DBPIA-NURIMEDIA

Similar documents
untitled

fm

<30392DB1B3C1A45FBCF6C1A42DB1E8C3B6C8F E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

10-60(3)-수정.hwp

< B1E8B5BFC0B12E687770>

DBPIA-NURIMEDIA

<30342DC0FAC0DABCF6C1A42DC6AFC1FD3132B9DABFB5B5B55F76312E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<4D F736F F F696E74202D20BDBAC5D7C0CEB7B9BDBAB0AD20BFEBC1A2BACEC0C720C0D4BFADB7AEBFA120B5FBB8A520B9CCBCBCB1D5BFADC6F2B0A15F3037B3E2204B494E5320B9DFC7A5C0DAB7E15F E E707074>

<30332DC0FAC0DAC6AFC1FD2DC0CCB1A4C1F85FC7D0C8B8BCF6C1A42E687770>

< C0D3BAB4C3B62DBECBB7E7B9CCB4BD20C7D5B1DD28C7A5B9F8C8A320BEE0B7C2C8AEC0CE292E687770>

DBPIA-NURIMEDIA

<30382DC0FAC0DABCF6C1A42D3739B9CEBCBAC8AF5F E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<3036C0FAC0DAC6AFC1FDBCF6C1A42D3637B1E8B5BFC0B15B315D2E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

14.531~539(08-037).fm

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<30392DC0FAC0DABCF6C1A42D32385FB1E8C3B6C8F15FB1B3C1A42E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<30392DC0FAC0DA2DC3D6B5BFBCF82D2E687770>

DBPIA-NURIMEDIA

139~144 ¿À°ø¾àħ

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<3039BCF6C1A4C8C42DC6AFC1FD28B8F0B4CFC5D8292DC8B2B5BFBCF62E687770>

본문.PDF

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

012임수진

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

12.077~081(A12_이종국).fm

page 1end

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

exp

DBPIA-NURIMEDIA

Æ÷Àå½Ã¼³94š

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<3036C0FAC0DA2DB1E2BCFAB3EDB9AE2DB1E8BFEB28BCF6C1A4292E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA


<31302DC0FAC0DABCF6C1A42D3431B9DAB9CEC8A32E687770>

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

<30392DC0FAC0DABAAFB0E6BCF6C1A42DB9DAC0E7BFF E342E B315D2E687770>

DBPIA-NURIMEDIA

인문사회과학기술융합학회

Lumbar spine

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

表紙(化学)

DBPIA-NURIMEDIA

12-20(3)-수정.hwp

Transcription:

49 연구논문 레이저위빙을이용한 Al 6k21-T4 합금의용접강도향상 김병훈 * 강남현 *, 박용호 *, 안영남 ** 김철희 ** 김정한 ** * 부산대학교재료공학부 ** 한국생산기술연구원정밀접합팀 A Study to Improve Weld Strength of Al 6k21-T4 Alloy by using Laser Weaving Method Byung-Hun Kim*, Nam-Hyun Kang*,, Yong-Ho Park*,, Young-Nam Ahn**, Cheol-Hee Kim** and Jung-Han Kim** *School of Materials Science & Engineering, Pusan National University, Busan 609-020, Korea **Advanced Welding & Joining Technology Team, Korea Institute of Industrial Technology, Incheon 333-333, Korea Corresponding author : nhkang@pusan.ac.kr, yhpark@pusan.ac.kr (Received January 13, 2009 ; Revised April 15, 2009 ; Accepted August 18, 2009) Abstract For Al 6k21-T4 alloy, linear laser welding produced the lower shear-tensile strength than the base metal. This study improved the shear-tensile strength by using the weaving laser at the optimized welding condition, i.e., 2mm weaving width and 25Hz frequency. The large weaving width increased the weld width, therefore improving the joint strength. For the specimen of low strength, the porosity was distributed continuously along the intersection between the plates and fusion line. However, for the optimized welding condition, large oval-shaped porosities were located only in the advancing track of the concave part. Regardless of the welding condition, solidification cracking was initiated at the intersection and propagated through small porosities in the weld part. furthermore, the concave part had more significant porosity in the weld and HAZ, respectively than the convex part. The continuity of porosities played a key role to determine the strength. And, the weaving width was an important parameter to control the strength. Key Words : 3~4 Weaving laser; Microstructure; Crack; Al 6k21-T4 1. 서론 최근이산화탄소배출규제등환경문제가대두되면서차량경량화를위한알루미늄적용기술개발이활발히이루어지고있다 1). 알루미늄재료를가공및조립하는공정중에서레이저용접은빠른용접속도, 깊은용입, 적은용접입열량을가지는고품위용접공정이기때문에주목을받고있다. 특히박판의알루미늄용접에있어서레이저를이용한방법이많이연구되고있다. 아크용접이박판에적용되는경우변형과내부의크랙과같은치명적인결함이발생하며, 저항용접의경우전극에 알루미늄이들어붙는현상으로전극소모가심하고용접건전성이열악하다는단점이있다. 그러므로레이저를이용한알루미늄박판용접은차량경량화및차체생산라인에있어서매우중요한기술이며, 앞으로도적용되는산업분야가더욱다양화될것으로예상되고있다 2). 그러나알루미늄과같은저융점금속에서의레이저용접의문제점은생산성을높이기위하여고밀도열원을사용함으로인하여키홀모드에서불안정한용융풀의거동으로, 용접부표면의건전성이열악해지고기공및크랙이많이발생하여용접강도가떨어진다는것이다. 아크용접의경우위빙모드연구가진행되어크랙과용접강도를개선한연구결과가발표되었으나, 레이저용접 大韓熔接 接合學會誌第 27 卷第 4 號, 2009 年 8 月 393

