Microsoft PowerPoint - R-R1-유충현_ ppt [호환 모드]

Size: px
Start display at page:

Download "Microsoft PowerPoint - R-R1-유충현_ ppt [호환 모드]"

Transcription

1 Next Revolution Toward Open Platform Technology Trends in Big Data Analytics and Introduction to R 넥스알 Data Science Team 유충현 (antony.ryu@nexr.com)

2 목차 Big Data Analytics의소개 Big Data Analytics의기술및시장환경 Hadoop 기반의 Big Data 분석플랫폼 Appliance DBMS Big Data Analytics 를위한 R 의소개 R RHive R 을이용한데이터분석의비교 Small Data Analytics using Native R Large Data Analytics using R Big Data Analytics using R -2- KRnet 2012

3 Big Data Analytics 의소개 정의 Big Data 를있는그대로탐색하여숨어있는 Detail 한비즈니스기회를찾아내는기술 Big Data 정의 (1) Big Data Analytics (2) 정의 Advanced Analytics, Discovery Analytics - Discovery of new business facts with plenty of detail (Big Data) Pareto s Law Long-Tail Law - 데이터를가공 (Sampling, Summary) 하면 Long-tail(Detail) 이사라지거나오차발생 Detail 한정보의손실없이 Big Data 를분석하는기술 (1),(2) TDWI RESEARCH Q : Big Data Analytics KRnet 2012

4 Big Data Analytics 의기술및시장환경 춘추전국시대 Hadoop Data Scientist IBM Big Data Analytics RHive Distributed Computing R RHADOOP EMC SAP RHIPE Revolution R Oracle SAS -4- KRnet 2012

5 Big Data Analytics 의기술및시장환경 Cont Hadoop 기반의 Big Data 분석플랫폼 Product RHIPE RHadoop RHive map 작성 구조 R, Map/Reduce R, Map/Reduce R, Hive(Map/Reduce) [ RHIPE의구조 ] R reduce 작성 RHIPE HADOOP -5- KRnet 2012

6 Big Data Analytics 의기술및시장환경 Cont Appliance DBMS for Big Data Analytics 벤더제품 Analytics Engine Oracle IBM Big Data Appliance Exadata InfoSphere BigInsights Netezza Appliance Oracle R Enterprise (R) Revolution R, SAS, SPSS 연동 Teradata Aster Discovery Platform SQL-Map/Reduce, SAS, R EMC Greenplum Data Computing Appliance Java, R SAP [ 특징 ] HANA (In memory Appliance) Not Big Data R 연동사례 Appliance DBMS & Hadoop Hadoop보다는 Appliance DBMS에치중 Analytics Analytics Product을 DBMS Product 내부에포함시키고있음 Analytics Engine은공통적으로 R을사용 -6- KRnet 2012

7 Big Data Analytics 의소개 재정의 물리적제약으로인해다루지못했던데이터리소스들의집합 [ Visualization 의중요성 ] 가치의인식 [ 데이터의질적향상 ] 데이터의질적향상 새로운 Insight 도출 데이터 양 RAW Sample Summary 통합데이터 New Feature 데이터질 -7- KRnet 2012

8 Big Data Analytics 의소개 성공을위한요인 Big Data Platform 데이터처리의한계극복 수집, 가공, 저장, 분석기능 필요조건, 충분조건은아님 Domain Expert 아이디어, 방향성제시 업무의이해, 데이터의이해 현업담당자 + 시스템담당자 Data Scientist Multiplayer, 도전정신 전처리, 분석, 경험 -8- KRnet 2012

9 Big Data Analytics 를위한 R 의소개 R RHive -9- KRnet 2012

10 R 의소개 R 이란 R is a language and environment for statistical computing and graphics. It is a GNU project which is similar to the S language and environment which was developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. R can be considered as a different implementation of S. There are some important differences, but much code written for S runs unaltered under R. 태동전파확산 Bell Lab Commercial GNU/Open source O/S UNIX BSD/System V HP, IBM, SUN LINUX Application Analysis System The S system S-PLUS R Packages 1976 년 Bell Lab 태생 1988 년라이센스양도 1993 년도오픈소스화 -10- KRnet 2012

11 R 의소개 장단점 R? Free? Free Analytics Software 분석의자유 생각하는분석기법은모두지원한다. (4,000 여개이상의패키지 ) 최신분석기법의제공및자유로운분석환경제공 배포의자유 자유로운 " 실행, 복사, 수정, 배포 " 의권리를갖는사용허가권 비용의자유 무료소프트웨어 ( 단, 소프트웨어업체의 R 을이용한저작물은비용발생가능 ) [ R 의장점및단점 ] 구분장점단점비고 In-Memory 구조연산수행속도빠름대용량데이터분석불가상용 R 시스템 Open Source 저렴한비용 시스템통합용이 교육, 기술지원지원부족 시장형성기 Language 구조 알고리즘구현용이 Detail 분석가능 프로그램능력이필요함 S3, S4 Spec -11- KRnet 2012

12 R 의소개 statistical computing 주요통계계산기능 통계량 / 기초통계 통계분석 마이닝분석 시뮬레이션 수치해석 EDA(Exploratory Data Analysis) Summary 전통적인통계분석방법론 최신통계분석방법론, Spatial, Bayesian 통계등 Decision Tree, SVM, Clustering, WEKA interface 모형시뮬레이션 Operation Research 미분, 적분, 행렬대수 근사값계산, Optimization 교육대학 / 대학원교육 대학및대학원에서의통계교육의표준으로사용 업계의활용 활용프로젝트 분석업무활용 제품개발 Bioinformatics 프로젝트 Finmatrics 프로젝트 Google : Google Analytics(SaaS) 에 R을사용 Facebook, Yahoo 등회사에서내부분석용도구로활용 Oracle, Teradata, EMC 등업체의 DBMS 내분석툴로제공 BioConductor Project 460 이상의 Packages 게놈, Bio, 신약연구등 Bioinformatics 의표준통계분석언어 금융예측분석에사용, 여러가지금융예측모형구현 -12- KRnet 2012

13 R 의소개 graphics Edgar Anderson's Iris Data volcano data: filled contour map Sepal.Length Sepal.Width Petal.Length Petal.Width SNA SPLOM Contour WordCloud GoogleVis RGL -13- KRnet 2012

14 R 의소개 Populations Kdnuggets Poll : Language for DM Kaggle : Tool of competitors 11/r-still-the-preferred-tool-of-predictivemodelers-competing-at-kaggle.html KRnet 2012

15 RHive 의소개 Hive A data warehouse system for Hadoop Open Source (Apache License) ANSI SQL Support Facebook의 Main Data Warehousing System -15- KRnet 2012

16 RHive 의소개 정의 가장대중적인분석도구인 R 과검증된대용량분산 DW 시스템인 Hive 를결합한 Big Data 고급분석플랫폼 Language : R and ANSI-SQL R-Hive Bridge R Package R 기반분산처리 Framework Population Analytic Tool CRAN : 4,000+ Rich R library 용이한 Library 제작 Rich Visualization, IDE ANSI SQL : Low Learning Cost Hadoop 기반분산병렬처리 용이한기능확장 : UDF, UAF NexR Add-on -16- KRnet 2012

