No Slide Title

Similar documents
(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1.

untitled

슬라이드 1

12(4) 10.fm

슬라이드 제목 없음

Electropure EDI OEM Presentation

untitled

Microsoft PowerPoint - dev6_TCAD.ppt [호환 모드]

(specifications) 3 ~ 10 (introduction) 11 (storage bin) 11 (legs) 11 (important operating requirements) 11 (location selection) 12 (storage bin) 12 (i

Á¦¸ñ¾øÀ½

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

< C6AFC1FD28B1C7C7F5C1DF292E687770>

(Table of Contents) 2 (Specifications) 3 ~ 10 (Introduction) 11 (Storage Bins) 11 (Legs) 11 (Important Operating Requirements) 11 (Location Selection)

ePapyrus PDF Document

ePapyrus PDF Document

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

PJTROHMPCJPS.hwp

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

14.fm

2 폐기물실험실

년AQM보고서_Capss2Smoke-자체.hwp

06_(2교)( ) 권용재.hwp


04_(1교)(29-35) 김경연.hwp

歯국문-Heatran소개자료1111.PDF

歯전용]

歯174구경회.PDF

Journal of Korean Society on Water Environment, Vol. 28, No. 2, pp (2012) ISSN ᆞ ᆞ ᆞ Evaluation of Forward Osmosis (FO) Membrane Per

KAERIAR hwp

e hwp

Berechenbar mehr Leistung fur thermoplastische Kunststoffverschraubungen

공학박사학위 논문 운영 중 터널확대 굴착시 지반거동 특성분석 및 프로텍터 설계 Ground Behavior Analysis and Protector Design during the Enlargement of a Tunnel in Operation 2011년 2월 인하대

Introduction to Maxwell/ Mechanical Coupling

저작자표시 - 동일조건변경허락 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 이차적저작물을작성할수있습니다. 이저작물을영리목적으로이용할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원

<BAB0C3A5BABBB9AE2E687770>

<C0E7B7AEB1B3C0E72DC5E5C5E5C6A2B4C2BFA1B3CAC1F6C0FDBEE02DBFCFBCBA2E687770>

Subject : 귀사의 일익번창하심을 진심으로 기원합니다.

한약재품질표준화연구사업단 고삼 ( 苦參 ) Sophorae Radix 생약연구과

- 2 -

歯49손욱.PDF

歯Trap관련.PDF

untitled

유기 발광 다이오드의 전하주입 효율 향상을 통한 발광효율 향상 연구

表紙(化学)

Precipitation prediction of numerical analysis for Mg-Al alloys

10(3)-10.fm

Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process,

기능.PDF

歯522박병호.PDF

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

02 Reihe bis 750 bar GB-9.03

Microsoft PowerPoint - ISS_3rd IP_공주대학교 조정호

歯140김광락.PDF

소개.PDF

14.531~539(08-037).fm

Microsoft PowerPoint - energy_materials( ) [호환 모드]

CERIUM OXIDE Code CeO CeO 2-035A CeO 2-035B CeO REO % CeO 2 /REO % La 2 O 3 /REO %

Microsoft Word - Report_합본__도시광산.doc

2.2, Wm -2 K -1 Wm -2 K -2 m 2 () m 2 m 2 ( ) m -1 s, Wm -2 K -1 Wsm -3 K -1, Wm -2 K -1 Wm -2 K -2 Jm -3 K -1 Wm -2 K -1 Jm -2 K -1 sm -1 Jkg -1 K -1

歯김유성.PDF

08.hwp

67~81.HWP

일반화학 I 기말고사 Useful P

(72) 발명자 이동희 서울 동작구 여의대방로44길 10, 101동 802호 (대 방동, 대림아파트) 노삼혁 서울 중구 정동길 21-31, B동 404호 (정동, 정동상 림원) 이 발명을 지원한 국가연구개발사업 과제고유번호 부처명 교육과학기술부

