초대형 유한요소 해석결과의 효율적 후처리를 위한 후 분류 기반 병렬 가시화 알고리듬의 개발

Size: px
Start display at page:

Download "초대형 유한요소 해석결과의 효율적 후처리를 위한 후 분류 기반 병렬 가시화 알고리듬의 개발"

Transcription

1

2

3

4 .,.,..,.,. - i -

5 Abstract The necessity of large-scale finite element analysis is increased according to the request of reliable design of aerospace structures and highly accurate analysis. To satisfy the need for large-scale finite element analysis, various parallel computing algorithms are actively developing, where HPC power can be utilized intensively. However researches on efficient parallel postprocessing algorithms for large-scale analysis data are not carried out sufficiently. Therefore, in this paper a parallel visualization algorithm is proposed for efficient visualization of the massive data generated from large-scale parallel finite element analysis through investigating the characteristics of parallel rendering methods. The proposed parallel visualization algorithm is designed to be highly compatible with the characteristics of domain-wise computation in parallel finite element analysis by using sort-last sparse approach. And virtual communication network tableau algorithm is proposed to decrease the parallel visualization overhead on image composition step in sort-last parallel rendering. Additionally, data compression parallel visualization algorithm is proposed to enhance the performance of parallel visualization in the low-speed network environment such as GRID computing environment. Several benchmarking tests are carried out by using the developed in-house software, and the performance of the proposed algorithms are closely investigated. - ii -

6 ⅰ Abstract ⅱ ⅲ ⅵ ⅶ ⅻ iii -

7 ( ) ( ) ( ) (LS-Dyna ) (ATLAS V500 ) iv -

8 101 A. nxview 101 A A A A A A A A.8 nxview 114 B. MPI 115 C. 119 C.1 Psychovisual Redundancy 119 C.2 Bit-plane decomposition 124 D. / IPSAP v -

9 i N H W H j i W j i PH i PW i T X i max X i min Y i max Y i min Γ PDSL VCNT : i : : : : i j : i j : i : i : : i X : i X : i Y : i Y : : Pre-Detection Sort-Last : Virtual Communication Network Tableau - vi -

10 Fig. 1 Graphic pipeline using sort-first algorithm 4 Fig. 2 A concept of sort-first algorithm 4 Fig. 3 Graphic pipeline using sort-last algorithm 6 Fig. 4 A concept of sort-last algorithm 6 Fig. 5 Sort-first is connected to the parallel solver 7 Fig. 6 Sort-last is connected to the parallel solver 7 Fig. 7 The example of parallel visualization [ Pantheon ] 9 Fig. 8 The result of time on the parallel visualization 10 Fig. 9 The result of time ratio on the parallel overhead 11 Fig. 10 The chart of visualization 13 Fig. 11 Finite Element Model A and B for the rendering test using sort-last 14 Fig. 12 The rendering time result according to viewpoint 14 Fig. 13 A example of parallel visualization using 4 visualization cluster node 16 Fig. 14 Sort-Last full method 17 Fig. 15 Sort-Last sparse method 19 Fig. 16 Pre-Detection processing 21 Fig. 17 Pre-Detection Sort-Last sparse algorithm 22 Fig. 18 The chart of PDSL 22 Fig. 19 Speed-up result of FE analysis data on the FE model Pantheon 25 Fig. 20 Parallel efficiency result of FE analysis data on the FE model Pantheon 26 Fig. 21 The time result of depth comparison on the Sort-Last algorithms 27 Fig. 22 The result of time ratio on the Sort-Last full algorithm 28 Fig. 23 The result of time ratio on the Pre-Detection Sort-Last algorithm 28 - vii -

11 Fig. 24 Binary tree communication structure 31 Fig. 25 The network communication time analysis between pipeline and binary tree communication algorithms 32 Fig. 26 The characteristic of binary tree structural communication algorithm 33 Fig. 27 Inefficiency of binary tree communication structure on parallel visualization using synchronized user input signal 34 Fig. 28 A concept of Virtual Communication Network Tableau 37 Fig. 29 Screen detection and division using Pre-Detection information 39 Fig. 30 Examples of screen division 40 Fig. 31 Virtual Communication Network Tableau 41 Fig. 32 A example of intersection region between visualization node 4 and virtual screen 3 43 Fig. 33 Virtual Communication Network Tableau using weight factor as the size of network communication data 44 Fig. 34 Minimization of network communication on Virtual Communication Network Tableau using weight factor 46 Fig. 35 Chart of Virtual Communication Network Tableau 48 Fig. 36 Speed-up result of parallel visualization algorithms according to network communication structure 55 Fig. 37 Parallel efficiency result of parallel visualization algorithms according to network communication structure 56 Fig. 38 Depth comparison time result on Pre-Detection Sort-Last algorithm 57 Fig. 39 Network communication time result on Pre-Detection Sort-Last algorithm 58 Fig. 40 Parallel overhead time result on Pre-Detection Sort-Last algorithm 59 Fig. 41 The result of time ratio using Virtual Communication Network Tableau on Pre-Detection Sort-Last algorithm 60 - viii -

12 Fig. 42 The others of parallel overhead using Virtual Communication Network Tableau on Pre-Detection Sort-Last algorithm 61 Fig. 43 The result of time ratio according to network communication structure on Pre-Detection Sort-Last algorithm 62 Fig. 44 The chart of PDSL using data compression 66 Fig. 45 One Dimensional Run Length data encoding and decoding 67 Fig. 46 Original analysis data image and IGS data image 68 Fig. 47 RGB value data 69 Fig. 48 Finite Element Model ( HEXA element model ) 70 Fig. 49 The result of time according to compression algorithms 70 Fig. 50 Time analysis of One-Dimensional Run Length using Virtual Communication Network Tableau and PDSL 71 Fig. 51 Time analysis of One-Dimensional Run Length using binary-tree structure 72 Fig. 52 Parallel overhead result of binary-tree communication structure on 1Gbps LAN 72 Fig. 53 Parallel graining 74 Fig. 54 The chart of binary-tree communication structure using One-Dimensional Run Length encoding and decoding 75 Fig. 55 Speed-up result of binary-tree communication structure on 100Mbps LAN 76 Fig. 56 Network maximum data analysis on binary-tree communication structure 77 Fig. 57 The chart of Virtual Communication Network Tableau using Compression algorithm 79 Fig. 58 Time result of parallel visualization algorithms based on 100Mbps LAN 80 - ix -

13 Fig. 59 Parallel efficiency result of parallel visualization algorithm based on 100Mbps LAN using Virtual Communication Network Tableau 81 Fig. 60 The amount of network data according to algorithms on 100Mbps LAN 82 Fig. 61 Network communication time result according to algorithms on 100Mbps LAN 82 Fig. 62 Time analysis of Virtual Communication Network Tableau on 100Mbps LAN 84 Fig. 63 Finite Element model example 1 86 Fig. 64 Speed-up result of example 1 86 Fig. 65 The result of time ratio according to network communication structure on example 1 87 Fig. 66 Finite Element model example 2 88 Fig. 67 The result of example 2 using onboard graphic clusters 88 Fig. 68 The time result of example 2 using Geforce FX Fig. 69 Parallel overhead result on parallel visualization algorithms and network communication algorithms in example 2 90 Fig. 70 Time analysis using binary tree network communication on PDSL in example 2 91 Fig. 71 Time analysis using Virtual Communication Network Tableau on PDSL in example 2 91 Fig. 72 Finite Element model example 3 93 Fig. 73 The time result of example 3 94 Fig. 74 The result of time ratio according to network communication structure on example 3 94 Fig. A Fig. A x -

14 Fig. A Fig. A Fig. A Fig. A Fig. A Fig. A Fig. B Fig. C.1 Image resampling 119 Fig. C.2 Uniform quantization to 16 levels 120 Fig. C.3 IGS quantization to 16 levels 121 Fig. C.4 24bit Original RGB Image 122 Fig. C.5 Uniform quantization image 123 Fig. C.6 IGS quantization image 123 Fig. C.7 One dimensional run-length code with Bit-plane decomposition 124 Fig. C.8 Bit-plane decomposition 126 Fig. C.9 Image quantization and Bit-plane decomposition 128 Fig. D Fig. D.2 IPSAP 130 Fig. D.3 Perspective mode 131 Fig. D.4 Orthogonal mode 131 Fig. D Fig. D.6 (5 ) 132 Fig. D Fig. D Fig. D.9 ( ) 134 Fig. D xi -

15 Table Table Table 3. The analysis of sort-last full method 18 Table 4. The analysis of sort-last sparse method 20 Table 5. The analysis of Pre-Detection Sort-last algorithm 23 Table 6. MPI non-blocking mode communication using C++ 42 Table 7. Step #1 on Virtual Communication Network Tableau using C++ 49 Table 8. Step #2 on Virtual Communication Network Tableau using C++ 49 Table 9. Step #3 on Virtual Communication Network Tableau using C++ 50 Table 10. Step #4 on Virtual Communication Network Tableau using C++ 51 Table 11. Step #5 on Virtual Communication Network Tableau using C++ 52 Table 12. Step #6 on Virtual Communication Network Tableau using C++ 53 Table Table. A Table. A Code A.1 opengl 111 Code A Code A Code B Code B.2 Data stream 118 Table. C.1 IGS quantization to 16 levels xii -

16 1.. HPC(High Performance Computing), ASCI(Accelerated Strategic Computing Initiative) [1] ASCI Q, ASCI White, ASCI Red, ASCI Blue-Pacific, Salinas[1]. Salinas ASCI, ASCI., GeoFEM[2,3], CPU Pegasus[4,5], 1000 IPSAP[5],.,,, (High Performance Computing). 500 ( 208., - 1 -

17 ,,,. GeoFEM 2003 [3],,.,,.,, Salinas/GeoFEM.,. 3D CAD/CAM, Digital Mockup, VP(Virtual Prototyping)/VM(Virtual Manufacturing) / (Virtual Development),. Aerospace America [6,7],,,

18 ASCI, Salina, GeoFEM, wiregl[8]. wiregl CFD(Computational Fluid Dynamics), (Sort-first algorithm). wiregl,.,.,,,,.,

19 [9] (Sort-first) (Sort-last), (Sort-last full) (Sort-last sparse). 1. Fig. 1 Graphic pipeline using sort-first algorithm,,. 2. Fig. 2 A concept of sort-first algorithm - 4 -

20 2 (Load balancing). 2,,.,,.,, [10],.. [11]., 3..,, - 5 -

21 ,. 4. Fig. 3 Graphic pipeline using sort-last algorithm Fig. 4 A concept of sort-last algorithm..,.. (Parallel overhead),

22 2.2,. 5 1, 6 5. Fig. 5 Sort-first is connected to the parallel solver Fig. 6 Sort-last is connected to the parallel solver 5. 6,.[12] 6-7 -

23 ,.,. (Network bandwidth) [9],.,., (Pre-Detection Sort-Last sparse),

24 2.3,.,. 8 7 Pantheon ,157 1,329, Fig. 7 The example of parallel visualization [ Pantheon ] - 9 -

25 병렬화시간분석 [ Sort Last - full ] 랜더링시간후분류깊이비교시간 네트워크통신시간병렬화를위한기타시간 가시화노드 [ 대수 ] 12 대 1 대 12 = 42.9 % 시간 [ 초 ] Fig. 8 The result of time on the parallel visualization 8 4 1Gbps., 7,. 7 4,, %. 8 12,, (Parallel overhead)

26 . 9. 병렬화시간비율분석 [ Sort Last - full ] 랜더링시간후분류깊이비교시간 네트워크통신시간병렬화를위한기타시간 가시화노드 [ 대수 ] 12 대 1 대 % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 시간분포 [%] Fig. 9 The result of time ratio on the parallel overhead , 43.4%, 24.8%, 23.6%, 7.9%..,.. 2,,

