PowerPoint 프레젠테이션

Size: px
Start display at page:

Download "PowerPoint 프레젠테이션"

Transcription

1

2

3

4

5

6 637 개영어챗봇

7

8 AIML (The Artificial Intelligence Markup Language) 방법검색기반방법 Deep learning 기반방법 Deep learning + 유사도기반방법

9 사용자 : 너이름이뭐니시스템 : 저는네이버아이입니다. <category> <pattern> 너이름이뭐니 </pattern> <template> <srai> 너는누구 </srai> </template> </category> <category> <pattern> 너누구 </pattern> <template> <srai> 너는누구 </srai> </template> </category> <category> <pattern> 너는누구 </pattern> <template> 저는네이버아이입니다. </template> </category>

10 A: 너희집어디니? B: 당신마음속이요... A: 너반가워 B: 저도반가워요 집이어디? 당신마음속이요... A: 졸려 B: 그럼얼른주무세요.

11 RNN (recurrent neural network) PRONOUN VERB ADJECTIVE It is funny recurrent-neural-networks-tutorial-part-2 -implementing-a-language-model-rnn-with-python-numpy-and-theano/

12 Seq2Seq = RNN + RNN 입력 RNN (encoder) RNN (decoder) 출력 Vinyals and Le, A Neural Conversational Model, 2015

13 Seq2seq 그럼얼른주무세요 지금너무졸립다 그럼얼른주무세요

14 Seq2seq 방법문제점 I Don t Know

15 Seq2seq + 유사도기반 A: 너희집어디니? B: 당신마음속이요... A: 너반가워 B: 저도반가워요 에구너무졸려 A: 졸려 B: 그럼얼른주무세요. 그럼얼른주무세요.

16 스푸너 : 로봇이교향곡을쓸수있어? 로봇이캔버스에멋진명화를그릴수있냐고? 서니 : 그럼당신은할수있나요? 영화 아이로봇 대사, 아이로봇

17

18 Amazon echo SKT NUGU Google Home KT Giga Genie ( ) ( ) ( ) ( )

19

20 SoftBank pepper Jibo Musio CogniToys ( )

21

22

23 출처 : wwdc 2016

24 출처 : wwdc 2016

25 Amazon Alexa skills

26 kik 의 H&M 페이스북 FLOWERS 11 번가바로

27 음성 / 텍스트입력 자연어이해 기억 (memory) 대화관리 (Dialog Management) Task 관리 음성 / 텍스트출력 자연어생성

28 Task 관리 검색 QnA 음성 / 텍스트입력 자연어이해 지식추출 번역 추천 요약 기억 (memory) 대화관리 (Dialog Management) 전화 일정 문자 메일 음성 / 텍스트출력 자연어생성 메모 쇼핑 음악 잡담 예약 / 예매

29 내일강남구삼성동날씨어때? 자연어이해 도메인 : 날씨의도 : 날씨검색날짜 : 내일지역 : 강남구삼성동 대화관리 날씨검색 & 결과파싱 : - 오전맑음 - 오후구름많음 자연어생성 내일날씨는오전에는맑다가오후에는구름이많아지겠어요.

30 2) 주변맛집알려줘 자연어이해 도메인 : 지역의도 : 맛집검색 대화관리 기억 : 지역 = 강남구삼성동 삼성동맛집검색 & 결과파싱 - 수담한정식 - 오리옥스코엑스점 자연어생성 삼성동맛집을찾아봤어요. 수담한정식, 오리옥스코엑스점이있어요.

31 내일강남구삼성동날씨어때? 날짜 지역 도메인 : 날씨의도 : 날씨검색

32 내일강남구삼성동날씨어때 형태소분석명사명사명사명사형용사 고유명사분석 날짜 _B 지역 _B 지역 _I

33 CNN (convolutional neural network)

34 Lafferty et al., Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data, 2001

35 Ma and Hovy, End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF, 2016 Lample et al., Neural Architecture for Named Entity Recognition, 2016

36 Lee and Dernoncourt, Sequential Short-Text Classification with Recurrent and Convolutional Neural Networks, 2016

37 frame 도메인 : 날씨 내일강남구삼성동날씨어때? 의도 : 날씨검색 날짜 : 내일 지역 : 강남구삼성동 도메인 : 지역 주변맛집알려줘 의도 : 맛집검색 날짜 : 내일 지역 : 강남구삼성동

38

39 (Fully Observable) Markov Decision Process (MDP) 사용자입력이명확한경우 1-best 입력 Partially Observable MDP (POMDP) 사용자입력이모호한경우 n-best 입력

40 도착지 =? 출발지 =? 출발날짜 =? 출발시간 =? s 도착지 = 제주출발지 =? 출발날짜 =? 출발시간 =? s 시스템 :? a 시스템 : 어디가세요? a 사용자 : 제주 u s: state a: action u: user

41 도착지 =? 출발지 =? 출발날짜 =? 출발시간 =? s 도착지 = 제주출발지 =? 출발날짜 =? 출발시간 =? s 도착지 = 대구출발지 =? 출발날짜 =? 출발시간 =? s Belief state 시스템 : 어디에가세요? a 음성인식결과 ( 확률 ) 사용자 : 제주 (0.8) 사용자 : 대구 (0.2) u 도착지 =? 출발지 =? 출발날짜 =? 출발시간 =? s 도착지 = 제주출발지 =? 출발날짜 =? 출발시간 =? s 도착지 = 대구출발지 =? 출발날짜 =? 출발시간 =? s Belief state

42 Yang et al, End-to-end joint learning of natural language understanding and dialogue manager, 2017

43 Human-Machine dialogue datasets Serban et al., A Survey of Available Corpora for Building Data-Driven Dialogue Systems, 2017

44 Human-human constrained spoken dialogue datasets Serban et al., A Survey of Available Corpora for Building Data-Driven Dialogue Systems, 2017

45 PLACE: 강남구삼성동 DATE: 내일 AM_WEATHER: 흐림 PM_WEATHER: 가끔비 [PLACE] [DATE] 날씨는오전에는 [AM_WEATHER], 오후에는 [PM_WEATHER] 입니다. 강남구삼성동내일날씨는오전에는흐림, 오후에는가끔비입니다.