Elix 3 Elix 5 Elix 10 RiOs 3 RiOs 5 RiOs 8 RiOs 16!.. MILLIPORE

한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과

Slide 1

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

05-1Ưº°±âȹ

KAERI/RR-2245/2001 : 원전 주기적 안전성 평가기술 개발 : 방사선 안전성능 및 환경방사선 감시기술 개발

짧은 글 긴 생각 Contents 04 취임사 김성실 부회장 06 특별기고 신이 내린 직장 08 협회소식 09 KOLAS/KAS소식 10 관련기관소식 12 스페셜 테마 날개 달린 금 16 교정기관탐방 (주)한국계측기기연구센터를 찾아서 18 과학칼럼 햄버거와 표준품질체계

1 Nov-03 CST MICROWAVE STUDIO Microstrip Parameter sweeping Tutorial Computer Simulation Technology

한약재품질표준화연구사업단 금은화 ( 金銀花 ) Lonicerae Flos 생약연구과

고범석.PDF

c04....

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

?????????????????2009-????????

°í¼®ÁÖ Ãâ·Â

untitled

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

15(4장1절 P).PDF

45(1)-15.fm

Microsoft Word - SRA-Series Manual.doc

82-01.fm

1 n dn dt = f v = 4 π m 2kT 3/ 2 v 2 mv exp 2kT 2 f v dfv = 0 v = 0, v = /// fv = max = 0 dv 2kT v p = m 1/ 2 vfvdv 0 2 2kT = = vav = v f dv π m

(1 일목 ) 제 3 발표장 47 수치기법 [I] 이은택 1, 안형택 2* SIMULATION ON FLOW PAST A CIRCULAR CYLINDER USING UNSTRUCTURED MESH BASED INCOMPRESSIBLE FLUID SOLVER(ULSAN3

lastreprt(....).hwp

untitled

2013<C724><B9AC><ACBD><C601><C2E4><CC9C><C0AC><B840><C9D1>(<C6F9><C6A9>).pdf

보고서(겉표지).PDF

KAERI/RR-2243/2001 : 가동중 중수로 원전 안전성 향상 기술개발 : 중수로 안전해석 체계 구축

제 1 장 정수처리 개요

< FC1A6BEC8BFE4C3BBBCAD2E687770>

Chapter 11 Rate of Reaction

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

(Vacuum) Vacuum)? `Vacua` (1 ) Gas molecular/cm 3

<4D F736F F F696E74202D2028B9DFC7A5BABB2920C5C2BEE7B1A420B8F0B5E220C8BFC0B220BDC7C1F520BDC3BDBAC5DB5FC7D1B1B94E4920C0B1B5BFBFF85F F726C F72756D>

슬라이드 1

인쇄본 - 10졸업논문_배세욱_강내탄도에 사용되는 Ergun식에 대한 수치적 보정연구_초록 수정.hwp

Transcription:

연료전지및고체수소저장용기전산모사 01. 11. 30 유하늘 인하대학교기계공학과 에코스마트파워연구실 (eco-smart Power Lab.)

발표순서 연료전지 ㅅ 1 연료전지소개 연료전지모델 3 연료전지해석결과 수소 저장용기 ㅅ 1 금속수소화물소개 수소흡 탈장모델 3 수소흡 탈장모델해석결과

Introduction of Eco Smart Power Lab. (ESPL) High performance computing cluster Large scale PEFC simulation High-Temperature PEMFC model Master PC.66GHz x 4core cpu x. Sub node.66ghz x 4core cpu, Current density, water contents distribution IV curve validation GDL deformation Fuel cell model development & structural analysis FSI(fluid-structure interaction) approach HCM DMFC simulation Performance curve and methanol crossover validation, Johan Ko et al., JPS 011 3D DMFC simulation result 3