27 (Pre-Detection Sort-Last sparse algorithm, PDSL), (Virtual Communication Network Tableau, VCNT),

28 2.4., 10. Fig. 10 The chart of visualization 10..,. B,

29 ,. 3., 10,.[12] 12 11,. The Side view The Front view Finite Element Model A The Side view The Front view Finite Element Model B Fig. 11 Finite Element Model A and B for the rendering test using sort-last 모델정면묘사 모델측면묘사 time [sec] FE model A FE model B Fig. 12 The rendering time result according to viewpoint

30 12,.., , 24.,,. 1,2. Table 1. Cluster CPU C P U P4 2.8GHz Memory 1 GByte / node Graphic card Geforce FX 5700 Network card 1 Gbps / node Switching HUB 1Gbps HUB / 100Mbps HUB Table 2. Operating System Linux Kernel version hl compiler version gcc-3.2 QT lam mpi 7.0 opengl 1.3 (glut )

31 (Sort-Last full) (Sort-Last sparse) 13 4 (CPU 4) Fig. 13 A example of parallel visualization using 4 visualization cluster node 2 1 (Sort-last full method) (Sort-last sparse method)

32 .. 14,..,,, Pixel merging [11],. Fig. 14 Sort-Last full method

33 , 1, 1,2. (Sort-last full method) N (CPU N). Table 3. The analysis of sort-last full method : Σi N ( Γ W H ) i : W H N Γ W H : [CPU ] : [RGBA, Z-buffer depth] : : 15,. 15, 1, 1,2. 15,

34 ,. Fig. 15 Sort-Last sparse method (Sort-last sparse) N (CPU N)

35 Table 4. The analysis of sort-last sparse method : Σi N ( Γ W i H i ) i : W i H i N : [CPU ] Γ : [RGBA, Z-buffer depth] W : H : X i ma x : i x X i min : i x Y i max : i y Y i min : i y W i : i X i max - X i min = W i W H i : i Y i max - Y i min = H i H.,,., (Pre-Detection Sort-Last sparse algorithm)

36 3.2 (Pre-Detection Sort-Last sparse Algorithm, PDSL) 16,, Pixel merging 14,15,.[13] X i min X i ma x Y i max PX k min PX k ma x Y i min PY k ma x PY k min X j min X j max Y j max Y j min PXma k x = min[ Xmax, i Xmax j ] PXmin k = max[ Xmin, i Xmin j ] PYma k x = min[ Ymax, i Ymax j ] PYmin k = max[ Ymin, i Ymin j ] : x : x : y : y Fig. 16 Pre-Detection processing

37 17. Fig. 17 Pre-Detection Sort-Last sparse algorithm 18. Fig. 18 The chart of PDSL

38 10,... Table 5. The analysis of Pre-Detection Sort-last algorithm : Σi N ( Γ W i H i ) i : PW i PH i N Γ : : [RGBA, Z-buffer depth] W : H : X i ma x : i x X i min : i x Y i max : i y Ymin i : i y W i : i X i max - X i min = W i W H i : i Y i max - Y i min = H i H PW k : min[x i max,x j max ] - max[x i min,x j min ] PW k W k W PH k : min[y i max,y j max] - max[y i min,y j min ] PH k H k H

39 . = PDSL = SL-sparse SL-full PDSL SL-sparse SL-full (PDSL)

40 ,2. 7 Pantheon, Speed-up, 20. 병렬가시화 Speed-up 결과 전체후분류기법 선탐색부분후분류기법 부분후분류기법 Ideal Speed up 가시화노드 Fig. 19 Speed-up result of FE analysis data on the FE model Pantheon

41 병렬가시화병렬효율측정결과 120 전체후분류기법 선탐색부분후분류기법 부분후분류기법 Ideal 100 효율 [%] 가시화노드 [ 대수 ] Fig. 20 Parallel efficiency result of FE analysis data on the FE model Pantheon 20, 42.9%, 56.2% 59.6%., 7,.,. 21,

42 . 시간 [ 초 ] 병렬가시화알고리듬의깊이비교연산시간결과비교 전체후분류기법부분후분류기법선탐색부분후분류기법 가시화노드 [ 대수 ] Fig. 21 The time result of depth comparison on the Sort-Last algorithms 22, 23., 22 (Parallel overhead) 57.1%. 23, 40.4%

43 전체후분류기법의병렬화시간비율분석 랜더링시간후분류깊이비교시간 네트워크통신시간병렬화를위한기타시간 가시화노드 [ 대수 ] % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 시간비율 [%] Fig. 22 The result of time ratio on the Sort-Last full algorithm 선탐색부분후분류기법의병렬화시간비율분석 랜더링시간후분류깊이비교시간 네트워크통신시간병렬화를위한기타시간 가시화노드 [ 대수 ] % 20% 40% 60% 80% 100% 시간비율 [%] Fig. 23 The result of time ratio on the Pre-Detection Sort-Last algorithm

44 4.,.,. 8,9,. 3,.,., (Binary structural communication) (Structural communication), (Virtual Communication Network Tableau) (Non-structural communication).,

45 4.1,,,.,

46 4.1.1 ( ) [12,13] Fig. 24 Binary tree communication structure

47 N,,. T : N M = min{ x x=2 a N, a=1,2,3, } : T log 2 (M) 25,. Fig. 25 The network communication time analysis between pipeline and binary tree communication algorithms,. Tlog 2 M

48 26. 이진트리구조특성 [ Sort Last - full ] 네트워크통신시간깊이비교시간병렬화를위한연산시간 시간 [ 초 ] 가시화노드 [ 대수 ] Fig. 26 The characteristic of binary tree structural communication algorithm 26, 3, 5, 9.,.,.,, 23, 3,

49 5, 9., 24., 27. Fig. 27 Inefficiency of binary tree communication structure on parallel visualization using synchronized user input signal 27, MPI (Non-Blocking),

50 ., (Load balancing),., 1.2 (Non-structural communication) (Virtual Communication Network Tableau)

51 4.1.2 ( ) 1.1,. (Virtual Communication Network Tableau). (Non-structural communication) ,,.. 27,,.,,. 28,,

52 Fig. 28 A concept of Virtual Communication Network Tableau,,., ,

53 . 28, ,.. 1?,? 2 1,? 3? (Non-Blocking)

54 29. Fig. 29 Screen detection and division using Pre-Detection information

55 , 30. Fig. 30 Examples of screen division. 2..,

56 ., ,. (Virtual Communication Tableau),. Fig. 31 Virtual Communication Network Tableau

57 , (Dead-lock) , 1., C++ MPI (Non-Blocking). MPI::Request send; MPI::Request recv; Table 6. MPI non-blocking mode communication using C++ send=mpi::comm_world.isend(,,,, ); recv=mpi::comm_world.irecv(,,,, ); send.wait(); recv.wait(); 28 MPI (Non-Blocking) ,

58 3... (1),(2),(3) 3. Γ W j H j (1) Γ W j i H j i (2) Γ Wi j Hi j (3) i =, j = Fig. 32 A example of intersection region between visualization node 4 and virtual screen

59 3. (3) (3) Fig. 33 Virtual Communication Network Tableau using weight factor as the size of network communication data

60 33,. (Virtual Communication Network Tableau). 1 2,. 1 1,.,. 34, 33.,

61 Fig. 34 Minimization of network communication on Virtual Communication Network Tableau using weight factor , 33 1 (4), 34 3 (5). (4) (5) (Screen 2) (Screen 3) + 202(Screen 4) = (4) 2048(Screen 1) (Screen 2) + 202(Screen 4) = (5)

62 . 34,.... (Non-structural communication) , , 3 30,

63 Fig. 35 Chart of Virtual Communication Network Tableau

64 . 28, 9. C MPI Allgather 29. Table 7. Step #1 on Virtual Communication Network Tableau using C++ unsigned short int PD_inf[np][4]; // Total PD information unsigned short int my_pos[4]; // Temporary memory for data communication for (i=0 ; i<4 ; i++) my_pos[i] = PD[i]; // Pre-Detection information each node MPI::COMM_WORLD.Allgather(my_pos, 4, MPI::UNSIGNED_SHORT, PD_inf, 4, MPI::UNSIGNED_SHORT); Table 8. Step #2 on Virtual Communication Network Tableau using C++ unsigned short int bp[4]; // Maximum buffer pixel position bp[0] = width(); // Initial buffer value for x min bp[1] = 0; // Initial buffer value for x max bp[2] = height(); // Initial buffer value for y min bp[3] = 0; // Initial buffer value for y max for (i=0 ; i<np ; i++) for (j=0 ; j<4 ; j++) { if ((j==0 j==2) && (PD_inf[i][j] <= bp[j])) bp[j] = PD_inf[i][j]; // Min if ((j==1 j==3) && (PD_inf[i][j] >= bp[j])) bp[j] = PD_inf[i][j]; // Max }

65 9 35., Table 9. Step #3 on Virtual Communication Network Tableau using C++ unsigned short int pbp[np][4]; // Total division screen information para_range(bp[2], bp[3], np, my_rank, bp+2, bp+3); // Division screen MPI::COMM_WORLD.Allgather(bp, 4, MPI::UNSIGNED_SHORT, pbp, 4, MPI::UNSIGNED_SHORT); // Gathering the screen information // Additional function for screen division void para_range( unsigned short int n1, unsigned short int n2, int nprocs, int myrank, unsigned short int *ista, unsigned short int *iend) { int iwork1, iwork2; iwork1 = (n2-n1+1) / nprocs; iwork2 = (n2-n1+1) % nprocs; *ista = myrank*iwork1 + n1 + min(myrank, iwork2); *iend = *ista + iwork1-1; if(iwork2 > myrank) *iend = *iend + 1; } 9 [14],. 9 /. Allgather

66 .,. Table 10. Step #4 on Virtual Communication Network Tableau using C++ unsigned short int sbis[np][4]; // send bi-section result unsigned int f_srrc[np]; // Send size information for (i=0 ; i<np ; i++) f_srrc[i] = bisection(pd_inf[my_rank], pbp[i], sbis[i]); int PostProcessor::bisection(unsigned short int sec_a[4], unsigned short int sec_b[4], unsigned short int output[4]) { output[0] = width(); // Initial output value x min output[1] = 0; // Initial output value x max output[2] = height(); // Initial output value y min output[3] = 0; // Initial output value y max if ((sec_b[0] <= sec_a[0]) && (sec_a[0] <= sec_b[1])) output[0] = sec_a[0]; // x min if ((sec_a[0] <= sec_b[0]) && (sec_b[0] <= sec_a[1])) output[0] = sec_b[0]; // x min if (output[0] == width()) // There is NOT intersection region. { output[0] = 0; output[2] = 0; return 0; } if ((sec_b[2] <= sec_a[2]) && (sec_a[2] <= sec_b[3])) output[2] = sec_a[2]; // y min if ((sec_a[2] <= sec_b[2]) && (sec_b[2] <= sec_a[3])) output[2] = sec_b[2]; // y min if (output[2] == height()) // There is NOT intersection region. { output[0] = 0; output[2] = 0; return 0; } if ((sec_b[0] <= sec_a[1]) && (sec_a[1] <= sec_b[1])) output[1] = sec_a[1]; // x max if ((sec_a[0] <= sec_b[1]) && (sec_b[1] <= sec_a[1])) output[1] = sec_b[1]; // x max if ((sec_b[2] <= sec_a[3]) && (sec_a[3] <= sec_b[3])) output[3] = sec_a[3]; // y max if ((sec_a[2] <= sec_b[3]) && (sec_b[3] <= sec_a[3])) output[3] = sec_b[3]; // y max return ((output[1]-output[0]+1)*(output[3]-output[2]+1)); // Total communication data }

