Hilbert Transform on C1+ Families of Lines
|
|
- 인문 군
- 5 years ago
- Views:
Transcription
1 Georgia Institute of Technology June 14, 2004
2 Outline Background Main Results 1 The Background of the Main Theorem Besicovitch Set Zygmund Conjecture 2 Main Results Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series
3 Besicovitch Set Background Main Results Besicovitch Set Zygmund Conjecture Besicovitch set is a compact set of zero measure, that contains a line in every direction of the plane.
4 Besicovitch Set Background Main Results Besicovitch Set Zygmund Conjecture Besicovitch set is a compact set of zero measure, that contains a line in every direction of the plane. This set necessarily has Hausdorff dimension two, a fundamental fact in this subject.
5 Besicovitch Set Background Main Results Besicovitch Set Zygmund Conjecture Besicovitch set is a compact set of zero measure, that contains a line in every direction of the plane. This set necessarily has Hausdorff dimension two, a fundamental fact in this subject. One constructs highly eccentric rectangles which have small union, but the translates along their long direction, their reach, are essentially disjoint.
6 Besicovitch Set Background Main Results Besicovitch Set Zygmund Conjecture Besicovitch set is a compact set of zero measure, that contains a line in every direction of the plane. This set necessarily has Hausdorff dimension two, a fundamental fact in this subject. One constructs highly eccentric rectangles which have small union, but the translates along their long direction, their reach, are essentially disjoint. We briefly outline the construction of this set.
7 Background Main Results Besicovitch Set Construction Besicovitch Set Zygmund Conjecture The triangle contains unit length line segments in a full angle of directions.
8 Background Main Results Besicovitch Set Construction Besicovitch Set Zygmund Conjecture The thirds of the triangle are moved so that they share a common base.
9 Background Main Results Besicovitch Set Construction Besicovitch Set Zygmund Conjecture Reflect the triangles about their vertexes.
10 Background Main Results Besicovitch Set Construction Besicovitch Set Zygmund Conjecture The red triangles are essentially disjoint, and are called the reach of the set.
11 Background Main Results Besicovitch Set Construction Besicovitch Set Zygmund Conjecture The red triangles are essentially disjoint, and are called the reach of the set. A vector field, which points into the set, defined in the reach can be Hölder continuous, of any index strictly less than one.
12 Background Main Results Besicovitch Set Construction Besicovitch Set Zygmund Conjecture The red triangles are essentially disjoint, and are called the reach of the set. A vector field, which points into the set, defined in the reach can be Hölder continuous, of any index strictly less than one. Conversely, if v is Lipschitz, then the Besicovitch set is has can t have zero Lebesgue measure.
13 Background Main Results Besicovitch Set Zygmund Conjecture Zygmund Conjecture If v is Lipschitz, then for all f L 2 (R 2 ), f (x) = lim ɛ 0 (2ɛ) 1 ɛ ɛ f (x yv(x)) dy a.e.(x)
14 Background Main Results Besicovitch Set Zygmund Conjecture Zygmund Conjecture If v is Lipschitz, then for all f L 2 (R 2 ), f (x) = lim ɛ 0 (2ɛ) 1 ɛ ɛ f (x yv(x)) dy a.e.(x) E.M. Stein s Conjecture E.M. Stein s Conjecture: For all Lipschitz v the operator below maps L 2 into itself. H v f (x) = 1 1 f (x yv(x)) dy y
15 Background Main Results Besicovitch Set Zygmund Conjecture Zygmund Conjecture If v is Lipschitz, then for all f L 2 (R 2 ), f (x) = lim ɛ 0 (2ɛ) 1 ɛ ɛ f (x yv(x)) dy a.e.(x) E.M. Stein s Conjecture E.M. Stein s Conjecture: For all Lipschitz v the operator below maps L 2 into itself. H v f (x) = 1 1 f (x yv(x)) dy y Both conjectures are open. They represent very subtle statements about the nature of the Besicovitch set.
16 Background Main Results Main Results of Xiaochun Li and L. Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series Theorem (L. & Li) For all ɛ > 0, if v has 1 + ɛ derivatives, then H v 2 (1 + log v C 1+ɛ) 2.
17 Background Main Results Main Results of Xiaochun Li and L. Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series Theorem (L. & Li) For all ɛ > 0, if v has 1 + ɛ derivatives, then H v 2 (1 + log v C 1+ɛ) 2. Let λ be a smooth Schwartz function on the plane supported in frequency in 1 ξ 2,and λ k (y) := 2 2k λ(y2 k ), so that we state things in dilation invariant setting.
18 Background Main Results Main Results of Xiaochun Li and L. Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series Theorem (L. & Li) For all ɛ > 0, if v has 1 + ɛ derivatives, then H v 2 (1 + log v C 1+ɛ) 2. Let λ be a smooth Schwartz function on the plane supported in frequency in 1 ξ 2,and λ k (y) := 2 2k λ(y2 k ), so that we state things in dilation invariant setting. Key Proposition (Scale Invariant Formulation) If v is Lipschitz, then H v λ k log 2 k v Lip.
19 Prior Results Background Main Results Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series Previously, these results where known if v were analytic, a result of Nagel, Stein and Wainger [8], or real analytic a result of Bourgain [1].
20 Prior Results Background Main Results Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series Previously, these results where known if v were analytic, a result of Nagel, Stein and Wainger [8], or real analytic a result of Bourgain [1]. There is a rich and beautiful theory of Radon Transforms, as developed by Christ, Nagel, Stein, and Wainger.
21 Prior Results Background Main Results Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series Previously, these results where known if v were analytic, a result of Nagel, Stein and Wainger [8], or real analytic a result of Bourgain [1]. There is a rich and beautiful theory of Radon Transforms, as developed by Christ, Nagel, Stein, and Wainger. The main point is that these results are true in absence of (a) geometric conditions on v (b) minimal smoothness conditions.
22 Prior Results Background Main Results Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series Previously, these results where known if v were analytic, a result of Nagel, Stein and Wainger [8], or real analytic a result of Bourgain [1]. There is a rich and beautiful theory of Radon Transforms, as developed by Christ, Nagel, Stein, and Wainger. The main point is that these results are true in absence of (a) geometric conditions on v (b) minimal smoothness conditions. Genuinely two dimensional time frequency analysis.
23 Background Main Results Key Proposition Implies Main Theorem Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series With 1 + ɛ smoothness, one can show this: H v λ k f λ k (H v λ k f ) 2 2 ɛ k k f 2 And this proves the Main Theorem from the Key Proposition. Important Obstacle in Extensions 3 This decouples R 2 scales in th crudest possible way. We need a far more sophisticated decoupling of 2-dim l scales to significantly improve the Theorem.
24 Background Main Results Key Proposition Implies Main Theorem Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series With 1 + ɛ smoothness, one can show this: H v λ k f λ k (H v λ k f ) 2 2 ɛ k k f 2 And this proves the Main Theorem from the Key Proposition. This orthogonality takes some care to formalize correctly. Important Obstacle in Extensions 3 This decouples R 2 scales in th crudest possible way. We need a far more sophisticated decoupling of 2-dim l scales to significantly improve the Theorem.
25 Background Main Results Role of Carleson s Theorem Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series Our Main Theorem has an implication: Pointwise Convergence of Fourier Series in L 2 (R).
26 Background Main Results Role of Carleson s Theorem Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series Our Main Theorem has an implication: Pointwise Convergence of Fourier Series in L 2 (R). Carleson s Theorem For all measurable functions N(x), the operator below is bounded from L 2 into itself. C N f (x) := p.v. 1 1 in(x)y dy f (x y)e y
27 Background Main Results Role of Carleson s Theorem Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series Our Main Theorem has an implication: Pointwise Convergence of Fourier Series in L 2 (R). Carleson s Theorem For all measurable functions N(x), the operator below is bounded from L 2 into itself. C N f (x) := p.v. 1 1 in(x)y dy f (x y)e y Assuming our Main Theorem, we can show that for smooth N(x), the operator above is bounded, with norm independent of N C 2.