46 Oh and Rudnicky, Stochastic natural language generation for spoken dialog systems, 2002

47 Wen et al., Stochastic Language Generation in Dialogue using Recurrent Neural Networks with Convolutional Sentence Reranking, 2015

48

49 사람과대화하듯이네이버서비스를이용할수있습니다. ( 베타오픈 )

50

51 자연어이해 (NLU) 대화관리주제판단, 중의성해결, 생략복원잡담모드, 끝말잇기모드, 번역모드표현정규화 NLU 후처리의도분석기억관리작업관리시나리오관리질의추천발화내용생성 분석결과랭킹, 분석결과확장정답검색, 뉴스읽기, 앱실행오류복구질의, 필터링질의, 제어질의 자연어생성 (NLG)

52 네이버앱의네앱연구소통해서설치

53

54

55

56

57 고맙습니다.

DIY 챗봇 - LangCon

DIY 챗봇 - LangCon without Chatbot Builder & Deep Learning bage79@gmail.com Chatbot Builder (=Dialogue Manager),. We need different chatbot builders for various chatbot services. Chatbot builders can t call some external

More information

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

Software Requirrment Analysis를 위한 정보 검색 기술의 응용 EPG 정보 검색을 위한 예제 기반 자연어 대화 시스템 김석환 * 이청재 정상근 이근배 포항공과대학교 컴퓨터공학과 지능소프트웨어연구실 {megaup, lcj80, hugman, gblee}@postech.ac.kr An Example-Based Natural Language System for EPG Information Access Seokhwan Kim

More information

R을 이용한 텍스트 감정분석

R을 이용한 텍스트 감정분석 R Data Analyst / ( ) / kim@mindscale.kr (kim@mindscale.kr) / ( ) ( ) Analytic Director R ( ) / / 3/45 4/45 R? 1. : / 2. : ggplot2 / Web 3. : slidify 4. : 5. Matlab / Python -> R Interactive Plots. 5/45

More information

(JBE Vol. 24, No. 1, January 2019) (Special Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287-

(JBE Vol. 24, No. 1, January 2019) (Special Paper) 24 1, (JBE Vol. 24, No. 1, January 2019)   ISSN 2287- (Special Paper) 24 1 2019 1 (JBE Vol. 24 No. 1 January 2019) https//doi.org/10.5909/jbe.2019.24.1.58 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) a) a) b) c) d) A Study on Named Entity Recognition

More information

Ch 1 머신러닝 개요.pptx

Ch 1 머신러닝 개요.pptx Chapter 1. < > :,, 2017. Slides Prepared by,, Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 1.1 3 1.2... 7 1.3 10 1.4 16 1.5 35 2 1 1.1 n,, n n Artificial

More information

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5> 주간기술동향 2016. 5.18. 컴퓨터 비전과 인공지능 장혁 한국전자통신연구원 선임연구원 최근 많은 관심을 받고 있는 인공지능(Artificial Intelligence: AI)의 성과는 뇌의 작동 방식과 유사한 딥 러닝의 등장에 기인한 바가 크다. 이미 미국과 유럽 등 AI 선도국에서는 인공지능 연구에서 인간 뇌 이해의 중요성을 인식하고 관련 대형 프로젝트들을

More information

RNN & NLP Application

RNN & NLP Application RNN & NLP Application 강원대학교 IT 대학 이창기 차례 RNN NLP application Recurrent Neural Network Recurrent property dynamical system over time Bidirectional RNN Exploit future context as well as past Long Short-Term

More information

종합설계 I (Xcode and Source Control )

종합설계 I  (Xcode and Source Control ) Sogang University: Dept of Computer Science 구명완교수 서강대학교컴퓨터공학과 Email: mwkoo9@gmail.com 내용 개념도 시맨틱해석기 대화상태추적기 대화관리기 자연언어생성기 결론 개념도 음성인식 음성대화 음성대화솔류션사례 음성대화서비스 음성대화로봇 Apple Siri Google MS Cortana Amazon Echo

More information

<4D F736F F F696E74202D F ABFACB1B8C8B85FBEF0BEEEC3B3B8AEBFCDB1E2B0E8B9F8BFAAC7F6C8B228C1F6C3A2C1F829>

<4D F736F F F696E74202D F ABFACB1B8C8B85FBEF0BEEEC3B3B8AEBFCDB1E2B0E8B9F8BFAAC7F6C8B228C1F6C3A2C1F829> Ebiz 연구회 2017 9 21 정의용 FrankJeong@systrangroupcom SYSTRAN History & Technology Natural Language Processing Machine Translation History MT Technique Neural Network Neural Machine Translation Data Landscape

More information

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB> 주간기술동향 2016. 2. 24. 최신 ICT 이슈 인공지능 바둑 프로그램 경쟁, 구글이 페이스북에 리드 * 바둑은 경우의 수가 많아 컴퓨터가 인간을 넘어서기 어려움을 보여주는 사례로 꼽혀 왔 으며, 바로 그런 이유로 인공지능 개발에 매진하는 구글과 페이스북은 바둑 프로그램 개 발 경쟁을 벌여 왔으며, 프로 9 단에 도전장을 낸 구글이 일단 한발 앞서 가는