50 김병훈 강남현 박용호 안영남 김철희 김정한 의경우에는위빙모드를적용한연구사례가없는것으로판단하고있다. 따라서본연구에서는고밀도열원을이용한레이저용접에위빙모드를적용하여기공과크랙의문제를개선하고자알루미늄겹치기용접부의용접특성을평가하였다. 2. 실험방법 레이저광학장치는프로그램포커싱옵틱 (PFO) 을사용하였으며레이저초점거리는 590mm 이다. 레이저헤드는 6축로봇에연결하여조정하기용이하도록사용하였다. 레이저용접기는 4kW급디스크레이저를사용하였으며 1축테이블을이용하여용접을진행하였다. 박판겹치기용접을위하여가로길이, 세로길이, 두께가각각 50mm, 100mm, 1mm인 6K21-T4 시편을사용하였으며, 겹침여유를 30mm 로하였다. Table 1에는 6K21-T4 알루미늄합금의화학적조성을나타내었으며, Fig. 1에는위빙레이저용접에대한모식도를보여주고있다. 레이저출력과용접속도는각각 3kW와 3m/min으로고정하고, 비드폭및주파수를변화시켜 6K21-T4 시편을 Fig. 1과같이겹친후직선및위빙용접하였다. Table 2는각기다른위빙용접공정변수를적용한시편을나타낸다. 용접공정후각시편에대해전단인장시험을실시하였다. 직선레이저용접시편도제작하여위빙용접의영향에대해연구하였으며, 위빙용접조건에따른용접부크기, 결함및용접강도등에미치는영향에대하여연구하였다. Table 1 Chemical composition of Al 6K21-T4 Base metal Si Fe Cu Mn Mg Cr Zn Ti Al Wt% 1.04 0.16 0.01 0.07 0.57 0.01 0.01 0.01 Bal. Fig. 1 Schematic diagram of weaving laser welding Table 2 Process conditions of weaving laser welding no. 1 Weaving width(mm) Frequency(Hz) 2 30 1 3 35 4 40 5 6 30 2 7 35 8 40 Table 3 Etching solution for welding specimen Etching type Etchant Ratio Micro Macro Kellers etchant Tuckers etchant 25 25 H 2O 190ml HNO 3 5ml HCl 3ml HF 2ml H 2O 25ml HNO 3 15ml HCl 45ml HF 15ml 각용접조건에서전단인장강도의차이가큰시편 (No. 1, 5, 8) 을선정하여직선용접시편과함께비파괴 3차원엑스선촬영을통해시편내부의결함을확인하였고, 각용접시편의미세조직관찰을위해 Table 3 와같은에칭법을사용하였다. 3. 실험결과및토의 3.1 위빙용접변수에따른전단인장강도의거동 위빙폭및주파수에변수를둔 Table 2의위빙용접시편 1~8번에대해전단인장시험을수행한결과전단인장파단은모든시편의열영향부 (HAZ) 에서동일하게발생하였으며, 강도값은 Fig. 2에나타내었다. 비드표면은모든위빙조건에서언더컷또는용접중심부의고온균열없이건전성을확보하고있었다. 위빙폭을 1mm, 주파수를 25Hz로하여실험한 1번시편에서최소인장강도값이나왔고, 위빙폭을 2mm, 주파수를 25Hz 의조건으로용접한 5번시편에서최대인장강도값을획득하였다. 전반적으로위빙폭이 1mm 보다는 2mm로큰경우높은전단인장강도값을얻었으며, 주파수는전단인장강도에있어서변수로크게작용하지않았다. 394 Journal of KWJS, Vol. 27, No. 4, August, 2009