28 Construction of v Background Main Results Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series Calculate the symbols of both operators where σ(ξ) = 1 1 eixξ dy/y. H v f (x) = σ(ξ v(x)) f (ξ)e ix ξ dξ R 2 C N g(x) = σ(θ N(x))ĝ(θ) dx. R
29 Construction of v Background Main Results Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series Calculate the symbols of both operators where σ(ξ) = 1 1 eixξ dy/y. H v f (x) = σ(ξ v(x)) f (ξ)e ix ξ dξ R 2 C N g(x) = σ(θ N(x))ĝ(θ) dx. R View g L 2 (R) as being on the frequency line ξ 2 = J on the plane, where J is large constant.
30 Construction of v Background Main Results Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series Calculate the symbols of both operators where σ(ξ) = 1 1 eixξ dy/y. H v f (x) = σ(ξ v(x)) f (ξ)e ix ξ dξ R 2 C N g(x) = σ(θ N(x))ĝ(θ) dx. R View g L 2 (R) as being on the frequency line ξ 2 = J on the plane, where J is large constant. Then you choose v(x 1, x 2 ) (1, N(x 1 )/J), so that ξ v(x) = x 1 ξ 1 N(x 1 ) on the line ξ 2 = J.
31 The Picture for v Background Main Results Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series ξ 2 = J N(x 1 ) The Blue line is the function σ(ξ 1 N(x 1 )). v(x 1 )
32 The Picture for v Background Main Results Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series ξ 2 = J N(x 1 ) The Blue line is the function σ(ξ 1 N(x 1 )). Then v(x 1 ) (1, N(x 1 )/J), so take J >> v C 2 v(x 1 )
33 The Picture for v Background Main Results Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series ξ 2 = J N(x 1 ) The Blue line is the function σ(ξ 1 N(x 1 )). Then v(x 1 ) (1, N(x 1 )/J), so take J >> v C 2 The symbol of H v and C N agree on the line ξ 2 = J. v(x 1 )
34 The Picture for v Background Main Results Main Theorem and Key Proposition Key Proposition Implies Main Theorem Corollary: Carleson s Theorem on Fourier Series ξ 2 = J v(x 1 ) N(x 1 ) The Blue line is the function σ(ξ 1 N(x 1 )). Then v(x 1 ) (1, N(x 1 )/J), so take J >> v C 2 The symbol of H v and C N agree on the line ξ 2 = J. Note that small oscillations give oscillations in frequency, that increase as frequency increases.
35 Lemma Related To Carleson s Theorem Annular Tiles The Proof of Main Theorem 3 Lemma Related To Carleson s Theorem The Weak L 2 estimate is Sharp 4 Annular Tiles The Functions associated to a Tile
36 Lemma Related To Carleson s Theorem Annular Tiles The Weak L 2 estimate is Sharp Lemma Related to Carleson s Theorem Using the methods of Carleson s Theorem, as proved in [7], one can show that Lemma for Measurable Vector Fields If v is measurable, one has H v λ 0 2 2, <, H v λ 0 p <, 2 < p <.
37 Lemma Related To Carleson s Theorem Annular Tiles The Weak L 2 estimate is Sharp Lemma Related to Carleson s Theorem Using the methods of Carleson s Theorem, as proved in [7], one can show that Lemma for Measurable Vector Fields If v is measurable, one has H v λ 0 2 2, <, H v λ 0 p <, 2 < p <. The L 2 to weak L 2 estimate is optimal.
38 Lemma Related To Carleson s Theorem Annular Tiles The Weak L 2 estimate is Sharp Lemma Related to Carleson s Theorem Using the methods of Carleson s Theorem, as proved in [7], one can show that Lemma for Measurable Vector Fields If v is measurable, one has H v λ 0 2 2, <, H v λ 0 p <, 2 < p <. The L 2 to weak L 2 estimate is optimal. And these estimate are critical to an interpolation argument that we use to prove the Key Proposition.
39 Lemma Related To Carleson s Theorem Annular Tiles Weak L 2 estimate Is Sharp The Weak L 2 estimate is Sharp Consider the radial vector field v, and a smooth bump function ϕ.
40 Lemma Related To Carleson s Theorem Annular Tiles Weak L 2 estimate Is Sharp The Weak L 2 estimate is Sharp Consider the radial vector field v, and a smooth bump function ϕ. Modulate ϕ so that it is supported in frequency in the annulus 1 ξ 2.
41 Lemma Related To Carleson s Theorem Annular Tiles Weak L 2 estimate Is Sharp The Weak L 2 estimate is Sharp H v ϕ(x) 1 x Consider the radial vector field v, and a smooth bump function ϕ. Modulate ϕ so that it is supported in frequency in the annulus 1 ξ 2. Calculate H v at any point inside the lines, and there will be no cancellation.
42 Lemma Related To Carleson s Theorem Annular Tiles Measurable Vector Fields Below L 2 The Weak L 2 estimate is Sharp The proof of the positive result for measurable vector fields follows the Lacey Thiele approach.
43 Lemma Related To Carleson s Theorem Annular Tiles Measurable Vector Fields Below L 2 The Weak L 2 estimate is Sharp The proof of the positive result for measurable vector fields follows the Lacey Thiele approach. The proof breaks down completely below L 2, as it requires essentially the boundedness of the Kakeya maximal function.
44 Lemma Related To Carleson s Theorem Annular Tiles Measurable Vector Fields Below L 2 The Weak L 2 estimate is Sharp The proof of the positive result for measurable vector fields follows the Lacey Thiele approach. The proof breaks down completely below L 2, as it requires essentially the boundedness of the Kakeya maximal function. A key innovation is to replace the Kakeya maximal function by a variant associated to the vector field v.
45 Annular Tiles Lemma Related To Carleson s Theorem Annular Tiles The Functions associated to a Tile A Tile is a product of dual rectangles. R s
46 Annular Tiles Lemma Related To Carleson s Theorem Annular Tiles The Functions associated to a Tile A Tile is a product of dual rectangles. The Frequency Rectangle ω s is tangent to a circle of radius r, and spans the annulus r < ξ < 2r. ω s R s
47 Annular Tiles Lemma Related To Carleson s Theorem Annular Tiles The Functions associated to a Tile A Tile is a product of dual rectangles. The Frequency Rectangle ω s is tangent to a circle of radius r, and spans the annulus r < ξ < 2r. But otherwise vary arbitrarily. ω s R s
48 Annular Tiles Lemma Related To Carleson s Theorem Annular Tiles The Functions associated to a Tile A Tile is a product of dual rectangles. The Frequency Rectangle ω s is tangent to a circle of radius r, and spans the annulus r < ξ < 2r. But otherwise vary arbitrarily. A tile is ω s R s. ω s R s
49 Lemma Related To Carleson s Theorem Annular Tiles More Pictures of Tiles The Functions associated to a Tile R s ω s
50 Lemma Related To Carleson s Theorem Annular Tiles More Pictures of Tiles The Functions associated to a Tile R s ω s
51 Lemma Related To Carleson s Theorem Annular Tiles More Pictures of Tiles The Functions associated to a Tile R s ω s
52 Lemma Related To Carleson s Theorem Annular Tiles More Pictures of Tiles The Functions associated to a Tile R s ω s
53 Lemma Related To Carleson s Theorem Annular Tiles More Pictures of Tiles The Functions associated to a Tile R s ω s
54 Lemma Related To Carleson s Theorem Annular Tiles More Pictures of Tiles The Functions associated to a Tile R s ω s
55 Lemma Related To Carleson s Theorem Annular Tiles More Pictures of Tiles The Functions associated to a Tile R s ω s
56 Lemma Related To Carleson s Theorem Annular Tiles The Uncertainty Intervals The Functions associated to a Tile µ(r) R Interval of uncertainty associated with rectangle R is a sub arc of the unit circle. Its center is the long direction of the rectangle. Its length is the width of R divided by length of R.