More information

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf

More information

Microsoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx

Microsoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx 실습강의개요와인공지능, 기계학습, 신경망 < 인공지능입문 > 강의 허민오 Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 실습강의개요 노트북을꼭지참해야하는강좌 신경망소개 (2 주, 허민오 ) Python ( 프로그래밍언어 ) (2주, 김준호

More information

Delving Deeper into Convolutional Networks for Learning Video Representations - Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arXiv:

Delving Deeper into Convolutional Networks for Learning Video Representations  -   Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville  arXiv: Delving Deeper into Convolutional Networks for Learning Video Representations Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arxiv: 1511.06432 Il Gu Yi DeepLAB in Modu Labs. June 13, 2016 Il Gu Yi

More information

SKT - 0.0% SKT 9,582 60.0% 7,600 67.4% 2,715 17.0% 3,673 32.6% 13,255 83.0% 11,273 15,970

SKT - 0.0% SKT 9,582 60.0% 7,600 67.4% 2,715 17.0% 3,673 32.6% 13,255 83.0% 11,273 15,970 SKT - 0.0% SKT 9,582 60.0% 7,600 67.4% 2,715 17.0% 3,673 32.6% 13,255 83.0% 11,273 15,970 * 5 (5 12 ) 9,000 6,000 3,000 800 600 400 200 0 0-3,000-6,000-9,000 4/29 5/6 5/13 5/20 5/27-200 -400-600

More information

목차 AI Boom Chatbot Deep Learning Company.AI s Approach AI Chatbot In Financial service 2

목차 AI Boom Chatbot Deep Learning Company.AI s Approach AI Chatbot In Financial service 2 챗봇과 금융서비스의 결합 2017.05.25 Company.AI 강지훈 목차 1. 2. 3. 4. 5. AI Boom Chatbot Deep Learning Company.AI s Approach AI Chatbot In Financial service 2 3 인공지능 및 고급 기계 학습 딥러닝, 인공신경망, 자연어 처리 등 다양한 기술 이해, 학습, 예측

More information

Data Industry White Paper

Data Industry White Paper 2017 2017 Data Industry White Paper 2017 1 3 1 2 3 Interview 1 ICT 1 Recommendation System * 98 2017 Artificial 3 Neural NetworkArtificial IntelligenceAI 2 AlphaGo 1 33 Search Algorithm Deep Learning IBM

More information

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018)   ISSN (Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.186 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Robust Online Object Tracking via Convolutional

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

..........(......).hwp

..........(......).hwp START START 질문을 통해 우선순위를 결정 의사결정자가 질문에 답함 모형데이터 입력 목표계획법 자료 목표계획법 모형에 의한 해의 도출과 득실/확률 분석 END 목표계획법 산출결과 결과를 의사 결정자에게 제공 의사결정자가 결과를 검토하여 만족여부를 대답 의사결정자에게 만족하는가? Yes END No 목표계획법 수정 자료 개선을 위한 선택의 여지가 있는지

More information

SW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013

SW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING WHITE BOOK : KOREA 2013 SOFTWARE ENGINEERING

More information

PART 8 12 16 21 25 28

PART 8 12 16 21 25 28 PART 8 12 16 21 25 28 PART 34 38 43 46 51 55 60 64 PART 70 75 79 84 89 94 99 104 PART 110 115 120 124 129 134 139 144 PART 150 155 159 PART 8 1 9 10 11 12 2 13 14 15 16 3 17 18 19 20 21 4 22 23 24 25 5

More information

방송공학회논문지 제18권 제2호

방송공학회논문지 제18권 제2호 방송공학회논문지 제 20권 6호 (2015년 11월) 특집논문 : 2015년 하계학술대회 좌장추천 우수논문 프레넬 회절을 이용한 디지털 홀로그램 암호화 알고리즘 새로운 광적응 효과 모델을 이용한 정교한 영상 화질 측정 민방위 경보 방송에 대한 정보 수용자 인식 연구 UHDTV 방송을 위한 공간 변조 다중 안테나 시스템 수신 성능 분석 홍보동영상 제작 서비스를

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Visual Search At SK-Planet sk-planet Machine Intelligence Lab. 나상일 1. 개발배경 2. 첫접근방법 3. 개선된방법 A. Visual recognition technology B. Guided search C. Retrieval system 개발배경 개발배경 상품검색을좀더쉽게 Key-word 트렌치코트버튺벨트

More information

Voice Portal using Oracle 9i AS Wireless

Voice Portal using Oracle 9i AS Wireless Voice Portal Platform using Oracle9iAS Wireless 20020829 Oracle Technology Day 1 Contents Introduction Voice Portal Voice Web Voice XML Voice Portal Platform using Oracle9iAS Wireless Voice Portal Video

More information

Naver.NLP.Workshop.SRL.Sogang_Alzzam

Naver.NLP.Workshop.SRL.Sogang_Alzzam : Natra Langage Processing Lab 한국어 ELMo 모델을이용한의미역결정 박찬민, 박영준 Sogang_Azzam Naver NLP Chaenge 서강대학교자연어처리연구실 목차 서론 제안모델 실험 결론 2 서론 의미역결정이란? 문장의술어를찾고, 그술어와연관된논항들사이의의미관계를결정하는문제 논항 : 의미역이부여된각명사구의미역 : 술어에대한명사구의의미역할

More information

KCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion

KCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion KCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion 요약 본연구에서는, 웹문서로부터특정상품에대한의견문장을분석하는오피니언마이닝 (Opinion