Polymer Electrolyte Fuel Cell 고분자전해질연료전지 (PEFC) 관련모델 -phase, steady state, non-isothermal model (Large scale simulation > 13.5M cells) PEFC cold start(cs-pefc) model (with HMC) Single phase transient model Anode Cathode 1 Hydrogen oxidation reaction (HOR) H H e Oxygen reduction reaction (ORR) O H e H O Reference: Ju H. Investigation of the effects of the anisotropy of gas-diffusion layers on heat and water transport in polymer electrolyte fuel cells. J Power Sources 009;191:59-68 외 SCI급 11편 4

Fuel cell modeling : 3-D, two phase PEFC 질량보존식 운동량보존식 화학종보존식 ( u) Sm Flow channels (Navier-Stokes equation) Porous media (Darcy s equations) Flow channels and porous media Water transport in the membrane mem mem Sm Si M w. Dw EW i uu K u p p ( m u) D m m m j S g g, eff g g l l i i i i i i i mem mem mem I K l Dw M w nd M w P 0 l EW F For water in the CLs: For other species in the CLs Si M i. nd F I si j nf S M s j nf i i i 전하보존식 Proton transport Electron transport eff e S 0 eff s S 0 In the CLs: S j Reference: Ju H. Investigation of the effects of the anisotropy of gas-diffusion layers on heat and water transport in polymer electrolyte fuel cells. J Power Sources 009;191:59-68. 5

PEFC large-scale simulations Mesh configuration Cell dimensions Channel [EA] 4 4 Cathode Inlet Channel width [mm] 1 1 Channel Depth [mm] 0.6 0.8 Anode Inlet Cathode outlet Total number of cells 13538070 (~ 13.5 million) Number of iterations required for convergence : 5000 CPU time / iteration : 7.81 minutes Intel core i7 with.53 GHz Each processor memory : GB Anode outlet Rib width [mm] 1 1 Thickness of GDL/CL/MEM [mm] Active Area (cm ) 00 Operating cell voltage 0.713 V H Concentration (%) 30 Anode Stoichiometry 1.33 Cathode Stoichiometry.0 Anode/Cathode/Coolant Outlet Pressure 0.5/0.01/0.03 0.5/0.01/0.03 Total channel area [m ] 1.44E-5 1.9E-5 Reaction area [cm ] 00 00 Operating conditions Atmospheric Cell operating temperature 60 o C 6

PEFC large-scale simulations Pressure distribution (Pa) Hydrogen concentration distribution In the anode (mol/m 3 ) Anode Gas Channel Cathode Gas Channel Oxygen concentration distribution In the cathode (mol/m 3 ) 7

PEFC large-scale simulations Liquid saturation contours Current distribution in the membrane (A/m ) Cathode inlet Water content distribution in the membrane 8

PEFC large-scale simulations Mesh configuration Overall polarization curves for Cases 1-3 Two-dimensional cross-sectional view Liquid saturation curves in different regions of the cathode GDL at 1.5 A cm - 9

PEFC large-scale simulations Liquid saturation contours at 1.5 A cm - Current density contours at 1.5 A cm - Case 1 Case Case 3 10

Fuel cell modeling : 3-D, transient CS-PEFC 질량보존식 1 u 1 t K Anode : s uu u p g u u eff s d dt Cathode : j ie Sm, a M H M ( w Dw, m Cw) ( nd ) F F j j ie Sm, c M O M ( HO M w Dw, m Cw) ( nd ) 4F F F 화학종보존식 i C i i i i t uc D eff C S c Water : Other species : j I S s n q nf F HO HO e HO c d sg S i c i s j nf 에너지보존식 C T C pt p t cell t g HO C put k eff T ST energy : S T U o j T T i e eff e S sg h sg 전하보존식 eff S 0 e e Proton: Electron: S S j j Reference: J. Ko, Comparison of numerical simulation results and experimental data during cold-start of PEFCs, Applied Energy 01; 94: 364-374 11

CS-PEFC simulations Ice evolution contours in the cathode catalyst layer Cell voltage evolution curve Current density evolution contours in the membrane (A/m ) 1