17 RHive 의소개 Architecture -17- KRnet 2012

18 RHive 의소개 Syntax HDFS interface Hive query interface (SQL) Map/Reduce Programming with R (R) -18- KRnet 2012

19 RHive 의소개 IDE RStudio -19- KRnet 2012

20 RHive 의소개 해외컨퍼런스발표 세계최고의국제 R 사용자학술컨퍼런스인 UseR! 2012에채택발표 (2012/06/13, USA, Nashville) The 8 th International R User Conference Vanderbilt University; Nashville, Tennessee, USA12 th -15 th June 2012 Google, Oracle, Revolution Analytics 및제약회사등 R&D 회사들 및분석관련회사의분석솔루션방법론및연구결과등발표 통계, 컴퓨터사이언스등분석관련리딩그룹의청중들이참석 데이터분석의전분야의학술적연구, 현업사례, 분석을위한 R 언 어개선안을함께다루는데이터분석분야의가장주목받는학회 -20- KRnet 2012

21 R 을이용한데이터분석의비교 Small Data Analytics using Native R Large Data Analytics using R Big Data Analytics using R -21- KRnet 2012

22 Small Data Analytics using Native R In-Memory Classification Tree Model iris : 150 건, 5 개변수 R Script Tree Chart > library(tree) > ir.tr <- tree(species ~., iris) > summary(ir.tr) Classification tree: tree(formula = Species ~., data = iris) Variables actually used in tree construction: [1] "Petal.Length" "Petal.Width" "Sepal.Length" setosa Number of terminal nodes: 6 Residual mean deviance: = / 144 Misclassification error rate: = 4 / 150 > plot(ir.tr) > text(ir.tr) Petal.Length < 2.45 Petal.Length < 4.95 Sepal.Length < 5.15 versicolor versicolor virginica Petal.Width < 1.75 Petal.Length < 4.95 virginica virginica -22- KRnet 2012

23 Large Data Analytics using R In-Disk / Memory Index Data 를 Disk 에 Load 메모리에는 Disk 의 Data 영역 Index 정보가올라감 Data 를 Loading 하는작업필요, 별도의분석라이브러리개발필요 [ 개념도 (ff Package 예시 ) ] [ 대표적인 Packages ] Package 명 bigmemory ff RevoScaleR 비고 분석용 Package (biganalytics) 분석용 Package (ffbase) 상용 (Revolution Analytics) -23- KRnet 2012

24 Large Data Analytics using R bigmemory Example Script airline : 123,534,959 건, 29 개변수, 11GB 29 개변수의산술평균구하기 Ubuntu linux 64Bit/ i7(dual) / 8G (Notebook) > library(bigmemory) > airline <- read.big.matrix("/home/antony/anal/airline.csv", header=t, + backingfile="airline.bin", descriptorfile="airline.desc", type="integer", + backingpath="/home/antony/anal/back/") > library(biganalytics) > colmean(airline, na.rm=t) WeatherDelay NASDelay SecurityDelay LateAircraftDelay e e e e+00 작업 데이터로드 산술평균 수행속도 33m 17s 2m 38s -24- KRnet 2012

25 Big Data Analytics using R RHive - Visualization Visualization 으로 Long-Tail 파악한다. XX 데이터 ( ~ , 16 개월로그데이터 ) hivequery 함수, aggregate 함수, heatmap 함수이용 -25- KRnet 2012

26 Big Data Analytics using R RHive Enterprise Analytics RHive 를이용한 KT Cloud 로그분석의사례 Cloud 시스템운영에필요한모니터링정보제공 자원사용기반사용자군집분석 (RHive KMeans) 사례 -26- KRnet 2012

27 Q&A -27- KRnet 2012

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

PowerPoint Presentation

PowerPoint Presentation RHive 와빅데이터분석 - 넥스알 Agenda 1. RHive 의소개 RHive 란? RHive 기능 & 사용법 Enterprise RHive 2. RHive 의운용사례 CloudLog CDR 2 R 분석가를 RHive 탄생배경 RHive 의소개 Big Data 플랫폼의데이터처리능력과 R 의데이터분석기능의결합필요성이대두됨 3 RHive 의정의 RHive 의소개

More information

Diapositiva 1

Diapositiva 1 R 전문가로가는길 -- 빅데이터활용바로보기 -- Heewon Jeon (NexR Corp.) - Author/Maintainer of KoNLP package. - Admin of Korea CRAN server Interactive Data Analysis 레거시데이터분석 컴퓨팅리소스가굉장히비쌌다. 많은입력값많은출력값부담없이여러번수행하기힘듦모든결과를쓰는건아님

More information

빅데이터_DAY key

빅데이터_DAY key Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020

More information

목차 R 의소개 R 의정의, R 의역사, R 의철학, R 의특징, R 패키지시스템 빅데이터분석 빅데이터, 데이터과학그리고과학자 The Marriage of Hadoop and R NexR's Way for Big Data Analysis Etc KRUG(Korean R

목차 R 의소개 R 의정의, R 의역사, R 의철학, R 의특징, R 패키지시스템 빅데이터분석 빅데이터, 데이터과학그리고과학자 The Marriage of Hadoop and R NexR's Way for Big Data Analysis Etc KRUG(Korean R Toward Open Platform 오픈소스기반의통계언어 R 과 빅데이터분석 NexR Data Scientist Jeon Hee-Won 목차 R 의소개 R 의정의, R 의역사, R 의철학, R 의특징, R 패키지시스템 빅데이터분석 빅데이터, 데이터과학그리고과학자 The Marriage of Hadoop and R NexR's Way for Big Data

More information

RUCK2015_Gruter_public

RUCK2015_Gruter_public Apache Tajo 와 R 을연동한빅데이터분석 고영경 / 그루터 ykko@gruter.com 목차 : R Tajo Tajo RJDBC Tajo Tajo UDF( ) TajoR Demo Q&A R 과빅데이터분석 ' R 1) R 2) 3) R (bigmemory, snowfall,..) 4) R (NoSQL, MapReduce, Hive / RHIPE, RHive,..)

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING

More information

Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤

Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 (byounggon.kim@opence.org) 빅데이터분석및서비스플랫폼 모바일 Browser 인포메이션카탈로그 Search 인포메이션유형 보안등급 생성주기 형식

More information

CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관

CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관 방송 통신 전파 KOREA COMMUNICATIONS AGENCY MAGAZINE 2013 VOL.174 09+10 CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내

More information

슬라이드 1

슬라이드 1 Data Warehouse 통합솔루션 회사연혁 Teradata Corporation (NYSE: TDC) 은 30 년이상업계를선도하며, 전세계적으로 Big Data 및데이터웨어하우스관련 Analytic 솔루션과컨설팅서비스를제공하는최고의기술을보유한 Global 기업 Teradata 본사 한국 Teradata 미국오하이오주 Dayton에세계최초의금전등록기제조사

More information

IBMDW성공사례원고

IBMDW성공사례원고 한국아이비엠주식회사 Your Possible Solution IBM DataWarehouse Appliance Impossible? I'm possible! 04 06 08 14 20 26 What BAO? 44x 3x 5x 05 04 Why DataWarehouse Appliance? Your Choice : Simplicity, Flexibility IBM