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 ETRI, Kim Kwihoon (kwihooi@etri.re.kr) 1 RL overview & RL 에주목하는이유? 2 RL Tech. Tree 3 Model-based RL vs Model-free RL 4 몇가지사례들 5 Summary 2 AI Framework KSB AI Framework BeeAI,, Edge Computing EdgeX,, AI

More information

딥러닝NLP응용_이창기

딥러닝NLP응용_이창기 딥러닝과 자연어처리 응용 강원대학교 IT대학 이창기 차례 딥러닝최신기술소개 딥러닝기반의자연어처리 Classification Problem Sequence Labeling Problem Sequence-to-Sequence Learning Pointer Network Recurrent Neural Network Many NLP problems can be viewed

More information

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018)   ISSN (Special Paper) 23 2, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.246 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) CNN a), a), a) CNN-Based Hand Gesture Recognition

More information

[한반도]한국의 ICT 현주소(송부)

[한반도]한국의 ICT 현주소(송부) ICT 2016. 5. 3 SKT KT LGU+ ( ) ( ) ( ) 18,000 15939 16141 16602 17164 17137 18,000 21990 23856 23811 23422 22281 12,000 10905 11450 11000 10795 13,500 13,425 9,000 9185 9,000 8,850 6,000 4,500 4,275 3,000-0

More information

00-CourseSyllabus

00-CourseSyllabus 웹기술및응용 : Course Syllabus 2018 년도 2 학기 Instructor: Prof. Young-guk Ha Dept. of Computer Science & Engineering Contents Introduction Major Topics Term Project Course Material Grading Policy Class Schedule

More information

src.xls

src.xls [ 동네예보 XML element 설명 ] ex) http://www.kma.go.kr/wid/querydfs.jsp?gridx=59&gridy=127 xml 코드 xml 설명 비고 xml 선언부에한글처리 (utf-8) 인코딩선언 - 동네예보열기 - 지역, 구역헤더열기

More information

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>

<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB> 최신 ICT 이슈 최신 ICT 이슈 알파고의 심층강화학습을 뒷받침한 H/W 와 S/W 환경의 진화 * 알파고의 놀라운 점은 바둑의 기본규칙조차 입력하지 않았지만 승리 방식을 스스로 알아 냈다는 것이며, 알파고의 핵심기술인 심층강화학습이 급속도로 발전한 배경에는 하드웨 어의 진화와 함께 오픈소스화를 통해 발전하는 AI 관련 소프트웨어들이 자리하고 있음 2014

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 [ 인공지능입문랩 ] SEOPT ( Study on the Elements Of Python and Tensorflow ) 인공지능 + 데이터분석목적 / 방법 / 기법 / 도구 + Python Programming 기초 + NumpyArray(Tensor) youngdocseo@gmail.com 1 *3 시간 / 회 구분일자내용비고 1 회 0309

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 CRM Fair 2004 Spring Copyright 2004 DaumSoft All rights reserved. INDEX Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved.

More information

DW 개요.PDF

DW 개요.PDF Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.

More information

Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology

Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology 이승욱 (S.W. Lee, tajinet@etri.re.kr) 황본우 (B.W. Hwang,

More information

src.xls

src.xls xml 선언부에한글처리 (utf-8) 인코딩선언 - 주간예보열기 - 지역, 구역헤더열기 전국육상주간예보 주간예보제목태그열고닫기 201003080600 발표시각 :yyyymmddhhmm 시간태그열고닫기 - 기상전망열기

More information

Reinforcement Learning & AlphaGo

Reinforcement Learning & AlphaGo Gait recognition using a Discriminative Feature Learning Approach for Human identification 딥러닝기술및응용딥러닝을활용한개인연구주제발표 이장우 wkddn1108@kist.re.kr 2018.12.07 Overview 연구배경 관련연구 제안하는방법 Reference 2 I. 연구배경 Reinforcement

More information

강창훈

강창훈 51 4. 2 4?? 1 3B 1 1 3 1 1?? C 3? /3 A 23 C 3? /3 A 23 C 3? /3 A 23 1 2 3 3 1 1 3 1 C 3? A3 /3 A 23.1? A3 /3 A 23. / / 23? / / 1.1 Microsoft Bot Framework? 마이크로소프트사의소프트웨어기반봇개발프레임워크. Bot Framework 는강력하고인텔리전트한봇을구축하고연결하며테스트,

More information

<65B7AFB4D7B7CEB5E5BCEEBFEEBFB5B0E1B0FABAB8B0EDBCAD5FC3D6C1BE2E687770>

<65B7AFB4D7B7CEB5E5BCEEBFEEBFB5B0E1B0FABAB8B0EDBCAD5FC3D6C1BE2E687770> 축 사 - 대구 박람회 개막 - 존경하는 신상철 대구광역시 교육감님, 도승회 경상북도 교육감님, 김달웅 경북대학교 총장님, 장이권 대구교육대학교 총장님, 김영택 대구광역시교육위 원회 의장님, 류규하 대구광역시의회교사위원회 위원장님을 비롯한 내외 귀빈 여러분, 그리고 교육가족 여러분! 제8회 e-러닝 대구 박람회 의 개막을 진심으로 축하드리며, 이 같이 뜻 깊

More information

Microsoft PowerPoint _SKT_jgjung.pptx

Microsoft PowerPoint _SKT_jgjung.pptx 인공지능서비스누구 (NUGU) 기술소개 2018. 6. 22 SK Telecom 정규준 Contents 1. SK Telecom NUGU 2. Core Technology 3. SK Telecom Speech Recognition 1 AI Assistant : Speakers https://www.youtube.com/embed/yrjsgg_2meg 2 음성인식인공지능스피커

More information

Ch 23 - Supplement

Ch 23 - Supplement Supplement to Ch. 23: Natural Language for Communication < 인공지능 > 강의노트 장병탁서울대학교컴퓨터공학부 & 인지과학 / 뇌과학협동과정 http://bi.snu.ac.kr/~btzhang/ Version: 20180528 목차 언어, 사고, 소통...... 3 자연언어처리.......... 5 음성인식...............