Fuel cell modeling : 3-D, two phase DMFC 직접메탄올연료전지 (DMFC) 관련모델 -phase, steady state, nonisothermal model (Large scale simulation > 1.M cells) Anode Cathode 1 Methanol oxidation reaction (MOR) CH OH H O 6H 6e CO 3 Oxygen reduction reaction (ORR) O H e H O Reference: H. Ju et. al, Effects of serpentine flow-field designs with different channel and rib widths on the performance of a direct methanol fuel cell, J. Power sources, 05, 01, 3-47 외 SCI급 4편 13

Fuel cell modeling : 3-D, two phase DMFC 질량보존식 ( u) Sm l C j i MeOH S S M a n e mem cata m k MeOH 6 d, MeOH D F F MeOH mem k j mem a mem i M D n e w w d 6F EW F Anode CL : Cathode CL : jc jc Sm Sk MO M w 4F F k mem xover mem ie MMeOH nmeoh M w Dw n d EW F CL 운동량보존식 Flow channels (Navier-Stokes equation) uu K Porous media (Darcy s equations) u p p 전하보존식 Proton transport Electron transport eff e S 0 eff s S 0 Anode CL : Cathode CL : S j S j c j xover 화학종보존식 Flow channels and porous media Water transport in the membrane g l l g g, eff g l l, eff l ( imi u) Di m i Di m i mi mi j Si mem mem mem I K l Dw M w nd M w P 0 l EW F l ja i C e mem MeOH cata SMeOH M MeOH. n d,meoh. D MeOH 6F F mem MeOH : O : xover c MeOH SO M O 4F CL j 3 n Reference: H. Ju et. al, Effects of serpentine flow-field designs with different channel and rib widths on the performance of a direct methanol fuel cell, J. Power sources, 05, 01, 3-47 14

3-D, two-phase DMFC simulations Flow channel geometry and numerical procedures Cell properties and operating conditions Description Channel / rib width Thickness of anode GDL Thickness of anode CL Thickness of cathode GDL Thickness of cathode CL Thickness of membrane Thickness of bipolar plate Value 1.0/0.5 mm 190 10-6 m 30 10-6 m 35 10-6 m 30 10-6 m 17 10-6 m 10-3 m Porosity of GDLs 0.7 Porosity of CLs 0.7 Volume fraction of ionomer in CLs 0.3 Permeability of GDLs 1.0 10-1 m Total number of cells : 1. million CPU time / iteration : 16 sec Intel core i7 with.53 GHz Permeability of GDLs 1.0 10-1 m Hydraulic permeability of MEM 5.0 10-19 m Contact angle of GDLs and CLs 9 Anode /cathode stoichiometry.5 / 3.0 Cell operating temperature Anode/cathode inlet pressure 60 o C Atmospheric Inlet methanol concentration 1000 mol m -3 15

3-D, two-phase DMFC simulations Methanol concentration contours (mol/m 3 ) Anode flow channel [mol/m 3 ] Anode GDL [mol/m 3 ] Anode CL [mol/m 3 ] Oxygen concentration contours (mol/m 3 ) at 400 ma/cm Cathode flow channel Cathode GDL Cathode CL [mol/m 3 ] [mol/m 3 ] [mol/m 3 ] 16

3-D, two-phase DMFC simulations Liquid saturation contours at 400 ma/cm Anode GDL Cathode CL Anode CL Cathode GDL 17

3-D, two-phase DMFC simulations Flow field design and optimization 18

Fuel Cell modeling : HT-PEMFC 질량보존식운동량보존식화학종보존식전하보존식에너지보존식전기화학반응 u Sm 1 uu p for flow channels ( Navier Stokes equations) K u p for porous media ( Darcy ' s equations) eff uc D C S i i i i eff e S 0 for proton transport eff s S 0 for electron transport eff p C ut k T S s M z k i i ne ja Sm MH for anode catalyst layer F jc jc Sm Sk M O M HO for cathode catalyst layer k 4F F T ja SH for anode catalyst layer F jc jc SO, S H for cathode catalyst layer 4F F Ie ST ja for anode catalyst layer eff Ie ST for membrane eff I du dt e O ST jc j eff c T for cathode catalyst layer M i chemical formula of species i si stoichiometry coefficient n number of electrons transferred H H e Hydrogen oxidation reaction at the anode side H O O 4H 4e Oxygen reduction reaction at the cathode side S ja for anode catalyst layer S jc for cathode catalyst layer 19