57 Lemma Related To Carleson s Theorem Annular Tiles The Uncertainty Intervals The Functions associated to a Tile µ(r) R Interval of uncertainty associated with rectangle R is a sub arc of the unit circle. Its center is the long direction of the rectangle. Its length is the width of R divided by length of R. Basis changes are permitted, up to a tolerance level dictated by the angle of uncertainty.
58 Lemma Related To Carleson s Theorem Annular Tiles The Functions Associated to a Tile s The Functions associated to a Tile ϕ s = Modulate c(ωs) Dilate 2 R s ϕ
59 Lemma Related To Carleson s Theorem Annular Tiles The Functions Associated to a Tile s The Functions associated to a Tile c(ω s ) = center of ω s, ϕ s = Modulate c(ωs) Dilate 2 R s ϕ Dilate 2 R s = L 2 norm one dilation adapted to scale and location of R s.
60 Lemma Related To Carleson s Theorem Annular Tiles The Functions Associated to a Tile s The Functions associated to a Tile c(ω s ) = center of ω s, ϕ s = Modulate c(ωs) Dilate 2 R s ϕ Dilate 2 R s = L 2 norm one dilation adapted to scale and location of R s. φ s = 1 µ(rs)(v(x)) ϕ s (x yv(x)) scl(s)ψ(scl(s)y) dy R
61 Lemma Related To Carleson s Theorem Annular Tiles The Functions associated to a Tile The Functions Associated to a Tile s c(ω s ) = center of ω s, ϕ s = Modulate c(ωs) Dilate 2 R s ϕ Dilate 2 R s = L 2 norm one dilation adapted to scale and location of R s. φ s = 1 µ(rs)(v(x)) ϕ s (x yv(x)) scl(s)ψ(scl(s)y) dy R scl(s) = the short side of ω s. ψ is a Schwartz function on R, with Fourier support in a small neighborhood of one.
62 Lemma Related To Carleson s Theorem Annular Tiles The Functions Associated to a Tile s The Functions associated to a Tile c(ω s ) = center of ω s, ϕ s = Modulate c(ωs) Dilate 2 R s ϕ Dilate 2 R s = L 2 norm one dilation adapted to scale and location of R s. φ s = 1 µ(rs)(v(x)) ϕ s (x yv(x)) scl(s)ψ(scl(s)y) dy R scl(s) = the short side of ω s. ψ is a Schwartz function on R, with Fourier support in a small neighborhood of one. Let AT be all annular tiles with ω s contained in 1 ξ 2.
63 Lemma Related To Carleson s Theorem Annular Tiles The Functions associated to a Tile The Main Lemma for Sums Over Tiles For a measurable vector field, we have the estimate 2, f, ϕ s φ s f 2 s AT We also have the L p inequality for p > 2.
64 Lemma Related To Carleson s Theorem Annular Tiles The Functions associated to a Tile The Main Lemma for Sums Over Tiles For a measurable vector field, we have the estimate 2, f, ϕ s φ s f 2 s AT We also have the L p inequality for p > 2. If in addition v Lip <, then we have the L 2 inequality f, ϕ s φ s s AT scl(s)>100 v Lip 2 f 2
65 The 1 Trees Lemma Related To Carleson s Theorem Annular Tiles The Functions associated to a Tile A 1 tree has frequency intervals that progress, counterclockwise, around the circle, at a regular rate. ω R
66 The 1 Trees Lemma Related To Carleson s Theorem Annular Tiles The Functions associated to a Tile A 1 tree has frequency intervals that progress, counterclockwise, around the circle, at a regular rate. The spatial intervals are all contained in R, up to an angle of uncertainty. ω R
67 The 1 Trees Lemma Related To Carleson s Theorem Annular Tiles The Functions associated to a Tile ω R A 1 tree has frequency intervals that progress, counterclockwise, around the circle, at a regular rate. The spatial intervals are all contained in R, up to an angle of uncertainty. This looks like a singular integral computed in the direction v.
68 Outline Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement 5 Uncertainty and Density of Rectangles 6 Maximal Function Lemma Two Lemmas on Lipschitz vector fields 7 The Covering Lemma Statement Selection of R
69 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement The Uncertainty Intervals µ(r) R Interval of uncertainty associated with rectangle R is a sub arc of the unit circle. Its center is the long direction of the rectangle. Its length is the width of R divided by length of R.
70 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement The Uncertainty Intervals µ(r) R Interval of uncertainty associated with rectangle R is a sub arc of the unit circle. Its center is the long direction of the rectangle. Its length is the width of R divided by length of R. Basis changes are permitted, up to a tolerance level dictated by the angle of uncertainty.
71 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Density for Tiles dense(r) = R v 1 (µ(r)) R This measures the percentage of time v(x) point in the long direction of R.
72 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Density for Tiles dense(r) = R v 1 (µ(r)) R This measures the percentage of time v(x) point in the long direction of R. A rectangle and three vectors in the angle of uncertainty
73 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Two Lemmas on Lipschitz vector fields Definition of the Maximal Function Let R be a collection of rectangles with dense(r) > δ for all R R. and they all have the same width, and lengths at most v Lip /100. Let 1 R M R f = sup f (y) dy R R R R
74 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Two Lemmas on Lipschitz vector fields Definition of the Maximal Function Let R be a collection of rectangles with dense(r) > δ for all R R. and they all have the same width, and lengths at most v Lip /100. Let 1 R M R f = sup f (y) dy R R R R Previously, one considered maximal function over all rectangles of a given eccentricity. Then the maximal function has norm on L 2 that blows up like the log of the eccentricity.
75 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Two Lemmas on Lipschitz vector fields Definition of the Maximal Function Let R be a collection of rectangles with dense(r) > δ for all R R. and they all have the same width, and lengths at most v Lip /100. Let 1 R M R f = sup f (y) dy R R R R Previously, one considered maximal function over all rectangles of a given eccentricity. Then the maximal function has norm on L 2 that blows up like the log of the eccentricity. Here, it is essential that the estimate be independent of eccentricity.
76 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Two Lemmas on Lipschitz vector fields Maximal Function Lemma For all 0 < δ < 1, the maximal function satisfies M R p p, δ 3, 1 < p <
77 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Two Lemmas on Lipschitz vector fields Maximal Function Lemma For all 0 < δ < 1, the maximal function satisfies M R p p, δ 3, 1 < p < We need the lemma for some 1 < p < 2.
78 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Two Lemmas on Lipschitz vector fields Maximal Function Lemma For all 0 < δ < 1, the maximal function satisfies M R p p, δ 3, 1 < p < We need the lemma for some 1 < p < 2. And a norm estimate of δ N for any N <.
79 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Two Lemmas on Lipschitz vector fields Maximal Function Lemma For all 0 < δ < 1, the maximal function satisfies M R p p, δ 3, 1 < p < We need the lemma for some 1 < p < 2. And a norm estimate of δ N for any N <. The method of proof is a careful analysis, in the style of Fefferman and Cordoba.
80 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement First Lemma on Lipschitz vector fields Two Lemmas on Lipschitz vector fields Lemma 1: Suppose there are R 1,..., R n R, all containing a common point. Then, n < δ 1.
81 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement First Lemma on Lipschitz vector fields Two Lemmas on Lipschitz vector fields... Lemma 1: Suppose there are R 1,..., R n R, all containing a common point. Then, n < δ 1. Suppose not. Then we can find two rectangles, and points in the rectangles, where the vector field points in the long direction of the rectangle.