More information

UML

UML Introduction to UML Team. 5 2014/03/14 원스타 200611494 김성원 200810047 허태경 200811466 - Index - 1. UML이란? - 3 2. UML Diagram - 4 3. UML 표기법 - 17 4. GRAPPLE에 따른 UML 작성 과정 - 21 5. UML Tool Star UML - 32 6. 참조문헌

More information

인권1~2부73p

인권1~2부73p National Action Plan for the Promotion and Protection of Human Rights 20075 2007-2011 National Action Plan for the Promotion and Protection of Human Rights 20075 1 7 8 9 10 11 12 13 14 15 2 19 20 21 22

More information

e- 11 (Source: IMT strategy 1999 'PERMISSION ' ) The World Best Knowledge Providers Network

e- 11 (Source: IMT strategy 1999 'PERMISSION  ' )  The World Best Knowledge Providers Network e 메일 /DB 마케팅 E? E e http://www.hunet.co.kr The World Best Knowledge Providers Network e- 11 (Source: IMT strategy 1999 'PERMISSION email' ) http://www.hunet.co.kr The World Best Knowledge Providers Network

More information

歯목차.PDF

歯목차.PDF A Study on The Effects of User Mental Images on Product Form -Concentrated on Implicit and Explicit Memory - 200012 1. 1-1. ---------------------------------------1 1-2. -----------------------------------2

More information

Microsoft Word - 151001_Smallcap

Microsoft Word - 151001_Smallcap 박가영(parkga00@truefriend.com) 02-3276-5979 서로 다른 사물인터넷 전략, 기회를 찾는 기업 2015년 Target KOSPI 2,300pt 12MF PER 10.27배 12MF PBR 0.91배 Yield Gap 8.2%P SKT는 빅데이터 비즈니스(B2B) vs LG U+는 월과금 서비스(B2C) 사물인터넷은 단순히 하나의 기술이

More information

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C8F1BCF8>

<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C8F1BCF8> 기획시리즈 주간기술동향 2015. 9. 9. 사물인터넷 기반 스마트홈 발전 전망 장희순 KiCRA 경영기획실장 chs00721@daum.net 이상일 동일건축 1. 서론 2. 스마트홈 발전단계 3. 스마트홈 개발 동향 4. 스마트홈 사업 전망 5. 결론 1. 서론 스마트홈이란 TV, 냉장고, 세탁기 등 집 안의 다양한 기기들이 네트워크에 연결되어 지능형 서비스를

More information

#한국사문제7회4급

#한국사문제7회4급 1 1. 3. 2. 2 4. 7. 5. 6. 8. 3 9. 11. 10. 12. 4 13. 15. 16. 14. 5 17. 20. 18. 21. 19. 6 22. 24. 23. 7 25. 26. 28. 29. 27. 8 30. 32. 33. 31. 9 34. 35. 37. 36. 38. 10 39. 41. 40. 42. category 11 43. 45. 001.jpg

More information

자연어처리가중요한이유 대화인터페이스 - 챗봇이야기 n 엄청난정보와지식이자연어형태로존재 책, 문서 뉴스 SNS나사람들의구전등 n 특히, 사람들은 mouse 보다는대화로소통하기를원함 Now we are being he company on hese naural inerfac

자연어처리가중요한이유 대화인터페이스 - 챗봇이야기 n 엄청난정보와지식이자연어형태로존재 책, 문서 뉴스 SNS나사람들의구전등 n 특히, 사람들은 mouse 보다는대화로소통하기를원함 Now we are being he company on hese naural inerfac Sogang Universiy: Dep of Compuer Science 대화인터페이스, 챗봇, 그리고 자연어처리 서정연교수 Office: R관 908 Tel: 705-8488 Email: seojy@sogang.ac.kr 자연어처리가중요한이유 대화인터페이스 - 챗봇이야기 n 엄청난정보와지식이자연어형태로존재 책, 문서 뉴스 SNS나사람들의구전등 n 특히, 사람들은

More information

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770> 한국지능시스템학회 논문지 2010, Vol. 20, No. 3, pp. 375-379 유전자 알고리즘을 이용한 강인한 Support vector machine 설계 Design of Robust Support Vector Machine Using Genetic Algorithm 이희성 홍성준 이병윤 김은태 * Heesung Lee, Sungjun Hong,

More information

소프트웨어개발방법론

소프트웨어개발방법론 사용사례 (Use Case) Objectives 2 소개? (story) vs. 3 UC 와 UP 산출물과의관계 Sample UP Artifact Relationships Domain Model Business Modeling date... Sale 1 1..* Sales... LineItem... quantity Use-Case Model objects,

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 1 2 3 3-1 3-2 3-3 Large-scale data 개요기계학습기반자료분석기술교통분석에기계학습적용사례 1 CNN 을활용한대중교통수요예측 2 RNN 을활용한공로통행속도예측 3 DQN 을이용한최적교통신호제어 4 시연 Large-Scale Data 기술요소 전수자료 이력자료누적 ( 자료를지우지않음 ) Hadoop HDFS MapReduce 병렬 DBMS