레이저위빙을이용한 Al 6k21-T4 합금의용접강도향상 51 모재의인장강도시험결과 7.3kN 의값을나타내었고 직선레이저용접시편의전단인장강도값은 3.4kN, 위 빙레이저용접시편의경우는평균 3.9kN 의값을가졌 다 (Fig. 2, Table 4). 각각의전단인장강도값을비교했 을때, 모재에비해용접부의전단인장강도값이낮음을 알수있었다. 하지만위빙용접과직선용접을비교했 을경우, 위빙용접시의전단인장강도값이직선용접시 의값에비해다소높음을알수있었다. 이를토대로 봤을때위빙용접프로세스가용접강도향상에도움이되는것으로판단된다. no. Bead Back bead TS(kN) 1 3.5 2 3.9 3.2 위빙용접변수에따른기공의거동용접시편에대해 3차원엑스선비파괴검사를시행하여 Figs. 3, 4에나타내었다. 위빙조건에상관없이모든시편에서기공이관찰되었으며위치는용접비드와모재의겹치기경계부에서주로관찰되었다. 5번시편을제외한시편에서비교적작은크기의기공이연속적으로분포되어거시적으로연결된모양을가지고있었으며, 이러한기공의연속성은직선용접에서가장뚜렷하게나타났다. 5번시편이최대전단인장강도값을가지는것을보면기공의연속성이전단인장강도특성을저하시키는요인으로작용한것으로판단된다. 5번시편을자세히분석하면기공의연속성보다는용접방향에따라기공의분포및크기가일정한경향성을가지고있는것을알수있다 (Fig. 3). 용접방향과기공의위치와의연관성을규명하기위하여 Fig. 5와같이시편표면을매크로에칭하여용접방향을파악하였다. 그결과위빙이오목하게들어왔다가볼록한부분으로옮겨가는부분, 즉용접입열이중첩되어가장높은입 3 3.9 (a) (d) 4 3.8 5 4.4 6 4.2 (b) (e) 7 4.0 8 3.8 (c) (f) Fig. 2 Welding beads and tensile strength of weaving laser welding specimens Table 4 Tensile strength of linear welding and no welding specimens TS (kn) No. 1 No. 5 Linear laser weld 3.4 Substrate with no weld 7.3 Fig. 3 3D X-ray scans of porosity for no. 1 and 5 specimens: measured on (a, d) x-y plane, (b, e) y-z plane, and (c, f) x-z plane 大韓熔接 接合學會誌第 27 卷第 4 號, 2009 年 8 月 395

52 김병훈 강남현 박용호 안영남 김철희 김정한 (a) (d) 은용접열원에의해동시에용해된모재중냉각속도가늦어가장늦게응고된용접부부근, 즉위빙의오목한부분에서더욱용이하게발생하는것으로판단된다. 3.3 위빙용접변수에따른용접부폭및단면미세조직의거동 (b) (c) (e) (f) 각시편용접부의단면을상단, 중단, 하단으로나누어그폭을측정한결과는 Fig. 6과같다. 실험결과전단인장강도값이가장큰 5번시편의용접부폭이가장크게나타났고, 전단인장강도값의순으로 8번시편의용접부폭이그다음으로큰값을나타내었으며, 전단인장강도값이가장낮은 1번시편과직선용접시편의용접부폭이가장좁은것으로나타났다. 따라서전단인장강도값은위빙용접변수에따라생성된용접부의폭에비례하는것으로판단된다. Fig 7은전단인장시험전용접부단면을마이크로 Fig. 4 No. 8 Linear welding 3D X-ray scans of porosity for no. 8 and linear welding specimens: measured on (a, d) x-y plane, (b, e) y-z plane, and (c, f) x-z plane No. 1 No. 5 No. 8 Linear welding Fig. 6 Measurement of welding width as a function of weaving conditions (mm) Fig. 5 Tendency of porosity location as a function of welding direction (No. 5) No. 1 열량을가지는곳에서큰크기의기공이발생함을알수있었다. 기공이발생하는부분은 Fig. 5의매크로용접부표면사진에서붉은색원으로표기되어있다. 용접입열이크다는것은곧냉각이다른부분에비해상대적으로느리다는것을의미한다. 그러므로기공발생 No. 5 Fig. 7 Crack propagation on weld cross-section 396 Journal of KWJS, Vol. 27, No. 4, August, 2009