82 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement First Lemma on Lipschitz vector fields Two Lemmas on Lipschitz vector fields... Lemma 1: Suppose there are R 1,..., R n R, all containing a common point. Then, n < δ 1. Suppose not. Then we can find two rectangles, and points in the rectangles, where the vector field points in the long direction of the rectangle. At these two points, vector field is nearly radial. But these two points are very close together. Less than angle length. That is a contradiction.
83 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Second Lemma on Lipschitz Two Lemmas on Lipschitz vector fields R R R 0 Lemma 2 Consider three rectangle, R 0, R, and R as pictured. Key assumption is that there is a point x R with v(x) µ(r), and x µ(r ), which share the same projection onto R 0. Then the uncertainty intervals µ(r) and µ(r ) are very close.
84 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Covering Lemma Given the collection R, of rectangles of density δ, it suffices to show that there is an R R for which
85 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Covering Lemma Given the collection R, of rectangles of density δ, it suffices to show that there is an R R for which R δ 1 R R R R R,
86 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Covering Lemma Given the collection R, of rectangles of density δ, it suffices to show that there is an R R for which R δ 1 R R R R lngth(r)<lngth(r 0 ) R R R, 1 R R0 n δ 2 R 0 1/n R 0 R.
87 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Covering Lemma Given the collection R, of rectangles of density δ, it suffices to show that there is an R R for which R δ 1 R R R R lngth(r)<lngth(r 0 ) R R R, 1 R R0 n δ 2 R 0 1/n R 0 R. Standard Arguments then prove the Maximal Function Estimate.
88 How To Select R Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Let M 100 be a maximal function computed in 100 uniformly distributed directions of the plane. This operator maps L 1 (R 2 ) to weak L 1.
89 How To Select R Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Let M 100 be a maximal function computed in 100 uniformly distributed directions of the plane. This operator maps L 1 (R 2 ) to weak L 1. Initialize R stock := R, R =.
90 How To Select R Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Let M 100 be a maximal function computed in 100 uniformly distributed directions of the plane. This operator maps L 1 (R 2 ) to weak L 1. Initialize R stock := R, R =. Inductive stage: Select R R stock with maximal length.
91 How To Select R Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Let M 100 be a maximal function computed in 100 uniformly distributed directions of the plane. This operator maps L 1 (R 2 ) to weak L 1. Initialize R stock := R, R =. Inductive stage: Select R R stock with maximal length. Update, R := R {R }. Remove from R stock any rectangle R such that } R {M 100. R R 1 R δ 1
92 How To Select R Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Let M 100 be a maximal function computed in 100 uniformly distributed directions of the plane. This operator maps L 1 (R 2 ) to weak L 1. Initialize R stock := R, R =. Inductive stage: Select R R stock with maximal length. Update, R := R {R }. Remove from R stock any rectangle R such that } R {M 100. Repeat until R stock is exhausted. R R 1 R δ 1
93 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Focusing on the Principal Inequality The main point to prove is n 1 R R0 δ 2 R 0 1/n R 0 R. R R lngth(r)<lngth(r 0 )
94 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Focusing on the Principal Inequality The main point to prove is n 1 R R0 δ 2 R 0 1/n R 0 R. R R lngth(r)<lngth(r 0 ) Fix R 0 as in this inequality. R 0 = I J, in standard coordinates. Length of R is in the first coordinate.
95 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Focusing on the Principal Inequality The main point to prove is n 1 R R0 δ 2 R 0 1/n R 0 R. R R lngth(r)<lngth(r 0 ) Fix R 0 as in this inequality. R 0 = I J, in standard coordinates. Length of R is in the first coordinate. We only consider those R R that intersect R 0 and have a smaller length. Call this collection R 0.
96 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Focusing on the Principal Inequality The main point to prove is n 1 R R0 δ 2 R 0 1/n R 0 R. R R lngth(r)<lngth(r 0 ) Fix R 0 as in this inequality. R 0 = I J, in standard coordinates. Length of R is in the first coordinate. We only consider those R R that intersect R 0 and have a smaller length. Call this collection R 0. We will need to select a distinguished subset of R 0.
97 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Selecting a Distinguished Subset of R 0, Part 1 R R 0
98 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Selecting a Distinguished Subset of R 0, Part 1 R R 0 I (R) is the projection of all of R onto the top side of R 0. I 0 is the top side of R 0.
99 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Selecting a Distinguished Subset of R 0, Part 1 R R 0 The rectangle R has density at least δ.
100 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Selecting a Distinguished Subset of R 0, Part 1 R F (R) R 0 The rectangle R has density at least δ. Project those x R with v(x) in the angle of uncertainty of R, onto the top side of R 0. Call that set F (R).
101 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Selecting a Distinguished Subset of R 0, Part 1 R F (R) R 0 The rectangle R has density at least δ. Project those x R with v(x) in the angle of uncertainty of R, onto the top side of R 0. Call that set F (R). This set is at least as big as δlngth(r).
102 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Selecting a Distinguished Subset of R 0, Part 2 1 Select R 1 R 0 by initializing R stock := R 0, R 1 :=.
103 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Selecting a Distinguished Subset of R 0, Part 2 1 Select R 1 R 0 by initializing R stock := R 0, R 1 :=. 2 In the inductive stage, take the longest R R stock for which F (R) is disjoint from {F (R) : R R 1 }.
104 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Selecting a Distinguished Subset of R 0, Part 2 1 Select R 1 R 0 by initializing R stock := R 0, R 1 :=. 2 In the inductive stage, take the longest R R stock for which F (R) is disjoint from {F (R) : R R 1 }. 3 Then, set R(R) to be those R R stock with I (R ) 2I (R) and F (R ) F (R) not empty.
105 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R Selecting a Distinguished Subset of R 0, Part 2 1 Select R 1 R 0 by initializing R stock := R 0, R 1 :=. 2 In the inductive stage, take the longest R R stock for which F (R) is disjoint from {F (R) : R R 1 }. 3 Then, set R(R) to be those R R stock with I (R ) 2I (R) and F (R ) F (R) not empty. 4 Remove this collection from R stock, and repeat until R stock is exhausted.
106 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Principal Lemma of the Maximal Function Estimate For any subinterval I I 0, we have the two estimates
107 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Principal Lemma of the Maximal Function Estimate For any subinterval I I 0, we have the two estimates I R1 J δ 1 I J, R 1 R 1 I R1 I
108 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Principal Lemma of the Maximal Function Estimate For any subinterval I I 0, we have the two estimates I R1 J δ 1 I J, R 1 R 1 I R1 I This is essentially immediate from the disjointness of the sets F (R) for R R 1.
109 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Principal Lemma of the Maximal Function Estimate For any subinterval I I 0, we have the two estimates I R1 J δ 1 I J, R 1 R 1 I R1 I R R 1 (R 1 ) R R 0 I J R R 0 δ 1 I J, R 1 R 1.
110 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Principal Lemma of the Maximal Function Estimate For any subinterval I I 0, we have the two estimates I R1 J δ 1 I J, R 1 R 1 I R1 I R R 1 (R 1 ) R R 0 I J R R 0 δ 1 I J, R 1 R 1. This is essentially a BMO estimate, so it implies the higher moments condition we need.
111 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Essential Geometric Observation Suppose that there is an interval I I 0 and a choice of R 1 R 1 such that R I J 10 3 δ 1 I J. R R(R 1 ) lngth(r) 4 I
112 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Essential Geometric Observation Suppose that there is an interval I I 0 and a choice of R 1 R 1 such that R I J 10 3 δ 1 I J. R R(R 1 ) lngth(r) 4 I Then, for either ε = +1 or ε = 1, there can be no R R(R 1 ) with 2lngth(R ) < I and R intersects 1 2 (I + ε I ) J.