67 32 10, f_srrc. f_srrc, (f_srrc). Table 11. Step #5 on Virtual Communication Network Tableau using C++ unsigned int check_srrc[np][np]; MPI::COMM_WORLD.Allgather(f_SRRC,np,MPI::UNSIGNED,check_SRRC,np,MPI::U NSIGNED); int send_sum; int recv_sum; int send_node[np]; int recv_node[np]; // Total send count // Total recv count // Send node information // Recv node information send_sum = 0; recv_sum = 0; for (i=0 ; i<np ; i++) // Check Send node & Recv node { if (i!= my_rank) // do NOT need to send/recv for itself-node { if (check_srrc[my_rank][i]!= 0) send_node[send_sum++] = i; if (check_srrc[i][my_rank]!= 0) recv_node[recv_sum++] = i; // Row-major // Column-major } } 11,.,

68 12. Table 12. Step #6 on Virtual Communication Network Tableau using C++ float ** trd; // Temporary recv depth buffer unsigned char ** trp; // Temporary recv pixel buffer unsigned short int rbis[recv_sum][4]; // Recv bi-section information int b_size; if (recv_sum!= 0) { trd = new float * [recv_sum]; // Temporary recv depth per Recv node trp = new unsigned char * [recv_sum]; // Temporary recv pixel per Recv node } for (i=0 ; i<recv_sum ; i++) // Recv information { b_size = bisection(pd_inf[recv_node[i]], pbp[sn], rbis[i]); trd[i] = new float [b_size]; trp[i] = new unsigned char [b_size*pix]; } int bs[2]; // buffer size information unsigned char * buffer_pixel; // pixel buffer float * buffer_depth; // depth buffer bs[0] = pbp[sn][1] - pbp[sn][0] + 1; // Local buffer width bs[1] = pbp[sn][3] - pbp[sn][2] + 1; // Local buffer height buffer_pixel = new unsigned char [ bs[0]*bs[1]*pix ]; buffer_depth = new float [ bs[0]*bs[1] ]; for (i=pbp[sn][2] ; i<=pbp[sn][3] ; i++) // Y for (j=pbp[sn][0] ; j<=pbp[sn][1] ; j++) // X { if 자기자신의가상화면데이터로초기화 else 깊이값은 1로픽셀값은 0 혹은 1로초기화 } 11., 6 (Non-blocking)

69 ,

70 , 2, 7 273,157 1,329, Speed-up. 병렬가시화 Speed-up 결과 전체후분류기법 부분후분류기법 선탐색부분후분류기법 선탐색부분후분류기법 + 가상통신망구성기법 Ideal Speed up 가시화노드 Fig. 36 Speed-up result of parallel visualization algorithms according to network communication structure,

71 , 병렬가시화병렬효율측정결과 효율 [%] 전체후분류기법부분후분류기법선탐색부분후분류기법선탐색부분후분류기법 + 가상통신망구성기법 Ideal 가시화노드 [ 대수 ] Fig. 37 Parallel efficiency result of parallel visualization algorithms according to network communication structure,, 10.4%. 1.2,

72 . 23, 30%. 38,. 선탐색부분후분류기법의통신기법에따른깊이비교연산시간의비교 이진트리통신구조 가상통신망통신기법 시간 [ 초 ] 가시화노드 [ 대수 ] Fig. 38 Depth comparison time result on Pre-Detection Sort-Last algorithm ,

73 39. 선탐색부분후분류기법의통신기법에따른통신시간측정결과 이진트리통신구조 가상통신망통신기법 시간 [ 초 ] 가시화노드 [ 대수 ] Fig. 39 Network communication time result on Pre-Detection Sort-Last algorithm ,,. 12,.,

74 . 40. 선탐색부분후분류기법의통신기법에따른병렬화연산시간비교 이진트리통신구조 가상통신망기법 시간 [ 초 ] 가시화노드 [ 대수 ] Fig. 40 Parallel overhead time result on Pre-Detection Sort-Last algorithm ,,

75 . 가상통신망기법을이용한선탐색부분후분류기법의병렬화시간비율분석 랜더링시간후분류깊이비교시간 네트워크통신시간병렬화를위한기타시간 가시화노드 [ 대수 ] % 20% 40% 60% 80% 100% 시간비율 [%] Fig. 41 The result of time ratio using Virtual Communication Network Tableau on Pre-Detection Sort-Last algorithm 12, 73.6%. 1.4%.,.,. (Access time)

76 ,. 가상통신망행렬구조의병렬연산을위한기타시간측정 그래픽버퍼읽기시간버퍼삭제시간 버퍼설정시간그래픽버퍼쓰기시간 시간 [ 초 ] 가시화노드 [ 대수 ] Fig. 42 The others of parallel overhead using Virtual Communication Network Tableau on Pre-Detection Sort-Last algorithm 2..,. 43,

77 . 선탐색부분후분류기법의통신구조에따른병렬화시간비율분석 랜더링시간후분류깊이비교시간 네트워크통신시간병렬화를위한기타시간 가상통신망기법 통신구조 이진트리구조 0% 20% 40% 60% 80% 100% 시간비율 [%] Fig. 43 The result of time ratio according to network communication structure on Pre-Detection Sort-Last algorithm,.. 23,

78 ,.,.,.,

79 4.2 1,. 1Gbps, 100Mbps 10Mbps., [15]. NASA IPG(Information Power Grid)[16], EU DataGrid Project[17].,,., , 25.6Mbit 24FPS(Frame per second, Hz ) 614Mbit

80 1Gbit Lan Cable category 5., 100Mbps 10Mbps. 24FPS,. Table RGB( 1byte 3) = 1.37Mbyte (4byte) = 1.83Mbyte = 3.2Mbyte = 25.6Mbit 24 FPS(Frame per second), ( ) 24 = 76.8 Mbyte/second = 614Mbit/second ,, Encoding Decoding,., (Load balancing)

81 . Fig. 44 The chart of PDSL using data compression

82 ,, Encoding Decoding. 2 4,. Encoding Decoding. Encoding, Decoding., Encoding Decoding. 45 One-Dimensional Run Length Encoding / Decoding [18]. Encoding Decoding. Encoding Decoding. One-Dimensional Run Length Encoding/Decoding. Fig. 45 One Dimensional Run Length data encoding and decoding

83 45,. RGB 8bit(1byte), 32bit(4byte) Red.. RGB. Bit-plane, Encoding Decoding RGB. Bit-plane C. Encoding/Decoding, One-Dimensional Run Length Uniform quantization IGS(Improved Gray Scale) quantization. quantization RGB 8bit, 4bit RGB, 46. Original analysis data image IGS data image Fig. 46 Original analysis data image and IGS data image

84 Uniform quantization IGS quantization C. 47 RGB. Original Image 256 Level Uniform quantization 16 Level Image IGS quantization 16 Level Image RGB R G B Fig. 47 RGB value data

85 quantization Encoding Decoding One-Dimensional Run Length(ODRL) Uniform / IGS quantization. 100Mbps. Fig. 48 Finite Element Model ( HEXA element model ) : PDSL + ODRL 2 : PDSL + ODRL + IGS 3 : PDSL + ODRL + Uniform Time [second] PDSL Algorithm Fig. 49 The result of time according to compression algorithms

86 , Encoding/Decoding., Encoding Decoding. 50 One-Dimensional Run Length Encoding/Decoding. 1Gbps. 2.5 선탐색부분후분류기법에대한 1Gbps LAN 환경하에서의압축알고리듬적용된네트워크시간측정 ( 가상통신망행렬구조 ) 네트워크통신시간 Encoding 시간 Decoding 시간 2 시간 [ 초 ] 가시화노드 [ 대수 ] Fig. 50 Time analysis of One-Dimensional Run Length using Virtual Communication Network Tableau and PDSL 39,. Encoding Decoding

87 선탐색부분후분류기법에대한 1Gbps LAN 환경하에서의압축알고리듬적용된네트워크시간측정 ( 이진트리통신구조 ) 네트워크통신시간 Encoding 시간 Decoding 시간 시간 [ 초 ] 가시화노드 [ 대수 ] Fig. 51 Time analysis of One-Dimensional Run Length using binary-tree structure 1Gbps LAN 환경하에서의알고리듬에따른병렬연산시간비교 ( 이진트리통신구조 ) 선탐색부분후분류기법 선탐색부분후분류기법 + 압축알고리듬 6 5 시간 [ 초 ] 가시화노드 [ 대수 ] Fig. 52 Parallel overhead result of binary-tree communication structure on 1Gbps LAN

88 1Gbps 39, Mbps

89 Fine-grained [19]. Encoding Decoding. 1.1, Fine-grained. Fig. 53 Parallel graining

90 54. Fig. 54 The chart of binary-tree communication structure using One-Dimensional Run Length encoding and decoding 54 1 Encoding 2 Decoding, 1 2 Encoding (Load balancing).[20] Fine-grained. 2.3 Coarse-grained., Fine-grained

91 2.1, 1Gbps Encoding/Decoding. 100Mbps Mbps 네트워크환경하에서의이진트리통신구조의알고리듬에따른 Speed-up 결과 선탐색부분후분류기법 선탐색부분후분류기법 + 압축기법 Ideal Speed-up 가시화노드 [ 대수 ] Fig. 55 Speed-up result of binary-tree communication structure on 100Mbps LAN 100Mbps 14%.. 56,. 32%

92 100Mbps 네트워크환경하에서의이진트리통신구조를이용한각알고리듬의최대통신량분석결과 선탐색부분후분류기법 선탐색부분후분류기법 + 압축기법 최대통신량 [Mbits] 가시화노드 [ 대수 ] Fig. 56 Network maximum data analysis on binary-tree communication structure

93 ,,. 57., MPI (Non-blocking), Fine-grained 53 Coarse-grained. 57,. RGB, RGB

94 Fig. 57 The chart of Virtual Communication Network Tableau using Compression algorithm

95 100Mbps Mbps LAN 환경하에서의알고리듬시간측정 전체후분류기법부분후분류기법선탐색부분후분류기법선탐색부분후분류기법 + 압축기법선탐색부분후분류기법 + 가상통신망행렬기법선탐색부분후분류기법 + 가상통신망행렬기법 + 압축기법 시간 [ 초 ] 가시화노드 [ 대수 ] Fig. 58 Time result of parallel visualization algorithms based on 100Mbps LAN,. 100Mbps.. 59,

96 100Mbps LAN 환경하에서의알고리듬에따른병렬효율측정 선탐색부분후분류기법선탐색부분후분류기법 + 압축기법선탐색부분후분류기법 + 가상통신망행렬기법선탐색부분후분류기법 + 가상통신망행렬기법 + 압축기법 병렬효율 [%] 가시화노드 [ 대수 ] Fig. 59 Parallel efficiency result of parallel visualization algorithm based on 100Mbps LAN using Virtual Communication Network Tableau 27% ,

97 전송량 [Mbits] Mbps LAN 환경하에서의알고리듬에따른최대데이터전송량측정결과 선탐색부분후분류기법선탐색부분후분류기법 + 압축기법선탐색부분후분류기법 + 가상통신망행렬구조선탐색부분후분류기법 + 가상통신망행렬구조 + 압축기법 가시화노드 [ 대수 ] Fig. 60 The amount of network data according to algorithms on 100Mbps LAN 100Mbps LAN 환경하에서의네트워크통신시간측정결과 선탐색부분후분류기법선탐색부분후분류기법 + 압축기법선탐색부분후분류기법 + 가상통신망행렬구조선탐색부분후분류기법 + 가상통신망행렬구조 + 압축기법 시간 [ 초 ] 가시화노드 [ 대수 ] Fig. 61 Network communication time result according to algorithms on 100Mbps LAN