More information

첨 부 1. 설문분석 결과 2. 교육과정 프로파일 169

첨 부 1. 설문분석 결과 2. 교육과정 프로파일 169 첨부 168 첨 부 1. 설문분석 결과 2. 교육과정 프로파일 169 Ⅰ-1. 설문조사 개요 Ⅰ. 설문분석 결과 병무청 직원들이 생각하는 조직문화, 교육에 대한 인식, 역량 중요도/수행도 조사를 인터넷을 통해 실 시 총 1297명의 응답을 받았음 (95% 신뢰수준에 표본오차는 ±5%). 조사 방법 인터넷 조사 조사 기간 2005년 5월 4일 (목) ~ 5월

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 고령사회인공지능과로봇의미래 뉴스토마토 2016 은퇴전략포럼 2016. 9. 23 ( 목 ), 15:20~14:00 장병탁서울대학교컴퓨터공학부 & 인지과학 / 뇌과학협동과정인지로봇인공지능연구센터 (CRAIC) http://bi.snu.ac.kr/ 목차 1. 인공지능혁명............. 3 머신러닝 / 딥러닝혁명, 글로벌기업동향 2. 스마트머신의등장........

More information

PCServerMgmt7

PCServerMgmt7 Web Windows NT/2000 Server DP&NM Lab 1 Contents 2 Windows NT Service Provider Management Application Web UI 3 . PC,, Client/Server Network 4 (1),,, PC Mainframe PC Backbone Server TCP/IP DCS PLC Network

More information

2002 KT

2002 KT 2002 KT 2002 KT { } 4 5 Contents 8 S P E C I A L 9 10 S P E C I A L 11 010110001010100011010110101001101010010101101011100010 01011000101010001101011010100110101 000101010001101011010100110101001010110110111000100101100010

More information

제1강 인공지능 개념과 역사

제1강 인공지능 개념과 역사 인공지능개념과역사 < 인공지능입문 > 강의노트 장병탁서울대학교컴퓨터공학부 & 인지과학 / 뇌과학협동과정 http://bi.snu.ac.kr/~btzhang/ Version: 20180302 목차 인공지능의개념........ 3 연구분야............ 4 역사...... 6 패러다임........ 7 응용사례.......... 8 Reading Assignments.........

More information

<C7A5C1F620BEE7BDC4>

<C7A5C1F620BEE7BDC4> 연세대학교 상경대학 경제연구소 Economic Research Institute Yonsei Universit 서울시 서대문구 연세로 50 50 Yonsei-ro, Seodaemun-gS gu, Seoul, Korea TEL: (+82-2) 2123-4065 FAX: (+82- -2) 364-9149 E-mail: yeri4065@yonsei.ac. kr http://yeri.yonsei.ac.kr/new

More information

4 : (Hyo-Jin Cho et al.: Audio High-Band Coding based on Autoencoder with Side Information) (Special Paper) 24 3, (JBE Vol. 24, No. 3, May 2019

4 : (Hyo-Jin Cho et al.: Audio High-Band Coding based on Autoencoder with Side Information) (Special Paper) 24 3, (JBE Vol. 24, No. 3, May 2019 4 : (Hyo-Jin Cho et al.: Audio High-Band Coding based on Autoencoder with Side Information) (Special Paper) 24 3, 2019 5 (JBE Vol. 24, No. 3, May 2019) https://doi.org/10.5909/jbe.2019.24.3.387 ISSN 2287-9137

More information

Ⅰ 스포츠산업 이슈페이퍼 2016. 6. 30 한국스포츠개발원 발행 제 2016-호 (통권 15호) 스포츠 경기장의 새로운 패러다임 스마트 경기장 어떻게 변화하고 있는가? 연구자 ㅣ 한 진 욱(경 희 대 학 교 체 육 대 학 원 ) 강 신 혁(kt wiz 프로야구단 마케팅 팀장) Ⅰ. 들어가는 말 Ⅱ. kt wiz의 ICT 기술 기반의 스마트 경기장 구축 및 CRM

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Jul.; 29(7), 550 559. http://dx.doi.org/10.5515/kjkiees.2018.29.7.550 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Human

More information

○ 제2조 정의에서 기간통신역무의 정의와 EU의 전자커뮤니케이션서비스 정의의 차이점은

○ 제2조 정의에서 기간통신역무의 정의와 EU의 전자커뮤니케이션서비스 정의의 차이점은 이동전화시장 경쟁활성화를 위한 MVNO 추진을 바라보며 김원식 1) 1. 들어가며 최근 이동전화의 무선재판매 시장 활성화 등을 위해 정보통신부가 준비한 전기통신사업 법 개정안 공청회에서 무선재판매의무제 관련규정을 둘러싸고 전문가들의 우려와 지적이 상당하였다. 우선 무선재판매 제도 도입의 배경을 살펴보자. 직접적 배경으로는 국내 이동전화 요금에 대한 이용자들의

More information

2015 경제ㆍ재정수첩

2015 경제ㆍ재정수첩 Contents 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Part 01 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 Part 02 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

More information

untitled

untitled 디지털 시대의 N세대 학습자 특성에 따른 교수전략 김희배 (관동대 교수) Ⅰ. 수업은 있는데... 왜, 학습은 없는 것일까? 시대적 트랜드로서 학습사회 를 거론하지 않더라도 산다는 것은 곧 배운다 는 것이다 라는 교육적 명제는 인간의 삶에 있어서 학습 의 당위성 및 중요 성을 가장 잘 나타내는 말일 것이다. 특히 오늘날과 같은 무한 경쟁시대에서 개인과 국가의

More information

01 AI Definition 02 Deep Learning Theory - Linear Regression - Cost Function - Gradient Descendent - Logistic Regression - Activation Function - Conce

01 AI Definition 02 Deep Learning Theory - Linear Regression - Cost Function - Gradient Descendent - Logistic Regression - Activation Function - Conce Artificial Intelligence for Deep Learning 01 AI Definition 02 Deep Learning Theory - Linear Regression - Cost Function - Gradient Descendent - Logistic Regression - Activation Function - Concept of Neural