113 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Essential Geometric Observation Suppose that there is an interval I I 0 and a choice of R 1 R 1 such that R I J 10 3 δ 1 I J. R R(R 1 ) lngth(r) 4 I Then, for either ε = +1 or ε = 1, there can be no R R(R 1 ) with 2lngth(R ) < I and R intersects 1 2 (I + ε I ) J. A final inductive/recursive scheme will then prove the Lemma.
114 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Proof of the Essential Geometric Observation I J I 0 J The proof is by contradiction to the construction of R, and in particular, the use of the maximal function in 100 different directions.
115 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Proof of the Essential Geometric Observation I J I 0 J Select I so that I J is covered more and 10 3 δ 1 times by longer intervals.
116 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Proof of the Essential Geometric Observation I J I 0 J Remember that all the rectangles that cover I J have to have angles of uncertainty that are very close.
117 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Proof of the Essential Geometric Observation I J R I 0 J Consider a rectangle that is rotated by 90 o, has width the same as all other rectangles, and is translated by about I.
118 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Proof of the Essential Geometric Observation I J R I 0 J Consider a rectangle that is rotated by 90 o, has width the same as all other rectangles, and is translated by about I. And height approximately angle I.
119 Uncertainty and Density of Rectangles Maximal Function Lemma The Covering Lemma Statement Selection of R The Proof of the Essential Geometric Observation I J R I 0 J Consider a rectangle that is rotated by 90 o, has width the same as all other rectangles, and is translated by about I. And height approximately angle I. This rectangle is contained in the removed set. A contradiction. This proves the Essential Geometric Observation.
120 References References References [1] J. Bourgain, A remark on the maximal function associated to an analytic vector field, Analysis at Urbana, Vol. I (Urbana, IL, ), London Math. Soc. Lecture Note Ser., vol. 137, Cambridge Univ. Press, Cambridge, 1989, pp MR 90h:42028 [2] Lennart Carleson, On convergence and growth of partial sumas of Fourier series, Acta Math. 116 (1966), MR 33 #7774 [3] Michael Christ, Alexander Nagel, Elias M. Stein, and Stephen Wainger, Singular and maximal Radon transforms: analysis and geometry, Ann. of Math. (2) 150 (1999), MR 2000j:42023 [4] Charles Fefferman, Pointwise convergence of Fourier series, Ann. of Math. (2) 98 (1973), MR 49 #5676 [5] Michael Lacey and Xiaochun Li, The Hilbert Transform on C 1+ɛ Families of Lines. [6], Maximal Theorems for Directional Hilbert Transform on the Plane, Preprint. [7] Michael Lacey and Christoph Thiele, A proof of boundedness of the Carleson operator, Math. Res. Lett. 7 (2000), MR 2001m:42009 [8] Alexander Nagel, Elias M. Stein, and Stephen Wainger, Hilbert transforms
Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]
전자회로 Ch3 iode Models and Circuits 김영석 충북대학교전자정보대학 2012.3.1 Email: kimys@cbu.ac.kr k Ch3-1 Ch3 iode Models and Circuits 3.1 Ideal iode 3.2 PN Junction as a iode 3.4 Large Signal and Small-Signal Operation
More informationMicrosoft PowerPoint - Freebairn, John_ppt
Tax Mix Change John Freebairn Outline General idea of a tax mix change Some detailed policy options Importance of casting assessment in the context of a small open economy Economic effects of a tax mix
More information<B3EDB9AEC1FD5F3235C1FD2E687770>
경상북도 자연태음악의 소박집합, 장단유형, 전단후장 경상북도 자연태음악의 소박집합, 장단유형, 전단후장 - 전통 동요 및 부녀요를 중심으로 - 이 보 형 1) * 한국의 자연태 음악 특성 가운데 보편적인 특성은 대충 밝혀졌지만 소박집합에 의한 장단주기 박자유형, 장단유형, 같은 층위 전후 구성성분의 시가( 時 價 )형태 등 은 밝혀지지 않았으므로
More information` Companies need to play various roles as the network of supply chain gradually expands. Companies are required to form a supply chain with outsourcing or partnerships since a company can not
More information11¹Ú´ö±Ô
A Review on Promotion of Storytelling Local Cultures - 265 - 2-266 - 3-267 - 4-268 - 5-269 - 6 7-270 - 7-271 - 8-272 - 9-273 - 10-274 - 11-275 - 12-276 - 13-277 - 14-278 - 15-279 - 16 7-280 - 17-281 -
More informationMicrosoft PowerPoint - 27.pptx
이산수학 () n-항관계 (n-ary Relations) 2011년봄학기 강원대학교컴퓨터과학전공문양세 n-ary Relations (n-항관계 ) An n-ary relation R on sets A 1,,A n, written R:A 1,,A n, is a subset R A 1 A n. (A 1,,A n 에대한 n- 항관계 R 은 A 1 A n 의부분집합이다.)
More information04-다시_고속철도61~80p
Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and
More information<B3EDB9AEC1FD5F3235C1FD2E687770>
오용록의 작품세계 윤 혜 진 1) * 이 논문은 생전( 生 前 )에 학자로 주로 활동하였던 오용록(1955~2012)이 작곡한 작품들을 살펴보고 그의 작품세계를 파악하고자 하는 것이다. 한국음악이론이 원 래 작곡과 이론을 포함하였던 초기 작곡이론전공의 형태를 염두에 둔다면 그의 연 구에서 기존연구의 방법론을 넘어서 창의적인 분석 개념과 체계를 적용하려는
More information<32382DC3BBB0A2C0E5BED6C0DA2E687770>
논문접수일 : 2014.12.20 심사일 : 2015.01.06 게재확정일 : 2015.01.27 청각 장애자들을 위한 보급형 휴대폰 액세서리 디자인 프로토타입 개발 Development Prototype of Low-end Mobile Phone Accessory Design for Hearing-impaired Person 주저자 : 윤수인 서경대학교 예술대학
More information슬라이드 제목 없음
물리화학 1 문제풀이 130403 김대형교수님 Chapter 1 Exercise (#1) A sample of 255 mg of neon occupies 3.00 dm 3 at 122K. Use the perfect gas law to calculate the pressure of the gas. Solution 1) The perfect gas law p
More information300 구보학보 12집. 1),,.,,, TV,,.,,,,,,..,...,....,... (recall). 2) 1) 양웅, 김충현, 김태원, 광고표현 수사법에 따른 이해와 선호 효과: 브랜드 인지도와 의미고정의 영향을 중심으로, 광고학연구 18권 2호, 2007 여름
동화 텍스트를 활용한 패러디 광고 스토리텔링 연구 55) 주 지 영* 차례 1. 서론 2. 인물의 성격 변화에 의한 의미화 전략 3. 시공간 변화에 의한 의미화 전략 4. 서사의 변개에 의한 의미화 전략 5. 창조적인 스토리텔링을 위하여 6. 결론 1. 서론...., * 서울여자대학교 초빙강의교수 300 구보학보 12집. 1),,.,,, TV,,.,,,,,,..,...,....,...
More information지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월
지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support
More information- i - - ii - - iii - - iv - - v - - vi - - 1 - - 2 - - 3 - 1) 통계청고시제 2010-150 호 (2010.7.6 개정, 2011.1.1 시행 ) - 4 - 요양급여의적용기준및방법에관한세부사항에따른골밀도검사기준 (2007 년 11 월 1 일시행 ) - 5 - - 6 - - 7 - - 8 - - 9 - - 10 -
More informationhttp://www.kbc.go.kr/pds/2.html Abstract Exploring the Relationship Between the Traditional Media Use and the Internet Use Mee-Eun Kang This study examines the relationship between
More information2017.09 Vol.255 C O N T E N T S 02 06 26 58 63 78 99 104 116 120 122 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2017.9 3 4 2017.9 6 2017.9 7 8 2017.9 13 0 13 1,007 3 1,004 (100.0) (0.0) (100.0)
More information... 수시연구 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 권혁구ㆍ서상범...