More information

ETL_project_best_practice1.ppt

ETL_project_best_practice1.ppt ETL ETL Data,., Data Warehouse DataData Warehouse ETL tool/system: ETL, ETL Process Data Warehouse Platform Database, Access Method Data Source Data Operational Data Near Real-Time Data Modeling Refresh/Replication

More information

±èÇö¿í Ãâ·Â

±èÇö¿í Ãâ·Â Smartphone Technical Trends and Security Technologies The smartphone market is increasing very rapidly due to the customer needs and industry trends with wireless carriers, device manufacturers, OS venders,

More information

출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517

출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517 기술사업성평가서 경쟁정보분석서비스 제공 기술 2014 8 출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517 Ⅰ 기술 구현 메커니즘 - 1 - 경쟁정보분석서비스 항목 - 2 - 핵심 기술 특징 및 주요 도면

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 ㆍ Natural Language Understanding 관련기술 ㆍ Semantic Parsing Conversational AI Natural Language Understanding / Machine Learning ㆍEntity Extraction and Resolution - Machine Learning 관련기술연구개발경험보유자ㆍStatistical

More information

08SW

08SW www.mke.go.kr + www.keit.re.kr Part.08 654 662 709 731 753 778 01 654 Korea EvaluationInstitute of industrial Technology IT R&D www.mke.go.kr www.keit.re.kr 02 Ministry of Knowledge Economy 655 Domain-Specific

More information

Basic Template

Basic Template Hadoop EcoSystem 을홗용한 Hybrid DW 구축사례 2013-05-02 KT cloudware / NexR Project Manager 정구범 klaus.jung@{kt nexr}.com KT의대용량데이터처리이슈 적재 Data의폭발적인증가 LTE 등초고속무선 Data 통싞 : 트래픽이예상보다빨리 / 많이증가 비통싞 ( 컨텐츠 / 플랫폼 /Bio/

More information

DB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx

DB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx 빅데이터의기술영역과 요구역량 줌인터넷 ( 주 ) 김우승 소개 http://zum.com 줌인터넷(주) 연구소 이력 줌인터넷 SK planet SK Telecom 삼성전자 http://kimws.wordpress.com @kimws 목차 빅데이터살펴보기 빅데이터에서다루는문제들 NoSQL 빅데이터라이프사이클 빅데이터플랫폼 빅데이터를위한역량 빅데이터를위한역할별요구지식

More information

OZ-LMS TM OZ-LMS 2008 OZ-LMS 2006 OZ-LMS Lite Best IT Serviece Provider OZNET KOREA Management Philosophy & Vision Introduction OZNETKOREA IT Mission Core Values KH IT ERP Web Solution IT SW 2000 4 3 508-2

More information

<49534F20323030303020C0CEC1F520BBE7C8C4BDC9BBE720C4C1BCB3C6C320B9D7204954534D20BDC3BDBAC5DB20B0EDB5B5C8AD20C1A6BEC8BFE4C3BBBCAD2E687770>

<49534F20323030303020C0CEC1F520BBE7C8C4BDC9BBE720C4C1BCB3C6C320B9D7204954534D20BDC3BDBAC5DB20B0EDB5B5C8AD20C1A6BEC8BFE4C3BBBCAD2E687770> ISO 20000 인증 사후심사 컨설팅 및 ITSM 시스템 고도화를 위한 제 안 요 청 서 2008. 6. 한 국 학 술 진 흥 재 단 이 자료는 한국학술진흥재단 제안서 작성이외의 목적으로 복제, 전달 및 사용을 금함 목 차 Ⅰ. 사업개요 1 1. 사업명 1 2. 추진배경 1 3. 목적 1 4. 사업내용 2 5. 기대효과 2 Ⅱ. 사업추진계획 4 1. 추진체계

More information

スライド タイトルなし

スライド タイトルなし 2 3 회사 소개 60%출자 40%출자 주식회사 NTT데이타 아이테크 NTT DATA의 영업협력이나 첨단기술제공, 인재육성등 여러가지 지원을 통해서 SII 그룹을 대상으로 고도의 정보 서비스를 제공 함과 동시에 NTT DATA ITEC 가 보유하고 있는 높은 업무 노하우 와 SCM을 비롯한 ERP분야의 기술력을 살려서 조립가공계 및 제조업 등 새로운 시장에

More information

Backup Exec

Backup Exec (sjin.kim@veritas.com) www.veritas veritas.co..co.kr ? 24 X 7 X 365 Global Data Access.. 100% Storage Used Terabytes 9 8 7 6 5 4 3 2 1 0 2000 2001 2002 2003 IDC (TB) 93%. 199693,000 TB 2000831,000 TB.

More information

IPAK 윤리강령 나는 _ 한국IT전문가협회 회원으로서 긍지와 보람을 느끼며 정보시스템 활용하 자. 나는 _동료, 단체 및 국가 나아가 인류사회에 대하여 철저한 책임 의식을 가진 다. 나는 _ 활용자에 대하여 그 편익을 증진시키는데 최선을 다한다. 나는 _ 동료에 대해

IPAK 윤리강령 나는 _ 한국IT전문가협회 회원으로서 긍지와 보람을 느끼며 정보시스템 활용하 자. 나는 _동료, 단체 및 국가 나아가 인류사회에 대하여 철저한 책임 의식을 가진 다. 나는 _ 활용자에 대하여 그 편익을 증진시키는데 최선을 다한다. 나는 _ 동료에 대해 IPAK 윤리강령 나는 _ 한국IT전문가협회 회원으로서 긍지와 보람을 느끼며 정보시스템 활용하 자. 나는 _동료, 단체 및 국가 나아가 인류사회에 대하여 철저한 책임 의식을 가진 다. 나는 _ 활용자에 대하여 그 편익을 증진시키는데 최선을 다한다. 나는 _ 동료에 대해서 도의와 성실과 지식을 바탕으로 서로 우애하고 경애한다. 나는 _ 단체와 국가에 대해서 그

More information

Oracle Apps Day_SEM

Oracle Apps Day_SEM Senior Consultant Application Sales Consulting Oracle Korea - 1. S = (P + R) x E S= P= R= E= Source : Strategy Execution, By Daniel M. Beall 2001 1. Strategy Formulation Sound Flawed Missed Opportunity

More information

Oracle9i Real Application Clusters

Oracle9i Real Application Clusters Senior Sales Consultant Oracle Corporation Oracle9i Real Application Clusters Agenda? ? (interconnect) (clusterware) Oracle9i Real Application Clusters computing is a breakthrough technology. The ability

More information

I I-1 I-2 I-3 I-4 I-5 I-6 GIS II II-1 II-2 II-3 III III-1 III-2 III-3 III-4 III-5 III-6 IV GIS IV-1 IV-2 (Complement) IV-3 IV-4 V References * 2012.