레이저위빙을이용한 Al 6k21-T4 합금의용접강도향상 53 에칭하여관찰한것으로서, 용접부중단부분의모재- 용접부경계면에서기공및크랙을발견할수있었다. 고배율에서관찰하여보면모재의겹치는부분에서응고균열로판단되는크랙이최초로발생하여용접부내의작은기공을따라크랙이전파하고있음을볼수있다. 4. 결론 본연구에서는 6K21-T4 알루미늄합금의겹치기용접부의용접특성을평가하기위하여모재및직선용접, 위빙용접시편의전단인장강도를측정비교하였다. 위빙용접시위빙폭및주파수를공정변수로하여이에따른전단인장강도의변화를파악하기위해 3차원엑스선비파괴검사및용접부단면검사를통하여기공및크랙을관찰하고다음과같은결론을얻었다. 1) 인장강도측정결과, 용접부의인장강도가모재에비해현저하게낮은값을가졌다. 그러나직선용접과위빙용접을비교하면위빙용접의경우더욱높은인장강도결과를보였다. 위빙폭및주파수에따라최적의용접조건을구하였으며, 동일주파수에서는위빙폭이큰시편이전단인장강도특성이우수하였고, 동일위빙폭에서는주파수에따라전단인장강도값의뚜렷한경향을찾을수없었다. 2) 기공관찰결과, 전단인장강도값이높은시편에서기공의연속성, 즉기공발생빈도가감소하는경향이관찰되었다. 또한레이저위빙시오목한부분, 즉입열량이가장큰부분에서큰크기의기공이두드러지게관찰되었으나, 볼록한부분에는기공이없는건전한용접부가생성되어전반적으로기공의연속성이감소하였다. 결론적으로위빙용접조건을최적화하여용접부폭이넓어지면전단인장강도값이증가하는결과를나타내었다. 후 기 이논문은부산대학교자유과제학술연구비 (2년) 에의하여연구되었음. 참고문헌 1. Hyunsuk Yang, Yong Kim, Kiyoung Park, Gyungdon Lee and Wonho Choi : Overlap Welding Characteristics of 6K21-T4 aluminum Alloy by Nd:YAG Laser, Summary Book of KWS (2007), 171-173 (in Korean) 2. G. Mather : The Welding of Aluminum and its Alloy. Woodhead Publishing Ltd. 2002 3. Hyunsik Lim, Jungho Jo, Cheolhee Kim and Junghan Kim : A Study on the Welding Characteristics of Disk Laser for Aluminum Alloys, Summary Book of KWS (2007), 193-195 (in Korean) 4. Olcay Ersel Canyurt, Hang Rae Kim and Kang Yong Lee : Estimation of Laser Hybrid Welded Joint Strength by using Genetic Algorithm Approach, Mechanics of Materials, 40-10 (2008), 825-831 5. B.E. Peddle and C.A. Pickles : Carbide and Hardness Development in the Heat-Affected Zone of Tempered and Postweld Heat-treated 2.25Cr-1Mo Steel Weldments, Journal of Materials Engineering and Performance, 9-5 (2000), 477-488 6. Y. Kim and H. Park : A Study of Heat Input Distribution on the Surface during Torch Weaving in Gas Metal Arc Welding, International Journal of Korean Welding Society, 4-1 (2004), 23-29 7. Byungsik Ahn, Dongwon Oh and Gwangsu Kim : Effect of Weaving Width in FCAW on the Weld Metal Mechanical Properties, Summary Book of KWS (1988), 115-117 (in Korean) 大韓熔接 接合學會誌第 27 卷第 4 號, 2009 年 8 月 397