2 : (EunJu Lee et al.: Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest). (Advanced Driver Assistant System, ADA

Similar documents
<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

09권오설_ok.hwp

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

08김현휘_ok.hwp

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

2 : (Juhyeok Mun et al.: Visual Object Tracking by Using Multiple Random Walkers) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ht

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

07.045~051(D04_신상욱).fm

(JBE Vol. 22, No. 3, May 2017) (Special Paper) 22 3, (JBE Vol. 22, No. 3, May 2017) ISSN (O

6.24-9년 6월

À±½Â¿í Ãâ·Â

방송공학회논문지 제18권 제2호

19_9_767.hwp

<372DBCF6C1A42E687770>

2 : (Minsong Ki et al.: Lower Tail Light Learning-based Forward Vehicle Detection System Irrelevant to the Vehicle Types) (Regular) 21 4, (JBE

04 최진규.hwp

02( ) SAV12-19.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

°í¼®ÁÖ Ãâ·Â

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),

1 : (Sunmin Lee et al.: Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)., [1][2]. GPS(Global P

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7),

2 : 3 (Myeongah Cho et al.: Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method) (Special Paper) 23 2

(JBE Vol. 20, No. 5, September 2015) (Special Paper) 20 5, (JBE Vol. 20, No. 5, September 2015) ISS

정보기술응용학회 발표

Æ÷Àå½Ã¼³94š

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

DBPIA-NURIMEDIA

<313920C0CCB1E2BFF82E687770>

김기남_ATDC2016_160620_[키노트].key

6 : (Gicheol Kim et al.: Object Tracking Method using Deep Learing and Kalman Filter) (Regular Paper) 24 3, (JBE Vol. 24, No. 3, May 2019) http

DBPIA-NURIMEDIA

(JBE Vol. 24, No. 1, January 2019) (Regular Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287

1 : 360 VR (Da-yoon Nam et al.: Color and Illumination Compensation Algorithm for 360 VR Panorama Image) (Special Paper) 24 1, (JBE Vol. 24, No

09구자용(489~500)

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

DBPIA-NURIMEDIA

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

4 : (Hyo-Jin Cho et al.: Audio High-Band Coding based on Autoencoder with Side Information) (Special Paper) 24 3, (JBE Vol. 24, No. 3, May 2019

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

09È«¼®¿µ 5~152s

박선영무선충전-내지

14.531~539(08-037).fm

11 함범철.hwp

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

04김호걸(39~50)ok

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

DBPIA-NURIMEDIA

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

(JBE Vol. 20, No. 6, November 2015) (Regular Paper) 20 6, (JBE Vol. 20, No. 6, November 2015) ISSN

Ch 1 머신러닝 개요.pptx

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

<333820B1E8C8AFBFEB2D5A B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

디지털포렌식학회 논문양식

2 : (Jaeyoung Kim et al.: A Statistical Approach for Improving the Embedding Capacity of Block Matching based Image Steganography) (Regular Paper) 22

DBPIA-NURIMEDIA

인문사회과학기술융합학회

1. 서 론

5 : HEVC GOP R-lambda (Dae-Eun Kim et al.: R-lambda Model based Rate Control for GOP Parallel Coding in A Real-Time HEVC Software Encoder) (Special Pa

DBPIA-NURIMEDIA

<B8F1C2F72E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

Microsoft Word - 1-차우창.doc

45-51 ¹Ú¼ø¸¸

3. 클라우드 컴퓨팅 상호 운용성 기반의 서비스 평가 방법론 개발.hwp

<31372DB9DABAB4C8A32E687770>

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 28(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

3 : OpenCL Embedded GPU (Seung Heon Kang et al. : Parallelization of Feature Detection and Panorama Image Generation using OpenCL and Embedded GPU). e

04 김영규.hwp

44-4대지.07이영희532~

02손예진_ok.hwp

05( ) CPLV12-04.hwp

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

표지

R을 이용한 텍스트 감정분석

PowerPoint 프레젠테이션

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

2 : HOG-SP (Myungwoo Lee et al.: Recognition of Symbolic Road Marking using HOG-SP and Improved Lane Detection) (Regular Paper) 21 1, (JBE Vol.