I I-1 I-2 I-3 I-4 I-5 I-6 GIS II II-1 II-2 II-3 III III-1 III-2 III-3 III-4 III-5 III-6 IV GIS IV-1 IV-2 (Complement) IV-3 IV-4 V References * 2012. : 2013 1 25 Homepage: www.gaia3d.com Contact: info@gaia3d.com I I-1 I-2 I-3 I-4 I-5 I-6 GIS II II-1 II-2 II-3 III III-1 III-2 III-3 III-4 III-5 III-6 IV GIS IV-1 IV-2 (Complement) IV-3 IV-4 V References

More information

슬라이드 1

슬라이드 1 4. Mobile Service Technology Mobile Computing Lecture 2012. 10. 5 안병익 (biahn99@gmail.com) 강의블로그 : Mobilecom.tistory.com 2 Mobile Service in Korea 3 Mobile Service Mobility 4 Mobile Service in Korea 5 Mobile

More information

DW 개요.PDF

DW 개요.PDF Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.

More information

PCServerMgmt7

PCServerMgmt7 Web Windows NT/2000 Server DP&NM Lab 1 Contents 2 Windows NT Service Provider Management Application Web UI 3 . PC,, Client/Server Network 4 (1),,, PC Mainframe PC Backbone Server TCP/IP DCS PLC Network

More information

비식별화 기술 활용 안내서-최종수정.indd

비식별화 기술 활용 안내서-최종수정.indd 빅데이터 활용을 위한 빅데이터 담당자들이 실무에 활용 할 수 있도록 비식별화 기술과 활용방법, 실무 사례 및 예제, 분야별 참고 법령 및 활용 Q&A 등 안내 개인정보 비식별화 기술 활용 안내서 Ver 1.0 작성 및 문의 미래창조과학부 : 양현철 사무관 / 김자영 주무관 한국정보화진흥원 : 김진철 수석 / 김배현 수석 / 신신애 부장 문의 : cckim@nia.or.kr

More information

ecorp-프로젝트제안서작성실무(양식3)

ecorp-프로젝트제안서작성실무(양식3) (BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing

More information

SchoolNet튜토리얼.PDF

SchoolNet튜토리얼.PDF Interoperability :,, Reusability: : Manageability : Accessibility :, LMS Durability : (Specifications), AICC (Aviation Industry CBT Committee) : 1988, /, LMS IMS : 1997EduCom NLII,,,,, ARIADNE (Alliance

More information

Business Agility () Dynamic ebusiness, RTE (Real-Time Enterprise) IT Web Services c c WE-SDS (Web Services Enabled SDS) SDS SDS Service-riented Architecture Web Services ( ) ( ) ( ) / c IT / Service- Service-

More information

사회통계포럼

사회통계포럼 wcjang@snu.ac.kr Acknowledgements Dr. Roger Peng Coursera course. https://github.com/rdpeng/courses Creative Commons by Attribution /. 10 : SNS (twitter, facebook), (functional data) : (, ),, /Data Science

More information

분산처리 프레임워크를 활용한대용량 영상 고속분석 시스템

분산처리 프레임워크를 활용한대용량 영상 고속분석 시스템 분산처리프레임워크를활용한 대용량영상고속분석시스템 2015.07.16 SK C&C 융합기술본부오상문 (sangmoon.oh@sk.com) 목차 I. 영상분석서비스 II. Apache Storm III.JNI (Java Native Interface) IV. Image Processing Libraries 2 1.1. 배경및필요성 I. 영상분석서비스 현재대부분의영상관리시스템에서영상분석은

More information

Microsoft PowerPoint - Smart CRM v4.0_TM 소개_20160320.pptx

Microsoft PowerPoint - Smart CRM v4.0_TM 소개_20160320.pptx (보험TM) 소개서 2015.12 대표전화 : 070 ) 7405 1700 팩스 : 02 ) 6012 1784 홈 페이지 : http://www.itfact.co.kr 목 차 01. Framework 02. Application 03. 회사 소개 01. Framework 1) Architecture Server Framework Client Framework

More information

Tech Trends 클라우드 버스팅의 현주소와 과제 아직 완벽한 클라우드 버스팅을 위해 가야 할 길이 멀지만, 하이브리드 클라우드는 충분한 이점을 가져다 준다. Robert L. Scheier Networkworld 매끄러운 클라우드 버스팅(Cloud Bursting

Tech Trends 클라우드 버스팅의 현주소와 과제 아직 완벽한 클라우드 버스팅을 위해 가야 할 길이 멀지만, 하이브리드 클라우드는 충분한 이점을 가져다 준다. Robert L. Scheier Networkworld 매끄러운 클라우드 버스팅(Cloud Bursting I D G D e e p D i v e Seamless Cloud 궁극의 클라우드 하이브리드 클라우드의 과제와 해법 클라우드를 이용해 자체 IT, 자원을 보완하는 것은 기업이 일상적인 워크로드를 위한 인프라만을 구축하고, 일시적인 과부 하를 필요할 때만 클라우드에 넘겨주는 가장 이상적인 상태 중 하나이다. 여기에 재해 복구나 비즈니스 연속성을 위한 새 로운

More information

Service-Oriented Architecture Copyright Tmax Soft 2005

Service-Oriented Architecture Copyright Tmax Soft 2005 Service-Oriented Architecture Copyright Tmax Soft 2005 Service-Oriented Architecture Copyright Tmax Soft 2005 Monolithic Architecture Reusable Services New Service Service Consumer Wrapped Service Composite

More information

歯J2000-04.PDF

歯J2000-04.PDF - - I. / 1 II. / 3 III. / 14 IV. / 23 I. (openness), (Modulization). (Internet Protocol) (Linux) (open source technology).. - Windows95, 98, (proprietary system). ( ). - (free).,. 1),.,,,. 1). IBM,. IBM

More information

solution map_....

solution map_.... SOLUTION BROCHURE RELIABLE STORAGE SOLUTIONS ETERNUS FOR RELIABILITY AND AVAILABILITY PROTECT YOUR DATA AND SUPPORT BUSINESS FLEXIBILITY WITH FUJITSU STORAGE SOLUTIONS kr.fujitsu.com INDEX 1. Storage System

More information

Intra_DW_Ch4.PDF

Intra_DW_Ch4.PDF The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology

More information

Microsoft PowerPoint - SVPSVI for LGNSYS_20120320.ppt

Microsoft PowerPoint - SVPSVI for LGNSYS_20120320.ppt IBM Partner Program March, 2012 Jaemin, Lee SWG Channels, IBM Korea SWG Channels 2012 IBM Corporation Agenda IBM Korea SWG Channels Software Value Plus Software Value Incentive Revalidation 2 IBM Software

More information

SQL Developer Connect to TimesTen 유니원아이앤씨 DB 기술지원팀 2010 년 07 월 28 일 문서정보 프로젝트명 SQL Developer Connect to TimesTen 서브시스템명 버전 1.0 문서명 작성일 작성자

SQL Developer Connect to TimesTen 유니원아이앤씨 DB 기술지원팀 2010 년 07 월 28 일 문서정보 프로젝트명 SQL Developer Connect to TimesTen 서브시스템명 버전 1.0 문서명 작성일 작성자 SQL Developer Connect to TimesTen 유니원아이앤씨 DB 팀 2010 년 07 월 28 일 문서정보 프로젝트명 SQL Developer Connect to TimesTen 서브시스템명 버전 1.0 문서명 작성일 2010-07-28 작성자 김학준 최종수정일 2010-07-28 문서번호 20100728_01_khj 재개정이력 일자내용수정인버전