HT-PEFC simulations Cell dimensions and base operating conditions Physiochemical and transport properties Description Value Porosity of GDL, CL 0.6, 0.4 Volume fraction of ionomers in CL 0.3 Permeability of GDL, CL 1 10-1, 1.0 10-13 m Electronic conductivity in the GDL, CL, BP 150, 300, 14000 S m -1 Description Value Cell length 0.8 m Anode/cathode channel/rib width 1 10-3 m Anode/cathode channel height 0.7 10-3 m Coolant channel width 0.5 10-3 m Coolant channel height 0.5 10-3 m Thickness of the anode/cathode GDLs 350 10-6 m Thickness of the anode/cathode CLs 15 10-6 m Thickness of the membrane 70 10-6 m Anode/cathode inlet pressure 1.0 atm Anode stoichiometry 1.5 (70% H ) Specific heat capacities of GDL, CL, membrane, and BP, respectively Specific heat capacities of species (H, O, N, H O) Thermal conductivities of GDL, CL, membrane, BP Thermal conductivities of species (H, O, N, H O) Volumetric reference exchange current density in anode, Volumetric reference exchange current density in cathode, 568, 3300, 1650, 930 J kg -1 K -1 14430, 99, 104, 1968 J kg -1 K -1 1., 1.5, 0.95, 0 W m -1 K -1 0.040, 0.096, 0.093, 0.0378 W m - 1 K -1 1.0 10 9 A m -3 1.0 10 4 A m -3 Cathode stoichiometry.0 (Air) Anode/cathode inlet temperature 383K RH of the anode/cathode inlet 0.0% Phosphoric acid doping level 6. Anode transfer coefficient 0.5 Cathode transfer coefficient 0.65 Reference H /O molar concentration 40.88 mol m -3 0

HT-PEFC simulations Model validation Gas crossover effects 1

Modeling of the hydrogen absorption / desorption 질량보존식 평형압력 t g g u S for hydrogen m n n H H 1 1 Peq a0 an exp 1 M Rg T T0 1 t s S m for metal 에너지보존식 where, Ea P g s s Sm Ca exp ln sat for absorption RT P eq, a Ed Pg P eq, d s s Sm Cd exp emp for desorption RT Peq, d P : Equlibrium pressure eq s sat s emp : Saturated metal density : Empty metal density C : Rate constant E : Activation energy R : Gas constant c t p p g g eff c ut k T S 운동량보존식 1 g u 1 g uu P Su where, Su u t K T where, c 1 c c k 1 k k : Dynamic viscosity : Permeability s s g g p p p eff s g S S H T c c o g s T m p p

Metal hydride : LaNi 5 Hydrogen absorption LaNi 5 + 3H LaNi 5 H 6 Model validation Reference: J. Nam, Three-dimensional modeling and simulation of hydrogen absorption in metal hydride hydrogen storage vessels, Applied energy, 89, 01, 164-175 외 SCI 1편 3

Metal hydride : LaNi 5 Hydrogen desorption Model validation LaNi 5 H 6 LaNi 5 + 3H 4

Metal hydride simulations outer diameter Computational domain, mesh and dimensions of numerical geometry inner diameter Absorption / desorption formula x ZrCo H ZrCoH x (0 x 3 ) Absorption : exothermic reaction Desorption : endothermic reaction Layer thickness Model assumption 수소는이상기체 베드는동종다공성미디어 금속과수소사이에는국부적온도평형 부피팽창, 비열의변화는무시 inlet 5