98 60 61,,.. (branch), 35 ( 34 7 ) ( 34 9 ),,., 100Mbps.,. 1.2,

99 Mbps LAN 환경하에서의압축기법이적용된병렬알고리듬의병렬화성능분석 ( 가상통신망행렬구조 ) 랜더링시간 Encoding 시간후분류깊이비교시간 네트워크통신시간 Decoding 시간병렬화를위한기타시간 선탐색부분후분 + 압축기법알고리듬류기법선탐색부분후분류기법 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100 % 시간비율 [%] Fig. 62 Time analysis of Virtual Communication Network Tableau on 100Mbps LAN, Encoding/Decoding.., Encoding/Decoding Mbps 10Mbps

100 5. 7 Pantheon,

101 5.1 1 ( ) 63 1,000,000. Fig. 63 Finite Element model example Gbps 네트워크환경에서의병렬 Speed-up 측정결과 1,000,000 HEXA 유한요소모델 전체후분류기법부분후분류기법선탐색부분후분류기법선탐색부분후분류기법 + 가상통신망행렬구조 Ideal 시간 [ 초 ] 가시화노드 [ 대수 ] Fig. 64 Speed-up result of example

102 63, % Gbps 네트워크환경에서의선탐색부분후분류기법의알고리듬에따른시간비율 1,000,000 HEXA 유한요소모델 랜더링시간깊이비교연산시간 네트워크통신시간병렬화를위한기타시간 가상통신망행렬구조 알고리듬 이진트리통신구조 0% 20% 40% 60% 80% 100% 시간 [ 초 ] Fig. 65 The result of time ratio according to network communication structure on example

103 5.2 2 ( ) 66. Fig. 66 Finite Element model example 2 Pentium Ⅳ 2.4 GHz 8. Fig. 67 The result of example 2 using onboard graphic clusters %

104 Geforce FX Gbps 네트워크환경에서의가시화시간측정 LS-Dyna 유한요소모델 전체후분류기법부분후분류기법선탐색부분후분류기법선탐색부분후분류기법 + 가상통신망행렬구조 시간 [ 초 ] 가시화노드 [ 대수 ] Fig. 68 The time result of example 2 using Geforce FX , 12% , ,

105 1Gbps 네트워크환경에서의병렬화를위한추가연산시간비교 LS-Dyna 유한요소모델 전체후분류기법부분후분류기법선탐색부분후분류기법선탐색부분후분류기법 + 가상통신망행렬구조 시간 [ 초 ] 가시화노드 [ 대수 ] Fig. 69 Parallel overhead result on parallel visualization algorithms and network communication algorithms in example ,,.,.. 70,

106 선탐색부분후분류기법을이용한이진트리통신구조에서의시간분석 LS-Dyna 유한요소모델 랜더링시간깊이비교연산시간 네트워크통신시간병렬화를위한기타시간 시간 [ 초 ] 가시화노드 [ 대수 ] Fig. 70 Time analysis using binary tree network communication on PDSL in example 2 선탐색부분후분류기법을이용한가상통신망행렬구조에서의시간분석 LS-Dyna 유한요소모델 랜더링시간깊이비교연산시간 네트워크통신시간병렬화를위한기타시간 시간 [ 초 ] 가시화노드 [ 대수 ] Fig. 71 Time analysis using Virtual Communication Network Tableau on PDSL in example

107 , ,. 4 1,

108 5.3 3 (ATLAS V500 ) 72 ATLAS V ATLAS V500 Finite Element model Node 400,517 Element(Solid) 255,550 Fig. 72 Finite Element model example 3 73,.,

109 1Gbps 네트워크환경에서의가시화시간측정 ATLAS V500 발사체 전체후분류기법부분후분류기법선탐색부분후분류기법선탐색부분후분류기법 + 가상통신망행렬구조 시간 [ 초 ] 가시화노드 [ 대수 ] Fig. 73 The time result of example 3 1Gbps 네트워크환경에서의선탐색부분후분류기법의알고리듬에따른시간비율분석 랜더링시간깊이비교연산시간 네트워크통신시간병렬화를위한기타시간 가시화노드 [ 대수 ] 가상통신망행렬구조 이진트리통신구조 0% 20% 40% 60% 80% 100% 알고리듬 Fig. 74 The result of time ratio according to network communication structure on example

110 6. (Pre-Detection Sort-Last sparse algorithm) (Virtual Communication Network Tableau).,., 16.,,.[21] ,.. 4 1, 33, ,

111 ,.,.., ,...,..,.,,

112 7. /.,..,.,., Mbit 10Mbit

113 ,.,.,,,,,.,,

114 [1] Bhardwaj, M., Pierson, K., Reese, G., Walsh, T., Day, D., Alvin, K., Peery, J., Farhat, C., Lesoinne, M., "Salinas:A Scalable Software for High-Performance Structural and Solid Mechanics Simulations", Proceedings of the IEEE/ACM SC2002 Conference, November 2002, pp.35 [2] Yagawa, G., Okuda, H., Nakamura, H., "GeoFEM : Multi-Purpose Parallel FEM system for Solid Earth", Fourth World congress on Computational Mechanics, Vol. 2, 1988, pp.1048 [3] Hiroshi Okuda, "Developmenet of Solid Earth Simulation Platform," FY2002 Report of Earth Simulator Results, [4],,,,,,, 29, 3, 2001, pp [5] Kim, J.S., Lee, C.S., Kim. J.H., Joh, M.S., Lee, S.S., "IPSAP : A High-performance Parallel Finite Element Code for Large-scale Structural Analysis Based on Domain-wise Multifrontal Technique", Proceedings of the ACM/IEEE SC2003 Conference, 2003, p.32 [6] Edwards, D. E., "Interactive computer graphics," Aerospace America, December, 2001, p. 77. [7] Jay G. Horowitz, Interactive computer graphics, Aerospace America, December, 2002 [8] Humphreys, G., Eldridge, M., Buck, I., Stoll, G., Everett, M., Hanrahan., P., "WireGL : A scalable graphics system for clusters," Proceedings of SIGGRAPH 2001, pp [9] Molnar, S., Cox, M., Ellsworth, D., Fuchs, H., "A sorting Classification of Parallel Rendering," IEEE Computer Graphics and Applications, Vol. 14, No. 4, 1994, pp [10] Lee, T. Y., Raghavendra, C. S., Nicholas, J. B., "Image Composition Schemes for Sort-Last Polygon Rendering on 2D Mesh Multicomputers,"

115 IEEE Transactions on Visualization and Computer Graphics, Vol. 2, No. 3, 1996, pp [11] Foley, J., Dam, A., Feiner, S., Hughes, J., "Computer Graphics : principles and practice", ADDISON WESLEY, second edition, 1997, pp [12],,,,,, 32, 10, 2004, pp [13],, MPI, 2003, , pp [14], MPI,, 2003, pp.97 [15] Foster, I., Kesselman, C., Tuecke, S., "The Anatomy of the Grid : Enabling Scalable Virtual Organizations", International Journal Supercomputer Applications, Vol. 15, No.3, [16] [17] [18] Gonzales, R.C., Woods, R.E., "Digital Image Processing", Prentice Hall, second edition, 2002, pp [19] Kumar, V., Grama, A., Gupta. A., Karypis, G., "Introduction to parallel computing", The Benjamin/Cummings Publishing Company, 1994, pp [20],,,, 2004, , pp [21],,,, 2004, , pp

116 A. nxview [nxview is n times View : Visualization with n node cluster] A.1 - Table. A.1 Cluster Cluster 16 C P U 16 P4 2.4 GHz Memory 1 GByte / node DDR Network Network card 1 GBit / node configuration Switching HUB Asante 1GBit 16port HUB Table. A.2 Operation System O S configuration Kernel version compiler version Linux hl gcc-3.2 Red hat 8.0 Hancom Linux 3.0 QT Library lam mpi opengl 1.3 glut

117 ( 1,000,000 DOF) 16 1 FPS. 24 FPS,. 3,,. 4. 5,

118 A.2., (Rendering pipeline) Geometry Rasterization,, GPU PC. Geometry pipeline Rasterization, Geometry, (Sort-first algorithm) (Sort-last algorithm). 1 [Sort-First algorithm] Stanford University wiregl A.1. Open Source Chromium project. A.1 (Load balancing),

119 (Element),. 2 [Sort-Last algorithm] A.1., (Sort-Last algorithm). A.1,. Fig. A

120 A.3 1 (Pipeline communication structure) A.2,,. 2 (Binary tree communication structure),. Fig. A

121 A.4 A.3. FASTA(in house FEM analysis program), NASTRAN. Node/Element information Disp./Stress/Strain information Scale factor Option information Color index box Displacement (3 ) Stress (7 ) Strain (6 ) Bench marker Network speed Network Frame per second Fig. A

122 / -, Displacement/Stress/Strain information - Scale factor - Scale, Scale (Color index box) Displacement Color index - X, Y, Z displacement Stress Color index - XX, YY, ZZ, XY, YZ, ZX, Von mises stress Strain Color index - XX, YY, ZZ, XY, YZ, ZX strain (Bench marker) Network speed - Mega bits [Mbits per second] Network - Frame per second

123 A.5 (Keyboard) / A.4, Scale factor Fig. A.4 (Mouse),, A.5 Mesh Color / Model information Color index box (Orthogonal viewport) (x, y, z ) Node/Element Selection(single option) opengl vortex array (single option) Bench mark test Fig. A

124 병렬처리 옵션 사용자가 지정한 가시화 클러스터 노드의 화면그림을 현재 화면에 묘사 할 수 있도록 하는 사용자 정의 옵션으로 아래 그림 A.6과 같이 전체 화면 에 대한 각 가시화 노드의 부분화면을 확인할 수 있도록 지정할 수 있다. Cluster Node 0 Cluster Node 1 Cluster Node 2 Cluster Node 3 Fig. A.6 병렬 처리 옵션을 통한 각 가시화 노드의 해석결과에 대한 가시화 절점/요소 선택에 의한 해당 정보 출력 옵션 - 병렬처리 가시화에서는 지원하지 않고 오직 순차 프로그램에서 지원하 는 옵션으로 모델에 대한 절점 및 요소 선택시 해당 절점 및 요소의 정보 를 화면상에 표시해 주는 옵션으로 아래 그림 A.7과 같다. Fig. A.7 절점 및 요소 선택에 의한 정보 표시

125 Bench Test option - option , -. A (3,090,903 DOF, 6,000,000 Polygon) 8. Fig. A.8, 16 55%

126 A.7 opengl MPI,. A.1. opengl glreadpixels RGB (frame buffer).. RGB,. GL_FLOAT 0~1, GL_UNSIGNED_BYTE 0~255,. Code A.1 opengl void Postprocessor::paintGL() { : 684 glreadpixels(0, 0, w, h, GL_DEPTH_COMMPONENT, GL_FLOAT, depth_all); 731 glreadpixels(,1, 2, 1, 1, GL_RGB, GL_UNSIGNED_BYTE, 4); : Z-buffer : } Code 2,,