More information

초보자를 위한 C++

초보자를 위한 C++ C++. 24,,,,, C++ C++.,..,., ( ). /. ( 4 ) ( ).. C++., C++ C++. C++., 24 C++. C? C++ C C, C++ (Stroustrup) C++, C C++. C. C 24.,. C. C+ +?. X C++.. COBOL COBOL COBOL., C++. Java C# C++, C++. C++. Java C#

More information

고객 지향적인 IT 투자와 운영이 요구되는 시대! 2014년 현재 유통, 서비스 업계의 정보화 화두는 BYOD 수용과 고객의 마음을 읽는 분석 입니다. Market Overview _ Cross Industry 의 정보화 동향 유통과 서비스 업계의 IT 환경은 발 빠르

고객 지향적인 IT 투자와 운영이 요구되는 시대! 2014년 현재 유통, 서비스 업계의 정보화 화두는 BYOD 수용과 고객의 마음을 읽는 분석 입니다. Market Overview _ Cross Industry 의 정보화 동향 유통과 서비스 업계의 IT 환경은 발 빠르 무엇이든 물어보세요! 4 3 고객 지향적인 IT 투자와 운영이 요구되는 시대! 2014년 현재 유통, 서비스 업계의 정보화 화두는 BYOD 수용과 고객의 마음을 읽는 분석 입니다. Market Overview _ Cross Industry 의 정보화 동향 유통과 서비스 업계의 IT 환경은 발 빠르게 고객 지향적인 방향으로 발전해 가고 있다. 제품과 서비스를

More information

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

Software Requirrment Analysis를 위한 정보 검색 기술의 응용 EPG 정보 검색을 위한 예제 기반 자연어 대화 시스템 김석환 * 이청재 정상근 이근배 포항공과대학교 컴퓨터공학과 지능소프트웨어연구실 {megaup, lcj80, hugman, gblee}@postech.ac.kr An Example-Based Natural Language System for EPG Information Access Seokhwan Kim

More information

untitled

untitled Push... 2 Push... 4 Push... 5 Push... 13 Push... 15 1 FORCS Co., LTD A Leader of Enterprise e-business Solution Push (Daemon ), Push Push Observer. Push., Observer. Session. Thread Thread. Observer ID.

More information

Æí¶÷4-¼Ö·ç¼Çc03ÖÁ¾š

Æí¶÷4-¼Ö·ç¼Çc03ÖÁ¾š 솔루션 2006 454 2006 455 2006 456 2006 457 2006 458 2006 459 2006 460 솔루션 2006 462 2006 463 2006 464 2006 465 2006 466 솔루션 2006 468 2006 469 2006 470 2006 471 2006 472 2006 473 2006 474 2006 475 2006 476

More information

untitled

untitled 웹2.0의 사회 경제적 영향력 2007. 3. 21 < 목 차 > Ⅰ. 웹2.0의 의의 및 현황 1 Ⅱ. 웹2.0은 무엇이 다른가? 4 Ⅲ. 웹2.0의 비즈니스 모델 9 Ⅳ. 사회 경제적 영향 11 산은경제연구소 산업분석 2팀 Ⅰ. 웹2.0의 의의 및 현황 1. 의의 웹2.0이란 무엇인가? 정보의 개방을 통해 인터넷 사용자들간의 정보공유와 참여를 이끌어내고,

More information

Voice Portal using Oracle 9i AS Wireless

Voice Portal using Oracle 9i AS Wireless Voice Portal Platform using Oracle9iAS Wireless 20020829 Oracle Technology Day 1 Contents Introduction Voice Portal Voice Web Voice XML Voice Portal Platform using Oracle9iAS Wireless Voice Portal Video

More information

2017 1

2017 1 2017 2017 Data Industry White Paper 2017 1 1 1 2 3 Interview 1 4 1 3 2017IT 4 20161 4 2017 4 * 22 2017 4 Cyber Physical SystemsCPS 1 GEGE CPS CPS Industrial internet, IoT GE GE Imagination at Work2012

More information

Bigdata가 제공하는 구체적인 혜택과 변화 양상 기업의 데이터 기반의 의사결정 시스템 구축 의지 확대 양상 빅데이터를 활용한 경영 및 마케팅 지속적인 증가세 뚜렷 빅데이터를 도입한 기업은 사전 기대를 뛰어넘는 효과를 경험 본 조사 내용은 美 BARC- Researc

Bigdata가 제공하는 구체적인 혜택과 변화 양상 기업의 데이터 기반의 의사결정 시스템 구축 의지 확대 양상 빅데이터를 활용한 경영 및 마케팅 지속적인 증가세 뚜렷 빅데이터를 도입한 기업은 사전 기대를 뛰어넘는 효과를 경험 본 조사 내용은 美 BARC- Researc Bigdata가 제공하는 구체적인 혜택과 변화 양상 기업의 데이터 기반의 의사결정 시스템 구축 의지 확대 양상 빅데이터를 활용한 경영 및 마케팅 지속적인 증가세 뚜렷 빅데이터를 도입한 기업은 사전 기대를 뛰어넘는 효과를 경험 본 조사 내용은 美 BARC- Researcht 社 가 2015년 대륙별 표본을 추출한 글로벌 546개사를 대상으로 리서치를 수행하여

More information

Intro to Servlet, EJB, JSP, WS

Intro to Servlet, EJB, JSP, WS ! Introduction to J2EE (2) - EJB, Web Services J2EE iseminar.. 1544-3355 ( ) iseminar Chat. 1 Who Are We? Business Solutions Consultant Oracle Application Server 10g Business Solutions Consultant Oracle10g

More information

1 전통 소프트웨어 가. ERP 시장 ERP 업계, 클라우드 기반 서비스로 새로운 활력 모색 - SAP-LGCNS : SAP HANA 클라우드(SAP HEC)를 통해 국내 사례 확보 및 아태 지역 진 출 추진 - 영림원 : 아시아 클라우드 ERP 시장 공략 추진 - 더

1 전통 소프트웨어 가. ERP 시장 ERP 업계, 클라우드 기반 서비스로 새로운 활력 모색 - SAP-LGCNS : SAP HANA 클라우드(SAP HEC)를 통해 국내 사례 확보 및 아태 지역 진 출 추진 - 영림원 : 아시아 클라우드 ERP 시장 공략 추진 - 더 02 소프트웨어 산업 동향 1. 전통 소프트웨어 2. 新 소프트웨어 3. 인터넷 서비스 4. 디지털콘텐츠 5. 정보보안 6. 기업 비즈니스 동향 1 전통 소프트웨어 가. ERP 시장 ERP 업계, 클라우드 기반 서비스로 새로운 활력 모색 - SAP-LGCNS : SAP HANA 클라우드(SAP HEC)를 통해 국내 사례 확보 및 아태 지역 진 출 추진 - 영림원

More information

슬라이드 1

슬라이드 1 2015( 제 8 회 ) 한국소프트웨어아키텍트대회 OSS 성능모니터링을위한 Open Source SW 2015. 07. 16 LG CNS 김성조 Tomcat & MariaDB 성능모니터링 Passion Open Source Software Open Hadoop IT Service Share Communication Enterprise Source Access