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 4 차산업혁명, 인간과로봇의미래 (The 4 th Industrial Revolution - Future of Humans and Machines 제 84 회 KISTEP 수요포럼 KISTEP 12 층국제회의실, 2018. 4. 25( 수 ) 10:00-12:00 장병탁 (Byoung-Tak Zhang) 서울대학교컴퓨터공학부및인지과학 / 뇌과학협동과정인지로봇인공지능연구센터

More information

차 례... 박영목 **.,... * **.,., ,,,.,,

차 례... 박영목 **.,... * **.,., ,,,.,, 차 례... 박영목 **.,... * 2010. **.,.,.... 1980.,,,.,,. 1980.. .... (Bereiter Scardamalia, 1987).. Hayes Flower(1980),,,..,,.....,,,... Hayes Flower 1980, Hayes 1996, Kellogg 1996, Hayes 2012. Hayes Flower

More information

0125_ 워크샵 발표자료_완성.key

0125_ 워크샵 발표자료_완성.key WordPress is a free and open-source content management system (CMS) based on PHP and MySQL. WordPress is installed on a web server, which either is part of an Internet hosting service or is a network host

More information

Intro to Servlet, EJB, JSP, WS

Intro to Servlet, EJB, JSP, WS ! Introduction to J2EE (2) - EJB, Web Services J2EE iseminar.. 1544-3355 ( ) iseminar Chat. 1 Who Are We? Business Solutions Consultant Oracle Application Server 10g Business Solutions Consultant Oracle10g

More information

정보기술응용학회 발표

정보기술응용학회 발표 , hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management

More information

Microsoft Word - How to make a ZigBee Network_kr

Microsoft Word - How to make a ZigBee Network_kr 1 단계 ZigBee 네트워크설정방법 이보기는 ProBee 기기를이용해 ZigBee 네트워크를설정하는방법을보여줍니다. 2 단계 이보기에서사용된 SENA 제품입니다 : ProBee ZE10 Starter Kit ProBee ZS10 ProBee ZU10 3 단계 ZigBee 네트워크입니다. SE1 SE2 SE3 ZS10 ZS10 ZS10 R4 R5 R3 R1

More information

15_3oracle

15_3oracle Principal Consultant Corporate Management Team ( Oracle HRMS ) Agenda 1. Oracle Overview 2. HR Transformation 3. Oracle HRMS Initiatives 4. Oracle HRMS Model 5. Oracle HRMS System 6. Business Benefit 7.

More information

CMS-내지(서진이)

CMS-내지(서진이) 2013 CMS Application and Market Perspective 05 11 19 25 29 37 61 69 75 81 06 07 News Feeds Miscellaneous Personal Relationships Social Networks Text, Mobile Web Reviews Multi-Channel Life Newspaper

More information

歯목차45호.PDF

歯목차45호.PDF CRM CRM (CRM : Customer Relationship Management ). CRM,,.,,.. IMF.,.,. (CRM: Customer Relationship Management, CRM )., CRM,.,., 57 45 (2001 )., CRM...,, CRM, CRM.. CRM 1., CRM,. CRM,.,.,. (Volume),,,,,,,,,,

More information

Probabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ):

Probabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ): Probabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, 207 Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ): binomial distribution은 성공확률이 θ인 시도에서, n번 시행 중 k번 성공할 확률

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 ㆍ Natural Language Understanding 관련기술 ㆍ Semantic Parsing Conversational AI Natural Language Understanding / Machine Learning ㆍEntity Extraction and Resolution - Machine Learning 관련기술연구개발경험보유자ㆍStatistical

More information

歯3이화진

歯3이화진 http://www.kbc.go.kr/ Abstract Terrestrial Broadcasters Strategies in the Age of Digital Broadcasting Wha-Jin Lee The purpose of this research is firstly to investigate the

More information

The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowo

The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowo The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowon Lee 2 * 1 Program of Software Convergence, Soongsil

More information

세션 Tutorial 1 강연 시간 5/11(수) 09:30-11:30 주 제 5G System: Vision & Enabling Technologies 성 명 강충구 소속기관명 고려대학교 부서/학과명 전기전자공학부 직 위 교수 5G 이동통신의 응용 분야에 따른 기술

세션 Tutorial 1 강연 시간 5/11(수) 09:30-11:30 주 제 5G System: Vision & Enabling Technologies 성 명 강충구 소속기관명 고려대학교 부서/학과명 전기전자공학부 직 위 교수 5G 이동통신의 응용 분야에 따른 기술 세션 초청강연 강연 시간 5/11(수) 11:50-12:30 세션 초청강연 주 제 제4차 산업혁명과 소프트파워 성 명 윤종록 소속기관명 정보통신산업진흥원 부서/학과명 직 위 원장 1~3차 산업혁명에서는 노동력이 중요했으나, 4차 산업혁명의 키워드는 창의력! 4차 산업혁명은 창의력과 소프트파워가 결합된 새로운 시대로 최근 의 산업계 변화는 창의력을 바탕으로 한

More information

이제는 쓸모없는 질문들 1. 스마트폰 열기가 과연 계속될까? 2. 언제 스마트폰이 일반 휴대폰을 앞지를까? (2010년 10%, 2012년 33% 예상) 3. 삼성의 스마트폰 OS 바다는 과연 성공할 수 있을까? 지금부터 기업들이 관심 가져야 할 질문들 1. 스마트폰은