... 수시연구 2013-01.. 2010 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 2010... 권혁구ㆍ서상범... 서문 원장 김경철 목차 표목차 그림목차 xi 요약 xii xiii xiv xv xvi 1 제 1 장 서론 2 3 4 제 2 장 국가물류비산정방법 5 6 7 8 9 10 11 12 13
More information기관고유연구사업결과보고
기관고유연구사업결과보고 작성요령 2001 ~ 2004 2005 ~ 2007 2008 ~ 2010 2001 ~ 2004 2005 ~ 2007 2008 ~ 2010 1 2/3 2 1 0 2 3 52 0 31 83 12 6 3 21 593 404 304 1,301 4 3 1 8 159 191 116 466 6 11 (`1: (1: 16 33 44 106
More informationJournal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: (LiD) - - * Way to
Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp.353-376 DOI: http://dx.doi.org/10.21024/pnuedi.29.1.201903.353 (LiD) -- * Way to Integrate Curriculum-Lesson-Evaluation using Learning-in-Depth
More information歯kjmh2004v13n1.PDF
13 1 ( 24 ) 2004 6 Korean J Med Hist 13 1 19 Jun 2004 ISSN 1225 505X 1) * * 1 ( ) 2) 3) 4) * 1) ( ) 3 2) 7 1 3) 2 1 13 1 ( 24 ) 2004 6 5) ( ) ( ) 2 1 ( ) 2 3 2 4) ( ) 6 7 5) - 2003 23 144-166 2 2 1) 6)
More information- 이 문서는 삼성전자의 기술 자산으로 승인자만이 사용할 수 있습니다 Part Picture Description 5. R emove the memory by pushing the fixed-tap out and Remove the WLAN Antenna. 6. INS
[Caution] Attention to red sentence 3-1. Disassembly and Reassembly R520/ 1 2 1 1. As shown in picture, adhere Knob to the end closely into the arrow direction(1), then push the battery up (2). 2. Picture
More information#Ȳ¿ë¼®
http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research
More information09È«¼®¿µ5~152s
Korean Journal of Remote Sensing, Vol.23, No.2, 2007, pp.45~52 Measurement of Backscattering Coefficients of Rice Canopy Using a Ground Polarimetric Scatterometer System Suk-Young Hong*, Jin-Young Hong**,
More information- 2 -
- 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - - 27 - - 28 - - 29 - - 30 -
More informationstep 1-1
Written by Dr. In Ku Kim-Marshall STEP BY STEP Korean 1 through 15 Action Verbs Table of Contents Unit 1 The Korean Alphabet, hangeul Unit 2 Korean Sentences with 15 Action Verbs Introduction Review Exercises
More informationVol.259 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M
2018.01 Vol.259 C O N T E N T S 02 06 28 61 69 99 104 120 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2018.1 3 4 2018.1 1) 2) 6 2018.1 3) 4) 7 5) 6) 7) 8) 8 2018.1 9 10 2018.1 11 2003.08 2005.08
More informationOutput file
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 An Application for Calculation and Visualization of Narrative Relevance of Films Using Keyword Tags Choi Jin-Won (KAIST) Film making
More information03±èÀçÈÖ¾ÈÁ¤ÅÂ
x x x x Abstract The Advertising Effects of PPL in TV Dramas - Identificaiton by Implicit Memory-based Measures Kim, Jae - hwi(associate professor, Dept. of psychology, Chung-Ang University) Ahn,
More informationPage 2 of 5 아니다 means to not be, and is therefore the opposite of 이다. While English simply turns words like to be or to exist negative by adding not,
Page 1 of 5 Learn Korean Ep. 4: To be and To exist Of course to be and to exist are different verbs, but they re often confused by beginning students when learning Korean. In English we sometimes use the
More information½Éº´È¿ Ãâ·Â
Standard and Technology of Full-Dimension MINO Systems in LTE-Advances Pro Massive MIMO has been studied in academia foreseeing the capacity crunch in the coming years. Presently, industry has also started
More informationBuy one get one with discount promotional strategy
Buy one get one with discount Promotional Strategy Kyong-Kuk Kim, Chi-Ghun Lee and Sunggyun Park ISysE Department, FEG 002079 Contents Introduction Literature Review Model Solution Further research 2 ISysE
More information저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할
저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,
More information야쿠르트2010 3월 - 최종
2010. 03www.yakult.co.kr 10 04 07 08 Theme Special_ Action 10 12 15 14 15 16 18 20 18 22 24 26 28 30 31 22 10+11 Theme Advice Action 12+13 Theme Story Action 14+15 Theme Reply Action Theme Letter Action
More information6자료집최종(6.8))
Chapter 1 05 Chapter 2 51 Chapter 3 99 Chapter 4 151 Chapter 1 Chapter 6 7 Chapter 8 9 Chapter 10 11 Chapter 12 13 Chapter 14 15 Chapter 16 17 Chapter 18 Chapter 19 Chapter 20 21 Chapter 22 23 Chapter
More informationJournal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc
Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp.251-273 DOI: http://dx.doi.org/10.21024/pnuedi.27.2.201706.251 : 1997 2005 Research Trend Analysis on the Korean Alternative Education
More information<BCF6BDC3323030392D31385FB0EDBCD3B5B5B7CEC8DEB0D4C5B8BFEEB5B5C0D4B1B8BBF3BFACB1B85FB1C7BFB5C0CE2E687770>
... 수시연구 2009-18.. 고속도로 휴게타운 도입구상 연구 A Study on the Concept of Service Town at the Expressway Service Area... 권영인 임재경 이창운... 서 문 우리나라는 경제성장과 함께 도시화가 지속적으로 진행되어 지방 지역의 인구감소와 경기의 침체가 계속되고 있습니다. 정부의 다각 적인
More information274 한국문화 73
- 273 - 274 한국문화 73 17~18 세기통제영의방어체제와병력운영 275 276 한국문화 73 17~18 세기통제영의방어체제와병력운영 277 278 한국문화 73 17~18 세기통제영의방어체제와병력운영 279 280 한국문화 73 17~18 세기통제영의방어체제와병력운영 281 282 한국문화 73 17~18 세기통제영의방어체제와병력운영 283 284
More information975_983 특집-한규철, 정원호
Focused Issue of This Month Gyu Cheol an, MD Department of Otolaryngology ead & Neck Surgery, Gachon University of College Medicine E - mail : han@gilhospital.com Won-o Jung, MD Department of Otolaryngology
More information¹Ìµå¹Ì3Â÷Àμâ
MIDME LOGISTICS Trusted Solutions for 02 CEO MESSAGE MIDME LOGISTICS CO., LTD. 01 Ceo Message We, MIDME LOGISTICS CO., LTD. has established to create aduance logistics service. Try to give confidence to
More information4 5 4. Hi-MO 애프터케어 시스템 편 5. 오비맥주 카스 카스 후레쉬 테이블 맥주는 천연식품이다 편 처음 스타일 그대로, 부탁 케어~ Hi-MO 애프터케어 시스템 지속적인 모발 관리로 끝까지 스타일이 유지되도록 독보적이다! 근데 그거 아세요? 맥주도 인공첨가물이
1 2 On-air 3 1. 이베이코리아 G마켓 용평리조트 슈퍼브랜드딜 편 2. 아모레퍼시픽 헤라 루즈 홀릭 리퀴드 편 인쇄 광고 올해도 겨울이 왔어요. 당신에게 꼭 해주고 싶은 말이 있어요. G마켓에선 용평리조트 스페셜 패키지가 2만 6900원! 역시 G마켓이죠? G마켓과 함께하는 용평리조트 스페셜 패키지. G마켓의 슈퍼브랜드딜은 계속된다. 모바일 쇼핑 히어로
More information05-08 087ÀÌÁÖÈñ.hwp
산별교섭에 대한 평가 및 만족도의 영향요인 분석(이주희) ꌙ 87 노 동 정 책 연 구 2005. 제5권 제2호 pp. 87118 c 한 국 노 동 연 구 원 산별교섭에 대한 평가 및 만족도의 영향요인 분석: 보건의료노조의 사례 이주희 * 2004,,,.. 1990. : 2005 4 7, :4 7, :6 10 * (jlee@ewha.ac.kr) 88 ꌙ 노동정책연구
More informationPage 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh
Page 1 of 6 Learn Korean Ep. 13: Whether (or not) and If Let s go over how to say Whether and If. An example in English would be I don t know whether he ll be there, or I don t know if he ll be there.