More information

빅데이터시대 Self-BI 전략 이혁재이사 비아이씨엔에스

빅데이터시대 Self-BI 전략 이혁재이사 비아이씨엔에스 빅데이터시대 Self-BI 전략 이혁재이사 비아이씨엔에스 Agenda 1 Oracle In-Memory 소개 2 BI 시스템구성도 3 BI on In-Memory 테스트 4 In-Memory 활용한 BI 오라클인메모리목표 규모분석에대한속도향상 빠른속도 : 혼합워크로드업무 간편함 : 어플리케이션투명성및쉬운배치 저렴함 : 일부필요데이터만인메모리에존재가능 2 메모리운용방식

More information

HTML5가 웹 환경에 미치는 영향 고 있어 웹 플랫폼 환경과는 차이가 있다. HTML5는 기존 HTML 기반 웹 브라우저와의 호환성을 유지하면서도, 구조적인 마크업(mark-up) 및 편리한 웹 폼(web form) 기능을 제공하고, 리치웹 애플리케이 션(RIA)을

HTML5가 웹 환경에 미치는 영향 고 있어 웹 플랫폼 환경과는 차이가 있다. HTML5는 기존 HTML 기반 웹 브라우저와의 호환성을 유지하면서도, 구조적인 마크업(mark-up) 및 편리한 웹 폼(web form) 기능을 제공하고, 리치웹 애플리케이 션(RIA)을 동 향 제 23 권 5호 통권 504호 HTML5가 웹 환경에 미치는 영향 이 은 민 * 16) 1. 개 요 구글(Google)은 2010년 5월 구글 I/O 개발자 컨퍼런스에서 HTML5를 통해 플러 그인의 사용이 줄어들고 프로그램 다운로드 및 설치가 필요 없는 브라우저 기반 웹 플랫폼 환경이 점차 구현되고 있다고 강조했다. 그리고 애플(Apple)은 2010년

More information

MPLAB C18 C

MPLAB C18 C MPLAB C18 C MPLAB C18 MPLAB C18 C MPLAB C18 C #define START, c:\mcc18 errorlevel{0 1} char isascii(char ch); list[list_optioin,list_option] OK, Cancel , MPLAB IDE User s Guide MPLAB C18 C

More information

품질검증분야 Stack 통합 Test 결과보고서 [ The Bug Genie ]

품질검증분야 Stack 통합 Test 결과보고서 [ The Bug Genie ] 품질검증분야 Stack 통합 Test 결과보고서 [ The Bug Genie ] 2014. 10. 목 차 I. Stack 통합테스트개요 1 1. 목적 1 II. 테스트대상소개 2 1. The Bug Genie 소개 2 2. The Bug Genie 주요기능 3 3. The Bug Genie 시스템요구사항및주의사항 5 III. Stack 통합테스트 7 1. 테스트환경

More information

vm-웨어-앞부속

vm-웨어-앞부속 VMware vsphere 4 This document was created using the official VMware icon and diagram library. Copyright 2009 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 CRM Data Quality Management 2003 2003. 11. 11 (SK ) hskim226@skcorp.com Why Quality Management? Prologue,,. Water Source Management 2 Low Quality Water 1) : High Quality Water 2) : ( ) Water Quality Management

More information

R, 그리고빅데이터 2

R, 그리고빅데이터 2 R, 그리고빅데이터 제 30 회 Open Technet - 빅데이터오픈소스플랫폼기술세미나 2012.07.26 이동우 지티원 R, 그리고빅데이터 2 What is R? R is a language and environment for statistical computing and graphics. l Data analysis software l A programming

More information

J2EE & Web Services iSeminar

J2EE & Web Services iSeminar 9iAS :, 2002 8 21 OC4J Oracle J2EE (ECperf) JDeveloper : OLTP : Oracle : SMS (Short Message Service) Collaboration Suite Platform Email Developer Suite Portal Java BI XML Forms Reports Collaboration Suite

More information

Chap7.PDF

Chap7.PDF Chapter 7 The SUN Intranet Data Warehouse: Architecture and Tools All rights reserved 1 Intranet Data Warehouse : Distributed Networking Computing Peer-to-peer Peer-to-peer:,. C/S Microsoft ActiveX DCOM(Distributed

More information

AGENDA 01 02 03 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례

AGENDA 01 02 03 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례 모바일 클라우드 서비스 융합사례와 시장 전망 및 신 사업전략 2011. 10 AGENDA 01 02 03 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례 AGENDA 01. 모바일 산업의 환경 변화 가치 사슬의 분화/결합 모바일 업계에서도 PC 산업과 유사한 모듈화/분업화 진행 PC 산업 IBM à WinTel 시대 à

More information

2007-최종-10월 16일자.hwp

2007-최종-10월 16일자.hwp 제 24 권 19호 통권 541호 빅데이터의 동향 및 시사점 7) 김 한 나 * 1. 개 요 최근 ICT 분야에서 빅데이터 이슈가 급부상하고 있다. 디지털 정보량이 기하급수 적으로 증가함에 따라 수많은 데이터를 어떻게 활용하는지의 여부, 즉 방대한 데이터 를 통한 새로운 가치창출이 기업뿐 아니라 국가의 경쟁력 강화와 직결되는 시대로 접 어들고 있는 것이다.

More information

PowerPoint

PowerPoint .. http://www.acs.co.kr -1- .. http://www.acs.co.kr -3- ( Advanced Computer Services Co.,Ltd. ) 345-9 SK B8 ( sh_kim@acs.co.kr ) 116-81-24039 http://www.acs.co.kr, http://www.emanufacturing.co.kr (Fax)

More information

PowerPoint Presentation

PowerPoint Presentation 1 2 Enterprise AI 인공지능 (AI) 을업무에도입하는최적의제안 Taewan Kim Solution Engineer Data & Analytics @2045 Imagine the endless possibilities to learn from 2.5 quintillion bytes of data generated every day AI REVOLUTION

More information

Microsoft Word - zfs-storage-family_ko.doc

Microsoft Word - zfs-storage-family_ko.doc 데이터 관리 용이성과 스토리지 효율성을 하나로 결합 주요 기능 및 이점 획기적인 가격 대비 성능과 혁신적인 단순성을 하나로 결합 특징 문제를 손쉽게 발견 및 수정하고 성능을 최적화할 수 있는 탁월한 관리 툴 포괄적이고 통합된 데이터 서비스 및 프로토콜 액티브-액티브 클러스터 옵션 데이터 압축 및 인라인 중복 제거 지속적인 데이터 증가로 인해 오늘날 IT 인프라는

More information

Data Industry White Paper

Data Industry White Paper 2017 2017 Data Industry White Paper 2017 1 3 1 2 3 Interview 1 ICT 1 Recommendation System * 98 2017 Artificial 3 Neural NetworkArtificial IntelligenceAI 2 AlphaGo 1 33 Search Algorithm Deep Learning IBM