이제는 쓸모없는 질문들 1. 스마트폰 열기가 과연 계속될까? 2. 언제 스마트폰이 일반 휴대폰을 앞지를까? (2010년 10%, 2012년 33% 예상) 3. 삼성의 스마트폰 OS 바다는 과연 성공할 수 있을까? 지금부터 기업들이 관심 가져야 할 질문들 1. 스마트폰은 Enterprise Mobility 경영혁신 스마트폰, 웹2.0 그리고 소셜라이프의 전략적 활용에 대하여 Enterpise2.0 Blog : www.kslee.info 1 이경상 모바일생산성추진단 단장/경영공학박사 이제는 쓸모없는 질문들 1. 스마트폰 열기가 과연 계속될까? 2. 언제 스마트폰이 일반 휴대폰을 앞지를까? (2010년 10%, 2012년 33%

More information

Week13

Week13 Week 13 Social Data Mining 02 Joonhwan Lee human-computer interaction + design lab. Crawling Twitter Data OAuth Crawling Data using OpenAPI Advanced Web Crawling 1. Crawling Twitter Data Twitter API API

More information

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a low-resolution Time-Of- Flight (TOF) depth camera and

More information

슬라이드 1

슬라이드 1 Data-driven Industry Reinvention All Things Data Con 2016, Opening speech SKT 종합기술원 최진성원장 Big Data Landscape Expansion Big Data Tech/Biz 진화방향 SK Telecom Big Data Activities Lesson Learned and Other Topics

More information

<B9CCB5F0BEEEB0E6C1A6BFCDB9AEC8AD5F31322D32C8A35FBABBB9AE5FC3CAC6C731BCE25F6F6B5F32303134303531362E687770>

<B9CCB5F0BEEEB0E6C1A6BFCDB9AEC8AD5F31322D32C8A35FBABBB9AE5FC3CAC6C731BCE25F6F6B5F32303134303531362E687770> 미디어 경제와 문화 2014년 제12권 2호, 7 43 www.jomec.com TV광고 시청률 예측방법 비교연구 프로그램의 장르 구분에 따른 차이를 중심으로 1)2) 이인성* 단국대학교 커뮤니케이션학과 박사과정 박현수** 단국대학교 커뮤니케이션학부 교수 본 연구는 TV프로그램의 장르에 따라 광고시청률 예측모형들의 정확도를 비교하고 자 하였다. 본 연구에서

More information

4 : CNN (Sangwon Suh et al.: Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset) (Regular Paper) 23 6, (J

4 : CNN (Sangwon Suh et al.: Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset) (Regular Paper) 23 6, (J (Regular Paper) 23 6, 2018 11 (JBE Vol. 23, No. 6, November 2018) https://doi.org/10.5909/jbe.2018.23.6.855 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) CNN a), a), a), a), a) Dual CNN Structured Sound

More information

09오충원(613~623)

09오충원(613~623) A Study of GIS Service of Weather Information* Chung-Weon Oh**,..,., Web 2.0 GIS.,.,, Web 2.0 GIS, Abstract : Due to social and economic value of Weather Information such as urban flooding, demand of Weather

More information

뉴스레터6호F?2??訝

뉴스레터6호F?2??訝 February 2009 No.06 Roche Diagnostics Korea Co., Ltd. Focus Tech EDITORIAL February 2009 No.06 Contents Editorial 03 Focus 04 Product 10 Talk 12 Tech 14 Activity 19 Style 22 February 2009 No.06 02 03 FOCUS

More information

< 목차 > Ⅰ. 개요 3 Ⅱ. 실시간스팸차단리스트 (RBL) ( 간편설정 ) 4 1. 메일서버 (Exchange Server 2007) 설정변경 4 2. 스팸차단테스트 10

< 목차 > Ⅰ. 개요 3 Ⅱ. 실시간스팸차단리스트 (RBL) ( 간편설정 ) 4 1. 메일서버 (Exchange Server 2007) 설정변경 4 2. 스팸차단테스트 10 (https://www.kisarbl.or.kr) < 목차 > Ⅰ. 개요 3 Ⅱ. 실시간스팸차단리스트 (RBL) ( 간편설정 ) 4 1. 메일서버 (Exchange Server 2007) 설정변경 4 2. 스팸차단테스트 10 Ⅰ. 개요 실시간스팸차단리스트 (RBL) 는메일서버를운영하는누구나손쉽게효과적으로스팸수신을차단하는데이용할수있도록한국인터넷진흥원 (KISA)

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 논문 10-35-03-03 한국통신학회논문지 '10-03 Vol. 35 No. 3 원활한 채널 변경을 지원하는 효율적인 IPTV 채널 관리 알고리즘 준회원 주 현 철*, 정회원 송 황 준* Effective IPTV Channel Control Algorithm Supporting Smooth Channel Zapping HyunChul Joo* Associate

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 금융 / 공공 인공지능 이가져올산업의 Digital 지형변화 김민성 Manager / SK 텔레콤 Data 사업본부 엄재홍 Manager / SK 텔레콤 AI 기술 2 본부 1. 서비스환경의변화에대응하는기업들의파괴적혁신 - 김민성 Manager 기업서비스환경의변화 11 번가 국내프로야구 Conversation-as-a-Platform 멜론스마트홈일정알람날씨

More information

가르침과배움 23호_앞

가르침과배움 23호_앞 서울대 교양특강 시리즈 1. 기획의도 및 개발전략 교육콘텐츠개발제작부에서 2008년도에 서울대 교양특강 시리즈 개발사업을 시 작하여 2010년에도 (15강좌) 개발사업을 연속사업으로 기획하게 되었다. 본 사업은 시리즈I, II의 공개서비스 만족도 조사결과와 사용성 평가 내용을 반영 하여 다양한 주제선정과 효과적인 학습자료 제시방법을 고민하여 개발이 진행되었다.

More information