127 (, 0 ),. Code A.2 // code #2. Second algorism // -- 2 ** == (n-1) // -- [Test #1] Master computer // -- [Test #2] 2^n algorism if ( ( my_rank == (int)(pow(2.0,kk)*(floor(my_rank/pow(2.0,kk)))) ) && ( my_rank!= (np-1)) && ( my_rank+pow(2.0,kk-1)) <np ) // depth { pixel_pick[0] = w; pixel_pick[1] = 0; pixel_pick[2] = h; pixel_pick[3] = 0; Rank // intersection // ##6. Intersection // x position if ((pixel_recv[0][0]<=pixel_recv[1][0]) && (pixel_recv[1][0]<=pixel_recv[0][1])) pixel_pick[0] = pixel_recv[1][0]; if ((pixel_recv[0][0]<=pixel_recv[1][1]) && (pixel_recv[1][1]<=pixel_recv[0][1])) pixel_pick[1] = pixel_recv[1][1]; if ((pixel_recv[1][0]<=pixel_recv[0][0]) && (pixel_recv[0][0]<=pixel_recv[1][1])) pixel_pick[0] = pixel_recv[0][0]; if ((pixel_recv[1][0]<=pixel_recv[0][1]) && (pixel_recv[0][1]<=pixel_recv[1][1])) pixel_pick[1] = pixel_recv[0][1]; // y position if ((pixel_recv[0][2]<=pixel_recv[1][2]) && (pixel_recv[1][2]<=pixel_recv[0][3])) pixel_pick[2] = pixel_recv[1][2]; if ((pixel_recv[0][2]<=pixel_recv[1][3]) && (pixel_recv[1][3]<=pixel_recv[0][3])) pixel_pick[3] = pixel_recv[1][3]; if ((pixel_recv[1][2]<=pixel_recv[0][2]) && (pixel_recv[0][2]<=pixel_recv[1][3])) pixel_pick[2] = pixel_recv[0][2]; if ((pixel_recv[1][2]<=pixel_recv[0][3]) && (pixel_recv[0][3]<=pixel_recv[1][3])) pixel_pick[3] = pixel_recv[0][3]; // if (pixel_pick[0] == w) pixel_pick[0] = 0; if (pixel_pick[2] == h) pixel_pick[2] = 0; // // ##7. // [ intersection comparison ] // // -- i *width*depth + j * depth + k // [.!] if ( (pixel_pick[1]!= 0) && (pixel_pick[3]!=0)) for (i=pixel_pick[2] ; i<=pixel_pick[3] ; i++) for (j=pixel_pick[0] ; j<=pixel_pick[1] ; j++) { if( depth_p[(i-pixel_p[2])*w_p+(j-pixel_p[0])] >=depth_recv[0][(i-pixel_recv[0][2])*w_recv[0]+(j-pixel_recv[0][0])]) { depth_p[(i-pixel_p[2])*w_p+(j-pixel_p[0])] = depth_recv[0][(i-pixel_recv[0][2])*w_recv[0]+(j-pixel_recv[0][0])]; for (k=0 ; k<3 ;k++) draw_p[(i-pixel_p[2])*w_p*3+(j-pixel_p[0])*3 +k] = draw_recv[0][(i-pixel_recv[0][2])*w_recv[0]*3+(j-pixel_recv[0][0])*3+k]; } } // depth number // -- depth number if (kk!= depth_number) { delete draw_recv[0]; delete depth_recv[0]; for (i=0 ; i<4 ; i++) pixel_recv[0][i] = pixel_p[i]; w_recv[0] = pixel_recv[0][1]-pixel_recv[0][0]+1; h_recv[0] = pixel_recv[0][3]-pixel_recv[0][2]+1; draw_recv[0] = new unsigned char [h_recv[0]*w_recv[0]*3]; depth_recv[0] = new float [h_recv[0]*w_recv[0]]; for (i=0 ; i<h_p ; i++) for (j=0 ; j<w_p ; j++) { depth_recv[0][i*w_recv[0]+j] = depth_p[i*w_p+j]; for (k=0 ; k<3 ; k++) draw_recv[0][i*w_recv[0]*3+j*3+k] = draw_p[i*w_p*3+j*3+k]; } delete draw_p; delete depth_p; }

128 Code A.3 void Postprocessor::paintGL() { : 684 glreadpixels(0, 0, w, h, GL_DEPTH_COMMPONENT, GL_FLOAT, depth_all); pixel_recv[0][0] = w; // pixel x min init. pixel_recv[0][1] = 0; // pixel x max init. pixel_recv[0][2] = h; // pixel y min init. pixel_recv[0][3] = 0; // pixel y max init. // frame // width, height for (i=0 ; i<h ; i++) { for (j=0 ; j<w ; j++) { if ((depth_all[i*w+j] < 1.0)&& (depth_all[i*w+j] > 0.0)) { if (pixel_recv[0][0] >= j) pixel_recv[0][0] = j; if (pixel_recv[0][1] <= j) pixel_recv[0][1] = j; if (pixel_recv[0][2] >= i) pixel_recv[0][2] = i; if (pixel_recv[0][3] <= i) pixel_recv[0][3] = i; } } } // if (pixel_recv[0][0] == w) pixel_recv[0][0] = 0; if (pixel_recv[0][2] == h) pixel_recv[0][2] = 0; w_recv[0] = pixel_recv[0][1]-pixel_recv[0][0]+1; h_recv[0] = pixel_recv[0][3]-pixel_recv[0][2]+1; draw_recv[0] = new unsigned char [h_recv[0]*w_recv[0]*3]; depth_recv[0] = new float [h_recv[0]*w_recv[0]]; 731 glreadpixels(,1, 2, 1, 1, GL_RGB, GL_UNSIGNED_BYTE, 4); : Z-buffer : } width(w) pixel_recv[0][3] height(h) pixel_recv[0][2] pixel_recv[0][0] pixel_recv[0][1]

129 , pixel_recv[][], pixel_recv[0][], pixel_recv[1][].,., A.8 nxview [ ] [ ] (wiregl ) [ ] [ ] [ ] [ ] Prototype ( 0.03) - - [ ] nxview 0.03, [ ] nxview 0.05, Screen space [ ] nxview 0.06, Non-blocking mode [ ] nxview 0.08, [ ] nxview 1.00,

130 B. MPI. MPI CPU MPI, GUI,., CPU CPU GUI, GUI,,,., Thread programming,. B.1. Fig. B

131 Code B.1 // MPI event // event signal // -- [ ] trackball event // --, mouse event..!! // // rank0 signal // -- event signal // -- event data_stream MPI::COMM_WORLD.Barrier(); bench_mpi_temp = MPI::Wtime(); if (my_rank == 0) { for (i=1; i<np ; i++) MPI::COMM_WORLD.Send(data_stream, 6, MPI::INT, i, 100); } else { MPI::COMM_WORLD.Recv(data_stream, 6, MPI::INT, 0, 100);// tag=100 mouse event if (data_stream[0] == 1) signal_press_mpi(data_stream[1], data_stream[2], data_stream[3]); if (data_stream[0] == 2) signal_release_mpi(data_stream[1], data_stream[2], data_stream[4], data_stream[5], data_stream[3]); if (data_stream[0] == 3) signal_move_mpi(data_stream[1], data_stream[2], data_stream[3]); // [..!!] evnet // rank0 paintgl // -- event Popup menu paintgl if (parallel_event!= data_stream[0]) { if (data_stream[0] == 200) menuoption(data_stream[1]); if (data_stream[0] == 201) setwhatview(data_stream[1]); if (data_stream[0] == 202) setscalefactor(data_stream[1]); if (data_stream[0] == 210) { select_cpu = data_stream[1]; entire_shape = (FType)data_stream[2]; // menu option // color option // scale option // parallel cpu select if (data_stream[2] == 1) { accel_mode = PostProcessor::PFALSE; surface_mode = PostProcessor::PFALSE; } if (data_stream[2] == 0) { accel_mode = PostProcessor::PFALSE; surface_mode = PostProcessor::PTRUE; } updatelist(); } } parallel_event = data_stream[0]; } MPI::COMM_WORLD.Barrier(); if (bench_test == PostProcessor::PTRUE) bench_mpi += MPI::Wtime() - bench_mpi_temp; //

132 , Mouse event Keyboard event., GUI QT C++, MPI,. nxview data stream. Tag, Tag, Code B.1. B.1,,. Code B.1 paintgl(),. data_stream. Code B.2 mousepressevent Mouse/Keyboard event data_stream data_stream., Code B.2 (rank0). (rank0) dummy signal

133 Code B.2 Data stream void PostProcessor::timerEvent(QTimerEvent *) { // MPI evnet // rank0 dumy data if (my_rank == 0) data_stream[0] = 0; // updategl(); } void PostProcessor::mousePressEvent(QMouseEvent * event) { // MPI event if (my_rank == 0) { data_stream[0] = 1; //mouse press evnet data_stream[1] = event->x(); //mouse x position data_stream[2] = event->y(); //mouse y position data_stream[3] = (int)event->state(); //mouse state information data_stream[4] = event->globalx(); //global X data_stream[5] = event->globaly(); //global Y } // signal_press_mpi(event->x(), event->y(), (int)event->state()); updategl(); }

134 C. C.1 Psychovisual Redundancy,..,..,. C.1, Image resampling,,. Fig. C.1 Image resampling

135 C , RGB 8bit, 256. C.2 4bit Uniform quantization 16. 8bit 4bit 2:1,. Fig. C.2 Uniform quantization to 16 levels, C.3 Improved gray-scale(igs) quantization. IGS quantization Uniform quantization 4bit, 4 4,

136 Fig. C.3 IGS quantization to 16 levels Table. C.1 IGS quantization to 16 levels Pixel Gray Level Sum IGS code i - 1 N/A N/A i i i i C.1, 0 Sum 4 Gray Level i , 5,. Image quantization resampled image C.4, C.5, C.6., 16level quantization image,

137 .,. Uniform quantization image IGS quantization image. C.4, C.5, C.6 4. quantization,,., 8,9,. quantization. Fig. C.4 24bit Original RGB Image

138 Fig. C.5 Uniform quantization image Fig. C.6 IGS quantization image

139 C.2 Bit-plane decomposition 1 Image quantization. quantization. Bit-plane decomposition. Image quantization,,, bit-plane coding. m bit gray-scale C.1. a m 1 2 m 1 + a m 2 2 m a a (C.1) Bit plane. C.7. 1 quantization bit-plane decomposition. Fig. C.7 One dimensional run-length code with Bit-plane decomposition

140 C.7 Bit plane One-dimensional run-length coding ( ) 128( ), binary,. C.2 m-bit Gray code. g i = a i a i +1, 0 i m 2 (C.2) g m 1 = a m 1 exclusive OR operator., , Bit-plane run-length coding. C.8 8bit 256level bit-plane decomposition. bit-plane decomposition, Gray coded bit plane image. C.8 C.4, bit-plane RED bit-plane. 8 bit-plane 4 bit-plane. bit-plane 5 6 bit, Gray-coded image bit, Gray-coded image

141 The eight binary bit planes Original image Gray-coded bit planes RGB R bit 7 R bit 6 R bit 5 R bit 4 Fig. C.8 Bit-plane decomposition

142 bit-plane decomposition RGB, C.8 RGB. C.8 RGB Gray-coded image, bit-plane 5,6 Gray-coded image, bit-plane 4. bit-plane,. quantization RGB.,, Gray-code RGB. Gray-coded image RGB,,. C.9 1 quantization bit-plane decomposition. quantization, C.8 Gray-code bit-plane decomposition. Uniform quantization bit-plane decomposition IGS quantization bit-plane decomposition

143 The eight binary bit planes Original image Uniform quantization & Gray-coded bit IGS quantization & Gray-coded bit RGB R bit 7 R bit 6 R bit 5 R bit 4 Fig. C.9 Image quantization and Bit-plane decomposition

