Microscope Slide * Observation result of fog particle
III. 장비개발 : 눈 / 우박입자영상포착기 vobjective Observation of ice particle Measurement of radius and number concentration of ice particle Measurement of phase of ice particle Importance Function - Wiper method - Inhalation speed above 60m/s : it is similar with airplane speed Observation result of snow particle 11 KST 27 Jan 2007 Camera * Operational principle àpatent Number: 10-0838318 àregistration Date: 9 Jun 2007 Ice Particle Image Capture
III. 장비개발 : 2008 년의신장비 1. Weight-Drain Crossing Precipitation Gage è submitted (`07.4) è accepted (`08.10) è submitted to Int.(USA) Patent(`08.2) 2. Automatic Sky Observation Sys => submitted(`07.11)
IV. 타워 : 종합관측전략도 3D Multisensing Study Plan Beijing 300m Tower (IAP) - Flux - VAL of simulation Aircraft (Plan) -Cloud/Airosol Scan: Radar, Lidar -Cloud ptls.: FSSP,2D-C,2D-S,PIP,HVPS -Aerosol ptls.: PCASP, etc -Seeding eqiup. -Gases: LI7500, etc -Others? Weather Modification -Snow Characteristics -Cloud seeding Yellow Sea Monitor (Plan) -Severe weather monitor -Drop-sonde obs. w/ Models CAL/VAL of satellite/radars data Climate Change Element -Aerosol, Gases Combine Dual-Pol. Radar -CAL/VAL of dual-pol. -Ptls. Identification X Dual-Pol. X Single-Pol. Bosung 200m Tower (KMA Plan, 2010~) - Standard Sounding (Tower & Aircraft) - East-Asia Flux Data Joining 200m Tower (MRI) -Flux (6 lvs.) Typhoon Structure (Joining with T-PARC?)
IV. 타워 : 한중일타워활용현황 220m 보성 Tower 시스템 1) PBL 2) 대기환경모니터링 3) 물순환모니터링 4) 대기연직구조 200m 일본 MRI 220m Tower -PBL 관측연구 (6 개층 ) 중국 IAP 300 m Tower - PBL 관측연구 - 모델검증 보성 200m Tower ( 계획 ) - 종합관측연구 ( 물순환, 대기연직, 환경 )
IV. 타워 : 종합활용배치도 대기연직구조감시노장 : - 농업기상관측시스템 ( 일사, 증발, 지중온도, 토양수분등 ) - 해남장비 ( 오토존데, 윈드프로파일러, 라디오메타등 ) 장비비교검증노장 : - 최신장비 ( 개발우량계등 ) 비교시험검증 복합 Tower 관측시스템 : - 대기환경모니터링 1) 스캐닝라이더 2) 5개층이산화탄소, 수증기 3) 황사, 기타온실가스등 - 물순환모니터링 ( 농업기상관측장비와연계 ) 1) 지상강수입자크기분포 2) 연직강수입자크기분포 3) 구름및안개입자크기 / 영상관측
Aircraft -Radar, Lidar -Cloud/Airosol: CAPS, HVPS? -Gas: LI7500? -Seeding Eqip. IV. 타워 : 종합활용센서배치도 CAPS (Scanning ) Lidar PIP W ßà E NET Rad. 3DWind Temp./Humid PM10/2.5 LI7500 ASOS Visibility Sensor PARSIVEL MWR AutoSonde Flat farmland (rice) ~ 1km SEA ORG Underground temp/moist MRR Wind profiler SEA Flat farmland (rice)
IV. 타워 : 타워 - 항공기활용표준프로파일계획 Airborne Observation Profile of cloud ptl. size distri. Standard Profile of Atm. &. Envir. - Temperature, Humidity, and 3D Wind - Aerosols and CO 2 CAPS (Scanning ) Lidar PIP NET Rad. 3DWind Temp./Humid ASOS PM10/2.5 LI7500 Farmland
V. 계획 ( 안 ): 수문기상관련연구미래전략 1. Seeding Sensitivity 2. CPOS and Ana. 3. Theoretical understanding 4. Instrument Develop. Small-Scale (Point) Exps./Obs. 1. Doppler Radar Obs 2. Korea Radar Rainrate 3. Korea VSRF 4. Korea Radar 3D Wind 1. Operation of precipitation enhancement tech. 2. Operation of fog dispersion 1.Effective Range &. Strength1. Exp. of another testbed 2.Airplane Exps. for a testbed 2. Scale extension Practical 3.Conceptual Cloud model 3. Realistic cloud model Use 4.Develop. of related insts. 4. Develop. of adv. Instruments Meso-Scale (~ 100 km 2 ) Exps./Obs. -Dual-Pol. -Tower -Aircraft Large-scale (> 100 km 2 ) Exps/Obs. 1.Cal/Val of Dual-Pol. 2. Effective Range of Dual/Single Pol. 3. Snow Obs. Exp. 4. Tower, Aircraft, and Radar Work 1. Aircraft obs. research 2. Tower obs. Standard obs. Research 3. Dual-Pol composite research 4. Aircraft-Tower-Radar related work Now 2012 2020 1.Korea Dual-Pol products 2. Yellow Sea Aircraft Obs. Sys. 3. Korea Standard Atm/Env. /Hydromet. Ptls. Profile Obs.
V. 계획 ( 안 ): 수문기상상세연구계획 (~2012) 2009 2010 2011 2012 1/4 2/4 3/4 4/4 1/4 2/4 3/4 4/4 1/4 2/4 3/4 4/4 1/4 2/4 3/4 4/4 STEP 1: Establishment of Dual-Pol. & Cloud Modification - Install and operation - CAL/VAL for hardware and software (ARC,NCAR) - Comparison bet n single-(old, Ganju) and dual-pol. (new, Muan) X-band radar data (I) - Effective range validation of Dual-Pol. Radar for the half power (I) (use the validation truck, originally introduced w/ a Dual-Pol. Radar, at least including PARSIVEL & MRR ) - A migration test (Muan à Daegawallyeong) - Ground-based (Daegwallyeong) cloud (fog) modification exps. (Warm: June-July, Cold: Dec.-Mar.) - Airborne target (Yongpyong) snow enhancement exps. (Dec.-Mar.) Dual-Pol. X-band Radar STEP 2: Advances for Dual-Pol. & Cloud Mod. - Summer/Winter Enhanced Obs. - Improvement of NCAR algorithm - Comparison bet n single- and dual-pol. X-band radar data (II) - Effective range validation of Dual-Pol. Radar for the half power (II) - Round-trip operation (Muan ßà Daegawallyeong (winter)) - Ground-based (Daegwallyeong) cloud (fog) modification exps. - Another airborne target (Hapcheon?) snow enhancement exps. Tower, Aircraft (Plan)