More information우리들이 일반적으로 기호
일본지방자치체( 都 道 府 縣 )의 웹사이트상에서 심벌마크와 캐릭터의 활용에 관한 연구 A Study on the Application of Japanese Local Self-Government's Symbol Mark and Character on Web. 나가오카조형대학( 長 岡 造 形 大 學 ) 대학원 조형연구과 김 봉 수 (Kim Bong Su) 193
More informationCAD 화면상에 동그란 원형 도형이 생성되었습니다. 화면상에 나타난 원형은 반지름 500인 도형입니다. 하지만 반지름이 500이라는 것은 작도자만 알고 있는 사실입니다. 반지름이 500이라는 것을 클라이언트와 작업자들에게 알려주기 위 해서는 반드시 치수가 필요하겠죠?
실무 인테리어를 위한 CAD 프로그램 활용 인테리어 도면 작도에 꼭 필요한 명령어 60개 Ⅷ 이번 호에서는 DIMRADIUS, DIMANGULAR, DIMTEDIT, DIMSTYLE, QLEADER, 5개의 명령어를 익히도록 하겠다. 라경모 온라인 설계 서비스 업체 '도면창고' 대 표를 지낸 바 있으며, 현재 나인슈타인 을 설립해 대표 를맡고있다. E-Mail
More information<C7A5C1F620BEE7BDC4>
연세대학교 상경대학 경제연구소 Economic Research Institute Yonsei Universit 서울시 서대문구 연세로 50 50 Yonsei-ro, Seodaemun-gS gu, Seoul, Korea TEL: (+82-2) 2123-4065 FAX: (+82- -2) 364-9149 E-mail: yeri4065@yonsei.ac. kr http://yeri.yonsei.ac.kr/new
More information한국콘베어-AP8p
K O R E A C O N V E Y O R K.C AP APRON CONVEYOR Apron Conveyors are used for conveying various bulk materials. They are particulary suitable for conveying hot materials such as clinker. K.C Apron Conveyors
More informationpublic key private key Encryption Algorithm Decryption Algorithm 1
public key private key Encryption Algorithm Decryption Algorithm 1 One-Way Function ( ) A function which is easy to compute in one direction, but difficult to invert - given x, y = f(x) is easy - given
More informationJournal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend
Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp.295-318 DOI: http://dx.doi.org/10.21024/pnuedi.28.4.201812.295 * A Research Trend on the Studies related to Parents of Adults with Disabilities
More information<BFA9BAD02DB0A1BBF3B1A4B0ED28C0CCBCF6B9FC2920B3BBC1F62E706466>
001 002 003 004 005 006 008 009 010 011 2010 013 I II III 014 IV V 2010 015 016 017 018 I. 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 III. 041 042 III. 043
More information본문01
Ⅱ 논술 지도의 방법과 실제 2. 읽기에서 논술까지 의 개발 배경 읽기에서 논술까지 자료집 개발의 본래 목적은 초 중 고교 학교 평가에서 서술형 평가 비중이 2005 학년도 30%, 2006학년도 40%, 2007학년도 50%로 확대 되고, 2008학년도부터 대학 입시에서 논술 비중이 커지면서 논술 교육은 학교가 책임진다. 는 풍토 조성으로 공교육의 신뢰성과
More information퇴좈저널36호-4차-T.ps, page 2 @ Preflight (2)
Think Big, Act Big! Character People Literature Beautiful Life History Carcere Mamertino World Special Interview Special Writing Math English Quarts I have been driven many times to my knees by the overwhelming
More information歯M991101.PDF
2 0 0 0 2000 12 2 0 0 0 2000 12 ( ) ( ) ( ) < >. 1 1. 1 2. 5. 6 1. 7 1.1. 7 1.2. 9 1.3. 10 2. 17 3. 25 3.1. 25 3.2. 29 3.3. 29. 31 1. 31 1.1. ( ) 32 1.2. ( ) 38 1.3. ( ) 40 1.4. ( ) 42 2. 43 3. 69 4. 74.
More informationuntitled
Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)
More informationÀ±½Â¿í Ãâ·Â
Representation, Encoding and Intermediate View Interpolation Methods for Multi-view Video Using Layered Depth Images The multi-view video is a collection of multiple videos, capturing the same scene at
More information철학탐구 1. 들어가는말,. (pathos),,..,.,.,,. (ethos), (logos) (enthymema). 1).... 1,,... (pistis). 2) 1) G. A. Kennedy, Aristotle on Rhetoric, 1356a(New York :
파토스가글쓰기와말하기에미치는영향 박삼열 *...,.......,..,... * 철학탐구 1. 들어가는말,. (pathos),,..,.,.,,. (ethos), (logos) (enthymema). 1).... 1,,... (pistis). 2) 1) G. A. Kennedy, Aristotle on Rhetoric, 1356a(New York : Oxford
More information11¹ÚÇý·É
Journal of Fashion Business Vol. 6, No. 5, pp.125~135(2002) The Present State of E-Business according to the Establishment Year and the Sales Approach of Dongdaemun Clothing Market Park, Hea-Ryung* and
More informationePapyrus PDF Document
육아지원연구 2008. 제 3권 1 호, 147-170 어린이집에서의 낮잠에 대한 교사와 부모의 인식 및 실제 이 슬 기(동작구 보육정보센터)* 1) 요 약 본 연구의 목적은 어린이집에서의 일과 중 낮잠 시간에 대한 교사와 부모의 인식 및 실제를 알아봄 으로써, 교사와 부모의 협력을 통해 바람직한 낮잠 시간을 모색해 보는 데 있었다. 연구 대상은 서울, 경기지역
More informationI&IRC5 TG_08권
I N T E R E S T I N G A N D I N F O R M A T I V E R E A D I N G C L U B The Greatest Physicist of Our Time Written by Denny Sargent Michael Wyatt I&I Reading Club 103 본문 해석 설명하기 위해 근래의 어떤 과학자보다도 더 많은 노력을
More information<32303131C7CFB9DDB1E22028C6EDC1FD292E687770>
통일문제연구 2011년 하반기(통권 제56호) 전쟁 경험의 재구성을 통한 국가 만들기* - 역사/다큐멘터리/기억 - 1)이 명 자** Ⅰ. 들어가는 말 Ⅱ. 과 제작배경 Ⅲ. 과 비교 Ⅳ. 역사/다큐멘터리/기억 현대 남북한 체제 형성에서 주요한 전환점인 한국전 쟁은 해방 후 시작된 좌우대립과 정치적,
More information<31332EBEC6C6AEB8B6C4C9C6C3C0BB20C8B0BFEBC7D120C6D0C5B0C1F6B5F0C0DAC0CE20BFACB1B82E687770>
A Journal of Brand Design Association of Korea 통권 제 9호 2007 12 Vol. 5 No. 2 아트마케팅을 활용한 화장품 브랜드 디자인 연구 -화장품패키지디자인 중심으로- A Study on the Cosmetic Brand Package Design Applied Art-Marketing - Focusing on Cosmetic
More informationVol.257 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M
2017.11 Vol.257 C O N T E N T S 02 06 38 52 69 82 141 146 154 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2017.11 3 4 2017.11 6 2017.11 1) 7 2) 22.7 19.7 87 193.2 160.6 83 22.2 18.4 83 189.6 156.2