144 D. / IPSAP IPSAP.,... nxview D.1. D.2. Fig. D

145 Fig. D.2 IPSAP D.1. D.3, D.4 Orthogonal view mode Perspective view mode,

146 . Fig. D.3 Perspective mode Fig. D.4 Orthogonal mode D.5 8,. Fig. D

147 IPSAP. D.6 400,517 ( : 1,201,551 ), 255, , Fig. D.6 (5 ) Fig. D

148 D.7,,. D Fig. D

149 D.5.. D.9, 0 ~ Fig. D.9 ( ) D.9 X,. D.5,. D ~

150 Fig. D

151 ...,,., 10,,,,,,.,

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp RUF * (A Simple and Efficient Antialiasing Method with the RUF buffer) (, Byung-Uck Kim) (Yonsei Univ. Depth of Computer Science) (, Woo-Chan Park) (Yonsei Univ. Depth of Computer Science) (, Sung-Bong

More information

À±½Â¿í Ãâ·Â

À±½Â¿í Ãâ·Â Representation, Encoding and Intermediate View Interpolation Methods for Multi-view Video Using Layered Depth Images The multi-view video is a collection of multiple videos, capturing the same scene at

More information

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016)   ISSN 228 (JBE Vol. 1, No. 1, January 016) (Regular Paper) 1 1, 016 1 (JBE Vol. 1, No. 1, January 016) http://dx.doi.org/10.5909/jbe.016.1.1.60 ISSN 87-9137 (Online) ISSN 16-7953 (Print) a), a) An Efficient Method

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 논문 10-35-03-03 한국통신학회논문지 '10-03 Vol. 35 No. 3 원활한 채널 변경을 지원하는 효율적인 IPTV 채널 관리 알고리즘 준회원 주 현 철*, 정회원 송 황 준* Effective IPTV Channel Control Algorithm Supporting Smooth Channel Zapping HyunChul Joo* Associate

More information

19_9_767.hwp

19_9_767.hwp (Regular Paper) 19 6, 2014 11 (JBE Vol. 19, No. 6, November 2014) http://dx.doi.org/10.5909/jbe.2014.19.6.866 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) RGB-Depth - a), a), b), a) Real-Virtual Fusion

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

<31325FB1E8B0E6BCBA2E687770>

<31325FB1E8B0E6BCBA2E687770> 88 / 한국전산유체공학회지 제15권, 제1호, pp.88-94, 2010. 3 관내 유동 해석을 위한 웹기반 자바 프로그램 개발 김 경 성, 1 박 종 천 *2 DEVELOPMENT OF WEB-BASED JAVA PROGRAM FOR NUMERICAL ANALYSIS OF PIPE FLOW K.S. Kim 1 and J.C. Park *2 In general,

More information

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for 2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon

More information

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a low-resolution Time-Of- Flight (TOF) depth camera and

More information

2005CG01.PDF

2005CG01.PDF Computer Graphics # 1 Contents CG Design CG Programming 2005-03-10 Computer Graphics 2 CG science, engineering, medicine, business, industry, government, art, entertainment, advertising, education and

More information

45-51 ¹Ú¼ø¸¸

45-51 ¹Ú¼ø¸¸ A Study on the Automation of Classification of Volume Reconstruction for CT Images S.M. Park 1, I.S. Hong 2, D.S. Kim 1, D.Y. Kim 1 1 Dept. of Biomedical Engineering, Yonsei University, 2 Dept. of Radiology,

More information

6주차.key

6주차.key 6, Process concept A program in execution Program code PCB (process control block) Program counter, registers, etc. Stack Heap Data section => global variable Process in memory Process state New Running

More information

Ⅱ. Embedded GPU 모바일 프로세서의 발전방향은 저전력 고성능 컴퓨팅이다. 이 러한 목표를 달성하기 위해서 모바일 프로세서 기술은 멀티코 어 형태로 발전해 가고 있다. 예를 들어 NVIDIA의 최신 응용프 로세서인 Tegra3의 경우 쿼드코어 ARM Corte

Ⅱ. Embedded GPU 모바일 프로세서의 발전방향은 저전력 고성능 컴퓨팅이다. 이 러한 목표를 달성하기 위해서 모바일 프로세서 기술은 멀티코 어 형태로 발전해 가고 있다. 예를 들어 NVIDIA의 최신 응용프 로세서인 Tegra3의 경우 쿼드코어 ARM Corte 스마트폰을 위한 A/V 신호처리기술 편집위원 : 김홍국 (광주과학기술원) 스마트폰에서의 영상처리를 위한 GPU 활용 박인규, 최호열 인하대학교 요 약 본 기고에서는 최근 스마트폰에서 요구되는 다양한 멀티미 디어 어플리케이션을 embedded GPU(Graphics Processing Unit)를 이용하여 고속 병렬처리하기 위한 GPGPU (General- Purpose

More information

TEL:02)861-1175, FAX:02)861-1176 , REAL-TIME,, ( ) CUSTOMER. CUSTOMER REAL TIME CUSTOMER D/B RF HANDY TEMINAL RF, RF (AP-3020) : LAN-S (N-1000) : LAN (TCP/IP) RF (PPT-2740) : RF (,RF ) : (CL-201)

More information

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선 Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a

More information

1217 WebTrafMon II

1217 WebTrafMon II (1/28) (2/28) (10 Mbps ) Video, Audio. (3/28) 10 ~ 15 ( : telnet, ftp ),, (4/28) UDP/TCP (5/28) centralized environment packet header information analysis network traffic data, capture presentation network

More information

63-69±è´ë¿µ

63-69±è´ë¿µ Study on the Shadow Effect of 3D Visualization for Medical Images ased on the Texture Mapping D.Y. Kim, D.S. Kim, D.K. Shin, D.Y. Kim 1 Dept. of iomedical Engineering, Yonsei University = bstract = The

More information

<313920C0CCB1E2BFF82E687770>

<313920C0CCB1E2BFF82E687770> 韓 國 電 磁 波 學 會 論 文 誌 第 19 卷 第 8 號 2008 年 8 月 論 文 2008-19-8-19 K 대역 브릭형 능동 송수신 모듈의 설계 및 제작 A Design and Fabrication of the Brick Transmit/Receive Module for K Band 이 기 원 문 주 영 윤 상 원 Ki-Won Lee Ju-Young Moon

More information

04_오픈지엘API.key

04_오픈지엘API.key 4. API. API. API..,.. 1 ,, ISO/IEC JTC1/SC24, Working Group ISO " (Architecture) " (API, Application Program Interface) " (Metafile and Interface) " (Language Binding) " (Validation Testing and Registration)"

More information

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3 Depth layer partition 2D 3D a), a) 3D conversion of 2D video using depth layer partition Sudong Kim a) and Jisang Yoo a) depth layer partition 2D 3D. 2D (depth map). (edge directional histogram). depth

More information

MAX+plus II Getting Started - 무작정따라하기

MAX+plus II Getting Started - 무작정따라하기 무작정 따라하기 2001 10 4 / Version 20-2 0 MAX+plus II Digital, Schematic Capture MAX+plus II, IC, CPLD FPGA (Logic) ALTERA PLD FLEX10K Series EPF10K10QC208-4 MAX+plus II Project, Schematic, Design Compilation,

More information

OPCTalk for Hitachi Ethernet 1 2. Path. DCOMwindow NT/2000 network server. Winsock update win95. . . 3 Excel CSV. Update Background Thread Client Command Queue Size Client Dynamic Scan Block Block

More information

I

I I II III (C B ) (C L ) (HL) Min c ij x ij f i y i i H j H i H s.t. y i 1, k K, i W k C B C L p (HL) x ij y i, i H, k K i, j W k x ij y i {0,1}, i, j H. K W k k H K i i f i i d ij i j r ij i j c ij r ij

More information

Slide 1

Slide 1 Clock Jitter Effect for Testing Data Converters Jin-Soo Ko Teradyne 2007. 6. 29. 1 Contents Noise Sources of Testing Converter Calculation of SNR with Clock Jitter Minimum Clock Jitter for Testing N bit

More information

(72) 발명자 정진곤 서울특별시 성북구 종암1동 54-398 이용훈 대전광역시 유성구 어은동 한빛아파트 122동 1301 호 - 2 -

(72) 발명자 정진곤 서울특별시 성북구 종암1동 54-398 이용훈 대전광역시 유성구 어은동 한빛아파트 122동 1301 호 - 2 - (51) Int. Cl. (19) 대한민국특허청(KR) (12) 등록특허공보(B1) H04B 7/04 (2006.01) H04B 7/02 (2006.01) H04L 1/02 (2006.01) (21) 출원번호 10-2007-0000175 (22) 출원일자 2007년01월02일 심사청구일자 2008년08월26일 (65) 공개번호 10-2008-0063590 (43)

More information

보고서(겉표지).PDF

보고서(겉표지).PDF 11-13 10148-000092- 01 200 1 04 ( ) 2 0 0 1 ( ) E fficient Rules for Oper atin g the Det en tion B asin an d P umpin g St ation ( ) 2 0 0 1. 12 1 2 11-1310148- 000092-01 ( ) E fficien t Ru les for Oper

More information

°í¼®ÁÖ Ãâ·Â

°í¼®ÁÖ Ãâ·Â Performance Optimization of SCTP in Wireless Internet Environments The existing works on Stream Control Transmission Protocol (SCTP) was focused on the fixed network environment. However, the number of

More information

<5B313132385D32303039B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

<5B313132385D32303039B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770> 디지털 영상에서의 자막추출을 이용한 자막 특성 분석에 관한 연구 이세열 * 요약 본 연구는 방송 프로그램 제작에 있어서 중요한 역할을 담당하고 있는 영상 자막의 특성과 영상 커 뮤니케이션 기능적인 관점에서 나타나고 있는 현상을 살펴본다. 다양한 방송 프로그램에서 활용되고 있는 디지털 영상 자막의 기능은 단순하게 간략한 정보를 전달하는 기능적인 역할을 수행하였다.

More information

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770> Journal of the Korea Academia-Industrial cooperation Society Vol. 13, No. 2 pp. 866-871, 2012 http://dx.doi.org/10.5762/kais.2012.13.2.866 증강현실을 이용한 아동교육프로그램 모델제안 권미란 1*, 김정일 2 1 나사렛대학교 아동학과, 2 한세대학교 e-비즈니스학과

More information

- i - - ii - - i - - ii - - i - - ii - - iii - - iv - - v - - vi - - vii - - viii - - ix - - x - - xi - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 -

More information

INDUS-8.HWP

INDUS-8.HWP i iii iv v vi vii viii ix x xi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

More information

CONTENTS.HWP

CONTENTS.HWP i ii iii iv v vi vii viii ix x xi - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 -

More information

LCD Display

LCD Display LCD Display SyncMaster 460DRn, 460DR VCR DVD DTV HDMI DVI to HDMI LAN USB (MDC: Multiple Display Control) PC. PC RS-232C. PC (Serial port) (Serial port) RS-232C.. > > Multiple Display

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

디지털포렌식학회 논문양식

디지털포렌식학회 논문양식 ISSN : 1976-5304 http://www.kdfs.or.kr Virtual Online Game(VOG) 환경에서의 디지털 증거수집 방법 연구 이 흥 복, 정 관 모, 김 선 영 * 대전지방경찰청 Evidence Collection Process According to the Way VOG Configuration Heung-Bok Lee, Kwan-Mo

More information

¼º¿øÁø Ãâ·Â-1

¼º¿øÁø Ãâ·Â-1 Bandwidth Efficiency Analysis for Cooperative Transmission Methods of Downlink Signals using Distributed Antennas In this paper, the performance of cooperative transmission methods for downlink transmission

More information

untitled

untitled Step Motor Device Driver Embedded System Lab. II Step Motor Step Motor Step Motor source Embedded System Lab. II 2 open loop, : : Pulse, 1 Pulse,, -, 1 +5%, step Step Motor (2),, Embedded System Lab. II