More information

1

1 04단원 컴퓨터 소프트웨어 1. 프로그래밍 언어 2. 시스템 소프트웨어 1/10 1. 프로그래밍 언어 1) 프로그래밍 언어 구분 각종 프로그래밍 언어에 대해 알아보는 시간을 갖도록 하겠습니다. 우리가 흔히 접하는 소프트웨어 들은 프로그래밍 언어로 만들어지는데, 프로그래밍 언어는 크게 2가지로 나눌 수 있습니다. 1 저급어 : 0과 1로 구성되어 있어, 컴퓨터가

More information

Agenda 오픈소스 트렌드 전망 Red Hat Enterprise Virtualization Red Hat Enterprise Linux OpenStack Platform Open Hybrid Cloud

Agenda 오픈소스 트렌드 전망 Red Hat Enterprise Virtualization Red Hat Enterprise Linux OpenStack Platform Open Hybrid Cloud 오픈소스 기반 레드햇 클라우드 기술 Red Hat, Inc. Senior Solution Architect 최원영 부장 wchoi@redhat.com Agenda 오픈소스 트렌드 전망 Red Hat Enterprise Virtualization Red Hat Enterprise Linux OpenStack Platform Open Hybrid Cloud Red

More information

Portal_9iAS.ppt [읽기 전용]

Portal_9iAS.ppt [읽기 전용] Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Oracle9i Application Server e-business Portal Client Database Server e-business Portals B2C, B2B, B2E, WebsiteX B2Me GUI ID B2C

More information

<32303134313138395FC1A6BEC8BFE4C3BBBCAD2E687770>

<32303134313138395FC1A6BEC8BFE4C3BBBCAD2E687770> 제 안 요 청 서 (신구대학교 모바일 학사행정시스템 개발) 2014년 12월 12일 목 차 I. 사업개요 1. 사업명 2. 사업 목적 3. 개발범위 4. 사업 추진 일정 5. 입찰 및 사업자 선정 방식 6. 사업 관련 문의 1 1 1 1 2 2 2 II. 학교 현황 및 기존 시스템 1. 신구대학교 현황 2. 관련장비 현황 3 3 3 III. 제안 요구 사항

More information

자동화된 소프트웨어 정의 데이터센터

자동화된 소프트웨어 정의 데이터센터 사례로보는 Big Data 프로젝트의 Success Factor 한지수이사 한국이엠씨컴퓨터시스템즈 1 목차 Big Data는무엇인가? BI/DW와 Big Data의차이점? Big Data프로젝트의목표 Big Data 프로젝트수행의 3가지어려움 Big Data 프로젝트사례와시사점 Key Success Factor Big Data 수행을위한조직 Big Data

More information

Microsoft Word - 조병호

Microsoft Word - 조병호 포커스 클라우드 컴퓨팅 서비스 기술 및 표준화 추진 동향 조병호* 2006년에 클라우딩 컴퓨팅이란 용어가 처음 생겨난 이래 글로벌 IT 기업 CEO들이 잇달아 차 기 핵심 기술로 클라우드 컴퓨팅을 지목하면서 전세계적으로 클라우드 컴퓨팅이라는 새로운 파 라다임에 관심이 고조되고 있다. 클라우드 컴퓨팅 기술을 이용하면 효율적인 IT 자원을 운용할 수 있으며 비용절감

More information

vm-웨어-01장

vm-웨어-01장 Chapter 16 21 (Agenda). (Green),., 2010. IT IT. IT 2007 3.1% 2030 11.1%, IT 2007 1.1.% 2030 4.7%, 2020 4 IT. 1 IT, IT. (Virtualization),. 2009 /IT 2010 10 2. 6 2008. 1970 MIT IBM (Mainframe), x86 1. (http

More information

Microsoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM

Microsoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM 中 규모 기업의 실용주의CRM 전략 (CRM for SMB) 공영DBM 솔루션컨설팅 사업부 본부장 최동욱 2007. 10. 25 Agenda I. 중소기업의 고객관리, CRM의 중요성 1. 국내외 CRM 동향 2. 고객관리, CRM의 중요성 3. CRM 도입의 기대효과 II. CRM정의 및 우리회사 적합성 1. 중소기업에 유용한 CRM의 정의 2. LTV(Life

More information

클라우드컴퓨팅확산에따른국내경제시사점 클라우드컴퓨팅확산에따른국내경제시사점 * 1) IT,,,, Salesforce.com SaaS (, ), PaaS ( ), IaaS (, IT ), IT, SW ICT, ICT IT ICT,, ICT, *, (TEL)

클라우드컴퓨팅확산에따른국내경제시사점 클라우드컴퓨팅확산에따른국내경제시사점 * 1) IT,,,, Salesforce.com SaaS (, ), PaaS ( ), IaaS (, IT ), IT, SW ICT, ICT IT ICT,, ICT, *, (TEL) 클라우드컴퓨팅확산에따른국내경제시사점 클라우드컴퓨팅확산에따른국내경제시사점 * 1) IT,,,, Salesforce.com SaaS (, ), PaaS ( ), IaaS (, IT ), IT, SW ICT, ICT IT ICT,, ICT, *, (TEL) 02-570-4352 (e-mail) jjoon75@kisdi.re.kr 1 The Monthly Focus.

More information

목차 개요 3 섹션 1: 해결 과제 4 APT(지능형 지속 위협): 이전과 다른 위협 섹션 2: 기회 7 심층 방어 섹션 3: 이점 14 위험 감소 섹션 4: 결론 14 섹션 5: 참조 자료 15 섹션 6: 저자 소개 16 2

목차 개요 3 섹션 1: 해결 과제 4 APT(지능형 지속 위협): 이전과 다른 위협 섹션 2: 기회 7 심층 방어 섹션 3: 이점 14 위험 감소 섹션 4: 결론 14 섹션 5: 참조 자료 15 섹션 6: 저자 소개 16 2 백서 표적 공격 2012년 7월 APT(지능형 지속 위협) 차단을 위한 전면적인 철저한 방어 Russell Miller CA Technologies 보안 관리 사업부 agility made possible 목차 개요 3 섹션 1: 해결 과제 4 APT(지능형 지속 위협): 이전과 다른 위협 섹션 2: 기회 7 심층 방어 섹션 3: 이점 14 위험 감소 섹션

More information

13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3

13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3 13 Lightweight BPM Engine SW 13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3 BPM? 13 13 Vendor BPM?? EA??? http://en.wikipedia.org/wiki/business_process_management,

More information

Copyright 2012, Oracle and/or its affiliates. All rights reserved.,.,,,,,,,,,,,,.,...,. U.S. GOVERNMENT END USERS. Oracle programs, including any oper

Copyright 2012, Oracle and/or its affiliates. All rights reserved.,.,,,,,,,,,,,,.,...,. U.S. GOVERNMENT END USERS. Oracle programs, including any oper Windows Netra Blade X3-2B( Sun Netra X6270 M3 Blade) : E37790 01 2012 9 Copyright 2012, Oracle and/or its affiliates. All rights reserved.,.,,,,,,,,,,,,.,...,. U.S. GOVERNMENT END USERS. Oracle programs,

More information

Slide 1

Slide 1 SAS High-Performance Analytics : Big Data Analytics 를위한기술혁신 SAS Korea 김근태 빅데이터가과거에는불가능했던새로운기회를제공합니다. 수일또는수주일이소요되었던분석인사이트를수분또는수초내에 확보할수있습니다. What if you could. Big Data 를경쟁사보다며칠더빠르게가망 고객의구매행위와의사결정기준을예측할수