3D hydrogen absorption/desorption simulations in the ZrCo bed Curve fitting for equilibrium pressure S. Konishi, Journal of Nuclear Materials 3, 94p, 1995 x ZrCo H ZrCoH x 0 x 3 n n H H 1 1 Peq a0 an exp 1 M Rg T T0 where, T =433K (absorption) 0 T =53K (desorption) 0 absorption desorption a 0-4.0956395-647.1388017 a 1 378.57074 9704.0677 a `-16673.06731-89307.53043 a 3 41866.56358 18513.6064 a 4-65004.33016-5679.5731 a 5 65867.869 09808.4651 a 6-445.4456-93333.5094 a 7 19703.3494 16893.06846 a 8-517.131085 a 9 67.635435 최소자승법을이용하여실험적으로측정한평형압력을온도와 H/M atomic ratio 의다항식으로근사 흡장 9 차다항식, 탈장 7 차다항식 6

3D hydrogen absorption/desorption simulations in the ZrCo bed Reaction kinetics, thermal physical properties, and operating conditions Description absorption desorption Initial/ inlet temperature, T 0 / T in 5/5 ºC 350 /350 Initial pressure, P i 71 kpa 3 kpa Pre-exponential factor, C a 0. s -1 0.043 s-1 Activation energy, E a 13.0 kj mol -1 13. kj mol-1 Specific heat of hydrogen gas, C g p 14.890 kj(mol K) -1 Thermal conductivity Specific heat of the metal, C s p 0.508 kj(mol K) -1 0.630 kj(mol K)-1 Thermal conductivity of hydrogen gas, k g 0.167 W(m K) -1 0.351 W(m K)-1 k M Thermal conductivity of ZrCo, k ZrCo 3.013 W(m K) -1 Thermal conductivity of ZrCo hydride, k ZrCoH3 0.54 W(m K) -1 Thermal conductivity of the SUS 16. W(m K) -1 k MH Porosity of the metal, ε 0.69 Permeability of the metal, K 10-8 m Heat transfer coefficient, h 165 W(m K) -1 Hydrogen-free metal density, ρ s emp 760 kg m -3 Saturated metal density, ρ s sat 7747.9 kg m -3 Reference pressure, P ref 1 bar s kmh km k ( H / M ) k ( H / M) sat (H/M) sat M 7

3D hydrogen absorption/desorption simulations in the ZrCo bed kg kg kg H H, initial H, abs R T V H P P MW H i M M g i H Vi MWM M 90% desorbed, 3.7min 99% desorbed, 13.5min 금속수소화물에수소가저장됨에따른수소공급탱크의압력변화를적용 실험적으로측정한온도 profile과모델을이용하여계산한온도 profile을비교함으로써모델의정확성을검증 수소흡장반응은발열반응으로반응초기급격히온도가상승하지만시간이지남에따라용기외부에서의냉각으로인하여온도가감소 계산결과 H/M atomic ratio 1.8 기준 90% 흡장되는시간이약 3.7분, 99% 흡장되는시간은약 13.5분으로나타남 ( 실험결과 : 90% - 4분, 99% - 14분 ) 8

3D hydrogen absorption/desorption simulations in the ZrCo bed temperature H/M ratio 반응초기활발한흡장반응으로인하여온도가급격히상승 (53.5K 까지상승함 ) 시간이지남에따라용기외부에서의냉각으로인하여외벽의온도가감소하여용기벽면부근에서우선적으로흡장반응이일어남 ZrCo 층이얇게설계되어 radial 방향으로큰편차를보이지않음 9

3D hydrogen absorption/desorption simulations in the ZrCo bed temperature 실험에서측정한용기온도 profile과계산한결과를비교함으로써모델을검증 탈장반응은흡열반응으로반응초기온도가급격히감소하나시간이지남에따라용기외벽에서의가열로인하여온도가상승 계산결과 H/M atomic ratio 1.8기준 90% 탈장도달시간이 19.6분으로실험에서측정한 18분과근사한결과 를나타냄 H/M atomic ratio 30

31 Page 31