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

DBPIA-NURIMEDIA

Æ÷Àå82š

Transcription:

(JBE Vol. 20, No. 6, November 2015) (Regular Paper) 20 6, 2015 11 (JBE Vol. 20, No. 6, November 2015) http://dx.doi.org/10.5909/jbe.2015.20.6.938 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a), a) Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest EunJu Lee a), Jae-Yeal Nam a), and ByoungChul Ko a). CNN (Convolutional neural network). CNN MLP(Multi-layer perceptron) (fully-connected). 2 CNN (Random forest). GTSRB(German Traffic Sign Recognition Benchmark) 8 SVM (Support Vector Machine) MLP. Abstract In this paper, we propose a robust speed-limit sign recognition system which is durable to any sign changes caused by exterior damage or color contrast due to light direction. For recognition of speed-limit sign, we apply CNN which is showing an outstanding performance in pattern recognition field. However, original CNN uses multiple hidden layers to extract features and uses fully-connected method with MLP(Multi-layer perceptron) on the result. Therefore, the major demerit of conventional CNN is to require a long time for training and testing. In this paper, we apply randomly-connected classifier instead of fully-connected classifier by combining random forest with output of 2 layers of CNN. We prove that the recognition results of CNN with random forest show best performance than recognition results of CNN with SVM (Support Vector Machine) or MLP classifier when we use eight speed-limit signs of GTSRB (German Traffic Sign Recognition Benchmark). Keyword : Convolutional Neural Network, Random forest, speed-limit sign recognition, feature extraction, ADAS a) (Dept. of Computer Engineering, Keimyung University) Corresponding Author : (ByoungChul Ko) E-mail: niceko@kmu.ac.kr Tel: +82-53-580-6275 ORCID: http://orcid.org/0000-0002-7284-0768 (B0008866). Manuscript received September 12, 2015; revised November 4, 2015; accepted November 4, 2015.

2 : (EunJu Lee et al.: Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest). (Advanced Driver Assistant System, ADAS) [1].,,, ADAS. ADAS,. EU [2] 10 50km 31km 33% 5%.. GPS.. HOG (Histogram of Gradient) [3] RSD(Radial Symmetry Detection) [4], SVM [5] (Neural Networks) [6], [7]. Mathias [8] HOG Multi-Class SVM. HOG. Barns [9] RSD(Radial Symmetry Detector), (Cross Correlation).,,. Aoyagi Asakura [10].,. 1990 CNN (Deep Learning),. CNN Caffe [11] MNIST(Mixed National Institute of Standards and Technology database) [12]. MNIST 0~9. CNN,,. CNN,, (parameters). CNN 2

(JBE Vol. 20, No. 6, November 2015) CNN 4.. l l CNN l MLP. 2 CNN... 2 CNN 1. CNN CNN MNN (Multi-layer Neural Network). MNN. (fully-connected). 1) : MNN (hidden layer). 2) :. 3) : 2. LeCun CNN [13] - 1998. 1 [13] CNN. CNN ILSVRC (Imagenet Large Scale Visual Recognition Challenge) [9]. CNN (Local receptive field), (Shared weight), (Subsampling, Pooling), (Convolution 1. CNN [13] Fig. 1. Traditional CNN structure designed for handwriting recognition

2 : (EunJu Lee et al.: Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest) layer) (Fully Connected Layer)... 1.1 (Convolution layer) MNN (Local) 2 N N., (Feature map).. 2 [14]. 2 N N ( - +1). 32 32 3 3 30 30. 1.2 (Subsampling, Pooling layer) (Subsampling, Pooling). 2 2 2D., 2 2. Max-pooling. 1.3 (Fully connected (FC) layer),. (Correlation) [15], [14], SVM [5], [16] (Error Correcting Output Code) [17]. (Decision tree). 2., (a) (b) (c) Fig. 2. Convolution Operation using a filter, (a) Receptive field, (b) Convolution layer, (c) Output

(JBE Vol. 20, No. 6, November 2015) 2. 2 CNN 2.1 CNN 3 2 CNN. CNN, 1 (C1), 1 (S1), 2 (C2), 2 (S2),. 1 CNN 2. 2.1.1 32 32 1% 1% (Histogram stretching). 4. C1. 4. (a) (b) Fig. 4. (a) original speed-limited signs and (b) histogram stretched signs 2.1.2 C1 C1 4. C1 3 3. 30 30. 3 3 5. 9 9 LeCun [14]. 0~255 9 3. 2 CNN (a) (b) Fig. 3. The proposed 2-layer CNN achitecture, (a) convolution and subsampling layer for feature extraction, (b) random forest layer for classification