More information

서현수

서현수 Introduction to TIZEN SDK UI Builder S-Core 서현수 2015.10.28 CONTENTS TIZEN APP 이란? TIZEN SDK UI Builder 소개 TIZEN APP 개발방법 UI Builder 기능 UI Builder 사용방법 실전, TIZEN APP 개발시작하기 마침 TIZEN APP? TIZEN APP 이란? Mobile,

More information

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX 20062 () wwwexellencom sales@exellencom () 1 FMX 1 11 5M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX D E (one

More information

歯두산3.PDF

歯두산3.PDF ERP Project 20001111 BU 1 1. 2. Project 3. Project 4. Project 5. Project 6. J.D. EdwardsOneWorld 7. Project 8. Project 9. Project 10. System Configuration 11. Project 12. 2 1. 8 BG / 2 / 5 BU (20001031

More information

Slide 1

Slide 1 SAS Visual Analytics: In-Memory 분석엔진기반의 Big Data 시각적분석 박현옥부장 SAS Korea Agenda Big Data Analysis - Issues Case Study Big Data Analytics를위한 SAS 분석아키텍쳐 SAS Visual Analytics의특징 데모 활용방안 Big Data Analytics -

More information

Global Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항

Global Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항 Global Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항 - 재직자 전문성, 복잡성으로 인해 알고리즘 개발 난항 본 조사 내용은 美 Techpro Research

More information

UML

UML Introduction to UML Team. 5 2014/03/14 원스타 200611494 김성원 200810047 허태경 200811466 - Index - 1. UML이란? - 3 2. UML Diagram - 4 3. UML 표기법 - 17 4. GRAPPLE에 따른 UML 작성 과정 - 21 5. UML Tool Star UML - 32 6. 참조문헌

More information

2009방송통신산업동향.hwp

2009방송통신산업동향.hwp 제 1 절인터넷포털 53) 목차 1. 163. 163. 166 2. 168 176 1. 시장동향 가. 시장규모. 2008 2009. PWC 2008 / 15.6% 599. 2009 1.9% 587. *, (02) 570-4112, byjung@kisdi.re.kr 163 제 3 장 인터넷콘텐츠 < 표 3-1> 세계온라인광고시장규모추이 ( :, %) 2007

More information

NCS : ERP(SAP) ERP(SAP) SW IT,. SW IT 01., 05., 06., 08., 15., , 05. SW IT,,,, SAP HR,,, 4,,, SAP ABAP HR SCHEMA, BSP,

NCS : ERP(SAP) ERP(SAP) SW IT,. SW IT 01., 05., 06., 08., 15., , 05. SW IT,,,, SAP HR,,, 4,,, SAP ABAP HR SCHEMA, BSP, NCS : ERP(SAP) ERP(SAP) 20. 01. 02. 02. SW 03. 03. IT,. SW IT 01., 05., 06., 08., 15., 21. 04., 05. SW IT,,,, SAP HR,,, 4,,, SAP ABAP HR SCHEMA, BSP, SQL,,,,,,,, www.ncs.go.kr NCS : IT IT 20. 01. 02. 02.

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 6, December, 30, 2016:275~289 Received: 2016/12/02, Accepted: 2016/12/22 Revised: 2016/12/20, Published: 2016/12/30 [ABSTRACT] SNS is used in various fields. Although

More information

ICT03_UX Guide DIP 1605

ICT03_UX Guide DIP 1605 ICT 서비스기획시리즈 01 모바일 UX 가이드라인 동준상. 넥스트플랫폼 / v1605 모바일 UX 가이드라인 ICT 서비스기획시리즈 01 2 ios 9, OS X Yosemite (SDK) ICT Product & Service Planning Essential ios 8, OS X Yosemite (SDK) ICT Product & Service Planning

More information

Solaris Express Developer Edition

Solaris Express Developer Edition Solaris Express Developer Edition : 2008 1 Solaris TM Express Developer Edition Solaris OS. Sun / Solaris, Java, Web 2.0,,. Developer Solaris Express Developer Edition System Requirements. 768MB. SPARC

More information

월간 SW 산업동향 ( ~ ) Ⅰ. Summary 1 Ⅱ SW 5 2. SW 7 Ⅲ Ⅳ. SW SW Ⅴ : Big Data, 38

월간 SW 산업동향 ( ~ ) Ⅰ. Summary 1 Ⅱ SW 5 2. SW 7 Ⅲ Ⅳ. SW SW Ⅴ : Big Data, 38 월간 SW 산업동향 (2011. 7. 1 ~ 2011. 7. 31) Ⅰ. Summary 1 Ⅱ. 4 1. SW 5 2. SW 7 Ⅲ. 10 1. 11 2. 14 Ⅳ. SW 17 1. 18 2. SW 27 3. 33 Ⅴ. 35 1. : 36 2. Big Data, 38 Ⅵ. SW 41 1. IT 2 42 2. 48 Ⅰ. Summary 2015 / 87 2015

More information

Assign an IP Address and Access the Video Stream - Installation Guide

Assign an IP Address and Access the Video Stream - Installation Guide 설치 안내서 IP 주소 할당 및 비디오 스트림에 액세스 책임 본 문서는 최대한 주의를 기울여 작성되었습니다. 잘못되거나 누락된 정보가 있는 경우 엑시스 지사로 알려 주시기 바랍니다. Axis Communications AB는 기술적 또는 인쇄상의 오류에 대해 책 임을 지지 않으며 사전 통지 없이 제품 및 설명서를 변경할 수 있습니다. Axis Communications

More information

Microsoft Word - 001.doc

Microsoft Word - 001.doc 碩 士 學 位 論 文 CRM을 활용한 마케팅 전략의 개선방안에 관한 연구 - 국내 외 기업 사례분석을 중심으로 - Study on a method to improve marketing straegies using CRM - Focusing on example analysis of the national and international enterprises -

More information

Microsoft PowerPoint - 알고리즘_1주차_2차시.pptx

Microsoft PowerPoint - 알고리즘_1주차_2차시.pptx Chapter 2 Secondary Storage and System Software References: 1. M. J. Folk and B. Zoellick, File Structures, Addison-Wesley. 목차 Disks Storage as a Hierarchy Buffer Management Flash Memory 영남대학교데이터베이스연구실

More information

빅데이터처리의핵심인 Hadoop 을오라클은어떻게지원하나요? Oracle Big Data Appliance Solution 01 빅데이터처리를위한전문솔루션이 Oracle Big Data Appliance 군요. Oracle Big Data Appliance 와함께라면더이

빅데이터처리의핵심인 Hadoop 을오라클은어떻게지원하나요? Oracle Big Data Appliance Solution 01 빅데이터처리를위한전문솔루션이 Oracle Big Data Appliance 군요. Oracle Big Data Appliance 와함께라면더이 Cover Story 03 28 Oracle Big Data Solution 01_Oracle Big Data Appliance 02_Oracle Big Data Connectors 03_Oracle Exdata In-Memory Database Machine 04_Oracle Endeca Information Discovery 05_Oracle Event

More information