More information

09 강제근로의 금지 폭행의 금지 공민권 행사의 보장 38 10 중간착취의 금지 41 - 대판 2008.9.25, 2006도7660 [근로기준법위반] (쌍용자동차 취업알선 사례) 11 균등대우의 원칙 43 - 대판 2003.3.14, 2002도3883 [남녀고용평등법위

09 강제근로의 금지 폭행의 금지 공민권 행사의 보장 38 10 중간착취의 금지 41 - 대판 2008.9.25, 2006도7660 [근로기준법위반] (쌍용자동차 취업알선 사례) 11 균등대우의 원칙 43 - 대판 2003.3.14, 2002도3883 [남녀고용평등법위 01 노동법 법원으로서의 노동관행 15 - 대판 2002.4.23, 2000다50701 [퇴직금] (한국전력공사 사례) 02 노동법과 신의성실의 원칙 17 - 대판 1994.9.30, 94다9092 [고용관계존재확인등] (대한조선공사 사례) 03 퇴직금 청구권 사전 포기 약정의 효력 19 - 대판 1998.3.27, 97다49732 [퇴직금] (아시아나 항공

More information

인켈(국문)pdf.pdf

인켈(국문)pdf.pdf M F - 2 5 0 Portable Digital Music Player FM PRESET STEREOMONO FM FM FM FM EQ PC Install Disc MP3/FM Program U S B P C Firmware Upgrade General Repeat Mode FM Band Sleep Time Power Off Time Resume Load

More information

14.531~539(08-037).fm

14.531~539(08-037).fm G Journal of the Korea Concrete Institute Vol. 20, No. 4, pp. 531~539, August, 2008 š x y w m š gj p { sƒ z 1) * 1) w w Evaluation of Flexural Strength for Normal and High Strength Concrete with Hooked

More information

05(533-537) CPLV12-04.hwp

05(533-537) CPLV12-04.hwp 모바일 OS 환경의 사용자 반응성 향상 기법 533 모바일 OS 환경의 사용자 반응성 향상 기법 (Enhancing Interactivity in Mobile Operating Systems) 배선욱 김정한 (Sunwook Bae) 엄영익 (Young Ik Eom) (Junghan Kim) 요 약 사용자 반응성은 컴퓨팅 시스템에서 가장 중요 한 요소 중에 하나이고,

More information

untitled

untitled Huvitz Digital Microscope HDS-5800 Dimensions unit : mm Huvitz Digital Microscope HDS-5800 HDS-MC HDS-SS50 HDS-TS50 SUPERIORITY Smart Optical Solutions for You! Huvitz Digital Microscope HDS-5800 Contents

More information

歯1.PDF

歯1.PDF 200176 .,.,.,. 5... 1/2. /. / 2. . 293.33 (54.32%), 65.54(12.13%), / 53.80(9.96%), 25.60(4.74%), 5.22(0.97%). / 3 S (1997)14.59% (1971) 10%, (1977).5%~11.5%, (1986)

More information

<C1A4C3A5BFACB1B82031312D3420C1A4BDC5C1FAC8AFC0DAC0C720C6EDB0DFC7D8BCD220B9D720C0CEBDC4B0B3BCB1C0BB20C0A7C7D120B4EBBBF3BAB020C0CEB1C720B1B3C0B020C7C1B7CEB1D7B7A520B0B3B9DF20BAB8B0EDBCAD28C7A5C1F6C0AF292E687770>

<C1A4C3A5BFACB1B82031312D3420C1A4BDC5C1FAC8AFC0DAC0C720C6EDB0DFC7D8BCD220B9D720C0CEBDC4B0B3BCB1C0BB20C0A7C7D120B4EBBBF3BAB020C0CEB1C720B1B3C0B020C7C1B7CEB1D7B7A520B0B3B9DF20BAB8B0EDBCAD28C7A5C1F6C0AF292E687770> 제 출 문 보건복지부장관 귀 하 이 보고서를 정신질환자의 편견 해소 및 인식 개선을 위한 대상별 인권 교육프로그램 개발 연구의 결과보고서로 제출합니다 주관연구기관명 서울여자간호대학 산학협력단 연 구 책 임 자 김 경 희 연 구 원 김 계 하 문 용 훈 염 형 국 오 영 아 윤 희 상 이 명 수 홍 선 미 연 구 보 조 원 임 주 리 보 조 원 이 난 희 요

More information

09권오설_ok.hwp

09권오설_ok.hwp (JBE Vol. 19, No. 5, September 2014) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September 2014) http://dx.doi.org/10.5909/jbe.2014.19.5.656 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) Reduction

More information

<313630313032C6AFC1FD28B1C7C7F5C1DF292E687770>

<313630313032C6AFC1FD28B1C7C7F5C1DF292E687770> 양성자가속기연구센터 양성자가속기 개발 및 운영현황 DOI: 10.3938/PhiT.25.001 권혁중 김한성 Development and Operational Status of the Proton Linear Accelerator at the KOMAC Hyeok-Jung KWON and Han-Sung KIM A 100-MeV proton linear accelerator

More information

Microsoft PowerPoint - 알고리즘_5주차_1차시.pptx

Microsoft PowerPoint - 알고리즘_5주차_1차시.pptx Basic Idea of External Sorting run 1 run 2 run 3 run 4 run 5 run 6 750 records 750 records 750 records 750 records 750 records 750 records run 1 run 2 run 3 1500 records 1500 records 1500 records run 1

More information

untitled

untitled NV40 (Chris Seitz) NV1 1 Wanda NV1x 2 2 Wolfman NV2x 6 3 Dawn NV3x 1 3 Nalu NV4x 2 2 2 95-98: Z- CPU GPU / Geometry Stage Rasterization Unit Raster Operations Unit 2D Triangles Bus (PCI) 2D Triangles (Multitexturing)

More information

歯경영혁신 단계별 프로그램 사례.ppt

歯경영혁신 단계별 프로그램 사례.ppt BMS Infra BMS Location A B C D D A Location Card + Location SET Card : 1 : : Location Card ( ) ( Over ) Location Card Card Location Card ( ) ( ) Location Card LocationCard RACK1 AGE / 7 ( ) SET Location

More information

세계 비지니스 정보

세계 비지니스 정보 - i - ii - iii - iv - v - vi - vii - viii - ix - 1 - 2 - 3 - - - - - - - - - - 4 - - - - - - 5 - - - - - - - - - - - 6 - - - - - - - - - 7 - - - - 8 - 9 - 10 - - - - - - - - - - - - 11 - - - 12 - 13 -

More information

Manufacturing6

Manufacturing6 σ6 Six Sigma, it makes Better & Competitive - - 200138 : KOREA SiGMA MANAGEMENT C G Page 2 Function Method Measurement ( / Input Input : Man / Machine Man Machine Machine Man / Measurement Man Measurement

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., - THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Jun.; 29(6), 457463. http://dx.doi.org/10.5515/kjkiees.2018.29.6.457 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) Sigma-Delta

More information

untitled

untitled CLEBO PM-10S / PM-10HT Megapixel Speed Dome Camera 2/39 3/39 4/39 5/39 6/39 7/39 8/39 ON ON 1 2 3 4 5 6 7 8 9/39 ON ON 1 2 3 4 10/39 ON ON 1 2 3 4 11/39 12/39 13/39 14/39 15/39 Meg gapixel Speed Dome Camera

More information

<C1A4BAB8B0FAC7D0C8B82E687770>

<C1A4BAB8B0FAC7D0C8B82E687770> A New Network Bandwidth Reduction Method of Distributed Rendering System for Scalable Display S S S S S Won-JongLeeHyung-RaeKimWoo-ChanParkJung-WooKimTack-DonHanandSung-BongYang Media System Laboratory

More information

a), b), c), b) Distributed Video Coding Based on Selective Block Encoding Using Feedback of Motion Information Jin-soo Kim a), Jae-Gon Kim b), Kwang-d

a), b), c), b) Distributed Video Coding Based on Selective Block Encoding Using Feedback of Motion Information Jin-soo Kim a), Jae-Gon Kim b), Kwang-d a), b), c), b) Distributed Video Coding Based on Selective Block Encoding Using Feedback of Motion nformation Jinsoo Kim a), JaeGon Kim b), Kwangdeok Seo c), and Myeongjin Lee b) (DVC: Distributed Video

More information

Orcad Capture 9.x

Orcad Capture 9.x OrCAD Capture Workbook (Ver 10.xx) 0 Capture 1 2 3 Capture for window 4.opj ( OrCAD Project file) Design file Programe link file..dsn (OrCAD Design file) Design file..olb (OrCAD Library file) file..upd

More information

Microsoft PowerPoint - eSlim SV5-2510 [080116]

Microsoft PowerPoint - eSlim SV5-2510 [080116] Innovation for Total Solution Provider!! eslim SV5-2510 Opteron Server 2008. 03 ESLIM KOREA INC. 1. 제 품 개 요 eslim SV5-2510 Server Quad-Core and Dual-Core Opteron 2000 Series 6 internal HDD bays for SAS

More information

APOGEE Insight_KR_Base_3P11

APOGEE Insight_KR_Base_3P11 Technical Specification Sheet Document No. 149-332P25 September, 2010 Insight 3.11 Base Workstation 그림 1. Insight Base 메인메뉴 Insight Base Insight Insight Base, Insight Base Insight Base Insight Windows

More information

01이국세_ok.hwp

01이국세_ok.hwp x264 GPU 3 a), a), a) Fast Stereoscopic 3D Broadcasting System using x264 and GPU Jung-Ah Choi a), In-Yong Shin a), and Yo-Sung Ho a) 3 2. 2 3. H.264/AVC x264. GPU(Graphics Processing Unit) CUDA API, GPU

More information

Microsoft Word - KSR2013A320

Microsoft Word - KSR2013A320 k ƒ! YWXZ º º t rzyywxzhzyw k ep k Dynamic Behavior of Bridge considering Various Light Weight Rail Vehicles Õ äø ÐãäÕò ãã Sang-Su Kim, Yong-ul Park *, Man-Cheol Kim ** Abstract The purpose of this paper

More information

歯15-ROMPLD.PDF

歯15-ROMPLD.PDF MSI & PLD MSI (Medium Scale Integrate Circuit) gate adder, subtractor, comparator, decoder, encoder, multiplexer, demultiplexer, ROM, PLA PLD (programmable logic device) fuse( ) array IC AND OR array sum

More information

08김현휘_ok.hwp

08김현휘_ok.hwp (Regular Paper) 21 3, 2016 5 (JBE Vol. 21, No. 3, May 2016) http://dx.doi.org/10.5909/jbe.2016.21.3.369 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) An Audio Coding Technique Employing the Inter-channel

More information

07.045~051(D04_신상욱).fm

07.045~051(D04_신상욱).fm J. of Advanced Engineering and Technology Vol. 1, No. 1 (2008) pp. 45-51 f m s p» w Á xá zá Ÿ Á w m œw Image Retrieval Based on Gray Scale Histogram Refinement and Horizontal Edge Features Sang-Uk Shin,

More information

2011년 10월 초판 c 2011 Sony Corporation. All rights reserved. 서면 허가 없이 전체 또는 일부를 복제하는 것을 금합니다. 기능 및 규격은 통보 없이 변경될 수 있습니다. Sony와 Sony 로고는 Sony의 상표입니다. G L

2011년 10월 초판 c 2011 Sony Corporation. All rights reserved. 서면 허가 없이 전체 또는 일부를 복제하는 것을 금합니다. 기능 및 규격은 통보 없이 변경될 수 있습니다. Sony와 Sony 로고는 Sony의 상표입니다. G L HXR-NX3D1용 3D 워크플로 가이드북 2011년 10월 초판 c 2011 Sony Corporation. All rights reserved. 서면 허가 없이 전체 또는 일부를 복제하는 것을 금합니다. 기능 및 규격은 통보 없이 변경될 수 있습니다. Sony와 Sony 로고는 Sony의 상표입니다. G Lens, Exmor, InfoLITHIUM, Memory

More information

인문사회과학기술융합학회

인문사회과학기술융합학회 Vol.5, No.5, October (2015), pp.471-479 http://dx.doi.org/10.14257/ajmahs.2015.10.50 스마트온실을 위한 가상 외부기상측정시스템 개발 한새론 1), 이재수 2), 홍영기 3), 김국환 4), 김성기 5), 김상철 6) Development of Virtual Ambient Weather Measurement

More information

<333820B1E8C8AFBFEB2D5A6967626565B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

<333820B1E8C8AFBFEB2D5A6967626565B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770> Journal of the Korea Academia-Industrial cooperation Society Vol. 13, No. 1 pp. 306-310, 2012 http://dx.doi.org/10.5762/kais.2012.13.1.306 Zigbee를 이용한 실외 위치추정 시스템 구현 김환용 1*, 임순자 1 1 원광대학교 전자공학과 Implementation

More information

ºÎ·ÏB

ºÎ·ÏB B B.1 B.2 B.3 B.4 B.5 B.1 2 (Boolean algebra). 1854 An Investigation of the Laws of Thought on Which to Found the Mathematical Theories of Logic and Probabilities George Boole. 1938 MIT Claude Sannon [SHAN38].