2 : (EunJu Lee et al.: Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest) 9., 300. 5 300 80% 3. 5-(c) 4 1 2. 5-(c) 4. 3 C1 1:1. (1) (Non-linear activation) ReLU(Rectified Linear hidden Unit) [18]. ( ), ReLU. ReLU Gradient vanishing [19]. max 5. C1 Fig. 5. C1 layer filters 2.1.3 S1 CNN.,. C1 2 2 15 15 4 6. Max pooling (a) 8x6, (b) 2x2 max-pooling, (c) max-pooling Fig. 6. Max pooling method (a) feature map of 8x6 pixel size, (b) appling max-pooling after 2x2 division, (c) max-pooling result

(JBE Vol. 20, No. 6, November 2015). Mean-pooling, Max-pooling, Max-pooling.. 6 Max-pooling.. S1 1 50. 7 C2 2. 2.1.4 C2 C2 C1. C1 S1 6. C2 S1 7. C2 Fig. 7. Weight combination method for C2 layer feature map 2.1.5 S2 3 C2 S2 S1. C2 2 2 max-pooling 6 6 6. 2.2 RF (Randomly connected RF) CNN MLP.,. SVM Adaboost. S2 216 ( : 36 : 6). 8 12,550 100. N. N Adaboost (BRF, Boosted Random Forest) [20].

2 : (EunJu Lee et al.: Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest) 80.. BRF C1~S2 8.. 1. 2 CNN GTSRB (German Traffic Sign Recognition Benchmark) [21]. GTSRB 30. 15 15 180 180, 51,883 13,490,,,. GTSRB 20, 30, 50, 60, 70, 80, 100, 120 8. 1. GTSRB Table 1. GTSRB Dataset Specification GTSRB Data Resolution of speed limit signs Number of signs Image Training set 20 200 30 2200 50 2250 60 1400 70 25 26 ~161 168 1900 80 1800 100 1400 8. Fig. 8. Speed-limit sign classification using Random forest Test set 120 1400 20 40 30 150 50 150 60 120 70 29 28 ~121 130 115 80 150 100 115 120 100

(JBE Vol. 20, No. 6, November 2015) CNN GPU CPU CPU. Intel i7 CPU 3.6GHZ 32GB Windows 7 64 R2010a. 1. 1 CNN 32 32. 2. 1.. 2. 2 Table 2 Comparison of speed-limit sign recognition according to the preprocessing Preprocessing method Average precision original image histogram equalization histogram stretching 85.73% 79.75% 91.2% 5.47%, (Histogram equalization) 11.45%... 9. 3. 13,490 12,550, 940, CNN. C1 0~255 9 9. 300. CNN S2. 2 CNN (2CNN), 3. (2CNN+RF) Multi-layer Perceptron (2CNN+MLP) Support Vector Machine (2CNN+SVM) 9. (a) (b) (c) Fig. 9. Comparison of image pre-processing result (a) original image (b) histogram equalization (c) histogram stretching 1. 10 Precision. 91.2% 2CNN+SVM 5.2%, 2CNN+MLP 1.3%., 20, 30,

2 : (EunJu Lee et al.: Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest) 10. Fig. 10, Result of performance comparison 50, 60, 80, 100. 20 100% Precision., 50 75.4% precision. 70 120 20 precision. 2CNN+MLP 70 120 94.7% 100%. Penalty( value)=5, variance( )=1 RBF(Radial Basis Function) 2CNN+SVM 7.. 1 CPU 1 0.24ms, 2CNN+MLP 0.3ms, 2CNN+SVM 2.46ms., SVM,. 2CNN+SVM. IV.,,,,, 2 Randomly-CNN.,. CNN