More information

대경테크종합카탈로그

대경테크종합카탈로그 The Series Pendulum Impact 601 & 602 Analog Tester For Regular DTI-602B (Izod) DTI-601 (Charpy) DTI-602A (Izod) SPECIFICATIONS Model DTI-601 DTI-602 Type Charpy for plastics lzod for plastics Capacity

More information

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

304.fm

304.fm Journal of the Korean Housing Association Vol. 20, No. 3, 2009 yw s w - û - A Study on the Planning of Improved-Hanok - Focused on Jeon-Nam Province - y* ** z*** **** Kang, Man-Ho Lee, Woo-Won Jeong, Hun

More information

SRC PLUS 제어기 MANUAL

SRC PLUS 제어기 MANUAL ,,,, DE FIN E I N T R E A L L O C E N D SU B E N D S U B M O TIO

More information

2002년 2학기 자료구조

2002년 2학기 자료구조 자료구조 (Data Structures) Chapter 1 Basic Concepts Overview : Data (1) Data vs Information (2) Data Linear list( 선형리스트 ) - Sequential list : - Linked list : Nonlinear list( 비선형리스트 ) - Tree : - Graph : (3)

More information

Microsoft PowerPoint - eSlim SV5-2410 [20080402]

Microsoft PowerPoint - eSlim SV5-2410 [20080402] Innovation for Total Solution Provider!! eslim SV5-2410 Opteron Server 2008. 3 ESLIM KOREA INC. 1. 제 품 개 요 eslim SV5-2410 Server Quad-Core and Dual-Core Opteron 2000 Series Max. 4 Disk Bays for SAS and

More information

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770> Journal of the Korea Academia-Industrial cooperation Society Vol. 15, No. 2 pp. 1051-1058, 2014 http://dx.doi.org/10.5762/kais.2014.15.2.1051 멤리스터의 전기적 특성 분석을 위한 PSPICE 회로 해석 김부강 1, 박호종 2, 박용수 3, 송한정 1*

More information

歯AG-MX70P한글매뉴얼.PDF

歯AG-MX70P한글매뉴얼.PDF 120 V AC, 50/60 Hz : 52 W (with no optional accessories installed), indicates safety information. 70 W (with all optional accessories installed) : : (WxHxD) : : 41 F to 104 F (+ 5 C to + 40 C) Less than

More information

PowerChute Personal Edition v3.1.0 에이전트 사용 설명서

PowerChute Personal Edition v3.1.0 에이전트 사용 설명서 PowerChute Personal Edition v3.1.0 990-3772D-019 4/2019 Schneider Electric IT Corporation Schneider Electric IT Corporation.. Schneider Electric IT Corporation,,,.,. Schneider Electric IT Corporation..

More information

표지

표지 2 : Retinex (Regular Paper) 17 5, 2012 9 (JBE Vol. 17, No. 5, September 2012) http://dx.doi.org/10.5909/jbe.2012.17.5.851 ISSN 1226-7953(Print) Retinex a), b), c) Color Improvement of Retinex Image Using

More information

i-movix 특징 l 안정성 l 뛰어난화질 l 차별화된편의성

i-movix 특징 l 안정성 l 뛰어난화질 l 차별화된편의성 i-movix 소개 2005 년설립 ( 벨기에, 몽스 ), 방송카메라제작 2005년 Sprintcam Live System 개발 2007년 Sprintcam Live V2 2009년 Sprintcam Live V3 HD 2009년 Sprintcam Vvs HD 2011년 Super Slow Motion X10 2013년 Extreme + Super Slow

More information

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1 : LabVIEW Control Design, Simulation, & System Identification LabVIEW Control Design Toolkit, Simulation Module, System Identification Toolkit 2 (RLC Spring-Mass-Damper) Control Design toolkit LabVIEW

More information

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong An 1 & Kyoo-jeong Choi 2 * 1 Korea National Wrestling

More information

Microsoft Word - KSR2012A021.doc

Microsoft Word - KSR2012A021.doc YWXY G ºG ºG t G G GGGGGGGGGrzyYWXYhWYXG Ÿƒ Ÿ ± k ¹Ÿˆ Review about the pantograph field test result adapted for HEMU-430X (1) ÕÕÛ äñ ã G Ki-Nam Kim, Tae-Hwan Ko * Abstract In this paper, explain differences

More information

Chap 6: Graphs

Chap 6: Graphs 그래프표현법 인접행렬 (Adjacency Matrix) 인접리스트 (Adjacency List) 인접다중리스트 (Adjacency Multilist) 6 장. 그래프 (Page ) 인접행렬 (Adjacency Matrix) n 개의 vertex 를갖는그래프 G 의인접행렬의구성 A[n][n] (u, v) E(G) 이면, A[u][v] = Otherwise, A[u][v]

More information

Output file

Output file 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 An Application for Calculation and Visualization of Narrative Relevance of Films Using Keyword Tags Choi Jin-Won (KAIST) Film making

More information

06_ÀÌÀçÈÆ¿Ü0926

06_ÀÌÀçÈÆ¿Ü0926 182 183 184 / 1) IT 2) 3) IT Video Cassette Recorder VCR Personal Video Recorder PVR VCR 4) 185 5) 6) 7) Cloud Computing 8) 186 VCR P P Torrent 9) avi wmv 10) VCR 187 VCR 11) 12) VCR 13) 14) 188 VTR %

More information

` Companies need to play various roles as the network of supply chain gradually expands. Companies are required to form a supply chain with outsourcing or partnerships since a company can not

More information

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

<32382DC3BBB0A2C0E5BED6C0DA2E687770> 논문접수일 : 2014.12.20 심사일 : 2015.01.06 게재확정일 : 2015.01.27 청각 장애자들을 위한 보급형 휴대폰 액세서리 디자인 프로토타입 개발 Development Prototype of Low-end Mobile Phone Accessory Design for Hearing-impaired Person 주저자 : 윤수인 서경대학교 예술대학

More information

1. 서 론

1. 서 론 두 장의 영상을 이용한 저조도 환경에서의 실용적 계산 사진 기법과 Mosaic 에의 응용 Practical Computational Photography with A Pair of Images under Low Illumination and Its Application to Mosaic 안택현 O, 홍기상 포항공과대학교 정보통신학과 O, 포항공과대학교 전자전기공학과

More information

°æÁ¦Àü¸Á-µ¼º¸.PDF

°æÁ¦Àü¸Á-µ¼º¸.PDF www.keri.org i ii iii iv v vi vii viii ix x xi xii xiii xiv xv 3 4 5 6 7 8 9 10 11 12 13 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 47 48 49 50 51 52 53

More information

Microsoft PowerPoint - 13prac.pptx

Microsoft PowerPoint - 13prac.pptx Viewing 1 th Week, 29 OpenGL Viewing Functions glulookat() Defining a viewing matrix glortho() Creating a matrix for an orthographic parallel viewing i volume glfrustum() Creating a matrix for a perspective-view

More information

<C0CCBCBCBFB52DC1A4B4EBBFF82DBCAEBBE7B3EDB9AE2D313939392D382E687770>

<C0CCBCBCBFB52DC1A4B4EBBFF82DBCAEBBE7B3EDB9AE2D313939392D382E687770> i ii iii iv v vi 1 2 3 4 가상대학 시스템의 국내외 현황 조사 가상대학 플랫폼 개발 이상적인 가상대학시스템의 미래상 제안 5 웹-기반 가상대학 시스템 전통적인 교수 방법 시간/공간 제약을 극복한 학습동기 부여 교수의 일방적인 내용전달 교수와 학생간의 상호작용 동료 학생들 간의 상호작용 가상대학 운영 공지사항,강의록 자료실, 메모 질의응답,

More information

PCServerMgmt7

PCServerMgmt7 Web Windows NT/2000 Server DP&NM Lab 1 Contents 2 Windows NT Service Provider Management Application Web UI 3 . PC,, Client/Server Network 4 (1),,, PC Mainframe PC Backbone Server TCP/IP DCS PLC Network

More information

12(4) 10.fm

12(4) 10.fm KIGAS Vol. 12, No. 4, December, 2008 (Journal of the Korean Institute of Gas) l x CNG» v m s w ½ Á y w» œw (2008 9 30, 2008 12 10, 2008 12 10 k) Numerical Analysis for Temperature Distribution and Thermal

More information

Microsoft Word - KSR2014S042

Microsoft Word - KSR2014S042 2014 년도 한국철도학회 춘계학술대회 논문집 KSR2014S042 안전소통을 위한 모바일 앱 서비스 개발 Development of Mobile APP Service for Safety Communication 김범승 *, 이규찬 *, 심재호 *, 김주희 *, 윤상식 **, 정경우 * Beom-Seung Kim *, Kyu-Chan Lee *, Jae-Ho

More information

Something that can be seen, touched or otherwise sensed

Something that can be seen, touched or otherwise sensed Something that can be seen, touched or otherwise sensed Things about an object Weight Height Material Things an object does Pen writes Book stores words Water have Fresh water Rivers Oceans have

More information

歯Lecture2.PDF

歯Lecture2.PDF VISUAL C++/MFC Lecture 2? Update Visual C ++/MFC Graphic Library OpenGL? Frame OpenGL 3D Graphic library coding CLecture1View? OpenGL MFC coding Visual C++ Project Settings Link Tap Opengl32lib, Glu32lib,

More information

hwp

hwp 100% Concentration rate (%) 95% 90% 85% 80% 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 Time (min) Control box of RS485 Driving part Control trigger Control box of driving car Diaphragm Lens of camera Illumination

More information

TTA Verified : HomeGateway :, : (NEtwork Testing Team)

TTA Verified : HomeGateway :, : (NEtwork Testing Team) TTA Verified : HomeGateway :, : (NEtwork Testing Team) : TTA-V-N-05-006-CC11 TTA Verified :2006 6 27 : 01 : 2005 7 18 : 2/15 00 01 2005 7 18 2006 6 27 6 7 9 Ethernet (VLAN, QoS, FTP ) (, ) : TTA-V-N-05-006-CC11

More information

DW 개요.PDF

DW 개요.PDF Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.

More information

Integ

Integ HP Integrity HP Chipset Itanium 2(Processor 9100) HP Integrity HP, Itanium. HP Integrity Blade BL860c HP Integrity Blade BL870c HP Integrity rx2660 HP Integrity rx3600 HP Integrity rx6600 2 HP Integrity

More information