(JBE Vol. 20, No. 6, November 2015) CNN. CNN.,.,.,. Spatial Pyramid Pooling(SPP), CNN. (References) [1] L. Kwangyoung, K. Seunggyu and B. Hyeran, Real-time Traffic Sign Detection using Color and Shape Feature, Korea Computer Congress 2012, Vol 39, No 1. pp. 504-506, June, 2012. [2] G. J. L. Lawrence, B. J. Hardy, J. A. Carroll, W. M. S. Donaldson, C. Visvikis and D. A. Peel, A study on the feasibility of measures relating to the protection of pedestrians and other vulnerable road users, Final Tech. Report, TRL. Limited, pp. 206, June, 2004. [3] N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, IEEE Con. Computer Vision and Pattern Recognition, vol. 1, pp. 886 893, 2005. [4] N. Barnes, A. Zelinsky and L. Fletcher, Real-time speed sign detection using the radial symmetry detector, IEEE Trans. Intelligent Transportation Systems, Vol. 9, No. 2, pp. 322-332, 2008. [5] S. Maldonado-Bascon, S. Lafuente-Arroyo, P. Gil-Jimenez, H. Gomez-Moreno and F. Lopez -Ferreras, Road-Sign Detection and Recognition Based on Support Vector Machines, IEEE Tran. Intelligent Transportation Systems, Vol. 8, No. 2, pp. 264-278, June, 2007. [6] Y. Aoyagi and T. Asakura, A Study on Traffic Sign Recognition in Scene Image Using Genetic Algorithms and Neural Networks, IEEE Int. Conf. Industrial Electronics, Control, and Instrumentation, Vol. 3, pp. 1838-1843, Aug. 1996. [7] G. JaWon, H. MinCheol, K. Byoung Chul and N. Jae-Yeal, Real-time Speed-Limit Sign Detection and Recognition using Spatial Pyramid Feature and Boosted Random Forest, 12th International Conference on Image Analysis and Recognition, pp.437-445, July, 2015. [8] M. Mathias, R. Timofte, R. Benenson and L.V. Gool, Traffic sign recognition How far are we from the solution?, IEEE Int. Con. Neural Networks, pp. 1-8, 2013. [9] N. Barnes, A Zelinsky and L.S. Fletcher, Real-time speed sign detection using the radial symmetry detector, IEEE Trans. Intelligent Transportation Systems, pp. 322-332, 2008. [10] Y. Aoyagi and T. Asakura. Detection and recognition of traffic sign in scene image using genetic algorithms and neural networks., SICE-ANNUAL CONF. pp. 1343-1348, 1996. [11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick and T. Darrell, Caffe: Convolutional architecture for fast feature embedding, in Proceedings of the ACM International Conference on Multimedia, pp. 675-678, November, 2014. [12] Y. LeCun, C. Cortes and C.J. Burges, The MNIST database of handwritten digits, 1998. [13] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document recognition, in Proceedings of the IEEE, pp. 2278-2324, 1998. [14] P. Sermanet, Y. LeCun, Traffic sign recognition with multi-scale convolutional networks, IEEE Int. Conf. Neural Networks, pp. 2809-2813, 2011. [15] A. de la Escalera, J. Armingol, J. Pastor and F. Rodriguez, Visual Sign Information Extraction and Identification by Deformable Models for Intelligent Vehicles, IEEE Tran. Intelligent Transportation Systems, Vol. 5, No. 2, pp. 57-68, June, 2004. [16] D.S. Kang, N.C. Griswold and N. Kehtarnavaz, An invariant traffic sign recognition system based on sequential color processing and geometrical transformation, Proc of IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 88-93, 1994. [17] X. Baro, S. Escalera, J. Vitria, O. Pujol and P. Radeva, Traffic Sign Recognition Using Evolutionary Adaboost Detection and Forest-ECOC Classification, IEEE Trans. Intelligent Transportation Systems, Vol. 10, No. 1, pp. 113-126, Mar, 2009. [18] X. Glorot, A. Bordes and Y. Bengio, Deep sparse rectifier networks, in Proceedings of the 14th International Conference on Artificial

2 : (EunJu Lee et al.: Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest) Intelligence and Statistics, Vol. 15, pp. 315-323, 2011. [19] K. Kyungmin, H. Jungwoo and Z. Byoungtak, Character-based Subtitle Generation by Learning of Multimodal Concept Hierarchy from Cartoon Videos, Journal of korea Intelligent Information System Society, Vol. 42, No. 4, pp. 451-458, 2015. [20] L. Breiman, Random Forests, Machine Learning, vol. 45, pp. 5-32, 2001. [21] J. Stallkamp, M.. Schlipsing, J. Salmen and C. Igel, The German traffic sign recognition benchmark: a multi-class classification competition, IEEE Conf. Neural Networks, pp. 1453-1460, July, 2011. - 2001 : () - 2004 : ( ) - 2006 : - ORCID : http://orcid.org/0000-0002-3225-3788 - : - 1983 년 : 경북대학교전자공학과졸업 ( 공학사 ) - 1985 : ( ) - 1991 : University of Texas at Arlington ( ) - 1985 5 ~ 1987 7 : - 1991 9 ~ 1995 2 : - 1995 3 ~ : - ORCID : http://orcid.org/0000-0001-7288-283x - :,, - 1998 : () - 2000 : ( ) - 2004 : ( ) - 2004 : 3-2005 8-2005 : 9 ~ : - ORCID : http://orcid.org/0000-0002-7284-0768 - :,,