More information아니라 일본 지리지, 수로지 5, 지도 6 등을 함께 검토해야 하지만 여기서는 근대기 일본이 편찬한 조선 지리지와 부속지도만으로 연구대상을 한정하 기로 한다. Ⅱ. 1876~1905년 울릉도 독도 서술의 추이 1. 울릉도 독도 호칭의 혼란과 지도상의 불일치 일본이 조선
근대기 조선 지리지에 보이는 일본의 울릉도 독도 인식 호칭의 혼란을 중심으로 Ⅰ. 머리말 이 글은 근대기 일본인 편찬 조선 지리지에 나타난 울릉도 독도 관련 인식을 호칭의 변화에 초점을 맞춰 고찰한 것이다. 일본은 메이지유신 이후 부국강병을 기도하는 과정에서 수집된 정보에 의존하여 지리지를 펴냈고, 이를 제국주의 확장에 원용하였다. 특히 일본이 제국주의 확장을
More information24011001-26102015000.ps
news 02 한줄 News www.metroseoul.co.kr 2015년 10월 26일 월요일 정치 사회 The price of gold is going up again 군 가운데 정부가 감정노동자 보호를 위한 법 개 정에 나서 이목이 집중된다 다시 뛰는 금값 Gold funds are receiving at ttentions again since there
More information232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특
한국도시행정학회 도시행정학보 제25집 제4호 2012. 12 : pp.231~251 생활지향형 요소의 근린주거공간 분포특성 연구: 경기도 시 군을 중심으로* Spatial Distribution of Daily Life-Oriented Features in the Neighborhood: Focused on Municipalities of Gyeonggi Province
More information<5B313132385D32303039B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>
디지털 영상에서의 자막추출을 이용한 자막 특성 분석에 관한 연구 이세열 * 요약 본 연구는 방송 프로그램 제작에 있어서 중요한 역할을 담당하고 있는 영상 자막의 특성과 영상 커 뮤니케이션 기능적인 관점에서 나타나고 있는 현상을 살펴본다. 다양한 방송 프로그램에서 활용되고 있는 디지털 영상 자막의 기능은 단순하게 간략한 정보를 전달하는 기능적인 역할을 수행하였다.
More informationDBPIA-NURIMEDIA
27(2), 2007, 96-121 S ij k i POP j a i SEXR j i AGER j i BEDDAT j ij i j S ij S ij POP j SEXR j AGER j BEDDAT j k i a i i i L ij = S ij - S ij ---------- S ij S ij = k i POP j a i SEXR j i AGER j i BEDDAT
More information2
에너지경제연구 Korean Energy Economic Review Volume 10, Number 1, March 2011 : pp. 1~24 국내화력발전산업에대한연료와자본의대체성분석 1 2 3 ~ 4 5 F F P F P F ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln 6 ln ln ln ln ln 7 ln
More information49-9분동안 표지 3.3
In the ocean, humans create many noises. These noises disturb the waters. People do not know that manmade sound harms the creatures living in the sea. In the end, disturbing the ocean affects each one
More information04_오픈지엘API.key
4. API. API. API..,.. 1 ,, ISO/IEC JTC1/SC24, Working Group ISO " (Architecture) " (API, Application Program Interface) " (Metafile and Interface) " (Language Binding) " (Validation Testing and Registration)"
More information,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;
,,.. 400,,,,,,.,,, -, -, -., 3.. :, Tel : 010-9540-0640, E-mail : sunney05@hanmail.net ,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012).
More information<303038C0AFC8A3C1BE5B315D2DB1B3C1A42E687770>
배아복제논의에있어서단정적태도와 오류가능성인정태도 1) 유호종 * (ethics) (bioethics),,,........ (1) (2) (3) (4).. *,, 226 I. 서론.. 2004,.. 2004,.,,,. 1). 3 1) (Nature, Vol. 429(2004 ) www.nature.com). 227. 2004 11 19..,.. 2)..,...
More information02이용배(239~253)ok
A study on the characteristic of land use in subcenter of Seoul. - Cases of Yeongdeungpo and Kangnam Ok Kyung Yuh* Yong-Bae Lee**,. 2010,,..,.,,,,.,,.,,.,,,, Abstract : This study analyzed the land use
More information63 19 2 1989 90 2013 3 4 2 54 15 2002 p 19; 1 2008 pp 32 37; 2013 p 23 3 2001 ㆍ 2002 2009 新 興 寺 大 光 殿 2010 2013 2013 4 大 光 殿 壁 畵 考 察 193 1992 ; : 2006
DOI http:ddoi org 10 14380 AHF 2015 41 113 新 興 寺 佛 殿 莊 嚴 壁 畵 考 I. 머리말 朴 銀 卿 동아대학교 인문과학대학 고고미술사학과 교수 규슈대학 문학박사 불교회화사 15 3 3 1 1 * 2013 NRF 2013S1A5A2A03045496 ** : 26 2014; 高 麗 佛 畵 : 本 地 畵 幅 奉 安 問 題 美 術
More information한국성인에서초기황반변성질환과 연관된위험요인연구
한국성인에서초기황반변성질환과 연관된위험요인연구 한국성인에서초기황반변성질환과 연관된위험요인연구 - - i - - i - - ii - - iii - - iv - χ - v - - vi - - 1 - - 2 - - 3 - - 4 - 그림 1. 연구대상자선정도표 - 5 - - 6 - - 7 - - 8 - 그림 2. 연구의틀 χ - 9 - - 10 - - 11 -
More informationJournal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways
Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp.65-89 DOI: http://dx.doi.org/10.21024/pnuedi.29.1.201903.65 * Suggestions of Ways to Improve Teaching Practicum Based on the Experiences
More informationY 1 Y β α β Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q Conditional Probability if A and B are
More information김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월
지능정보연구제 17 권제 4 호 2011 년 12 월 (pp.241~254) Support vector machines(svm),, CRM. SVM,,., SVM,,.,,. SVM, SVM. SVM.. * 2009() (NRF-2009-327- B00212). 지능정보연구제 17 권제 4 호 2011 년 12 월 김경재 안현철 지능정보연구제 17 권제 4 호
More information삼성955_965_09
판매원-삼성전자주식회사 본 사 : 경기도 수원시 영통구 매탄 3동 416번지 제조원 : (주)아이젠 삼성 디지털 비데 순간온수 세정기 사용설명서 본 제품은 국내(대한민국)용 입니다. 전원, 전압이 다른 해외에서는 품질을 보증하지 않습니다. (FOR KOREA UNIT STANDARD ONLY) 이 사용설명서에는 제품보증서가 포함되어 있습니다. 분실되지 않도록
More information- i - - ii - - iii - - iv - - v - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - α α - 20 - α α α α α α - 21 - - 22 - - 23 -
More informationPhoto News 02 DOOSAN_2007 04 Doosan Art Center CONTENTS 2007 04 vol. 515 DOOSAN vol. 515 03 Doosan News 04 DOOSAN_2007 04 DOOSAN vol. 515 05 Doosan News 06 DOOSAN_2007 04 DOOSAN vol. 515 07 With Doosan
More information<B0E6C8F1B4EBB3BBB0FA20C0D3BBF3B0ADC1C E687770>
심전도연수강좌 : 처음시작하는사람들을위한심전도 연세대학교원주의과대학순환기내과학교실 안민수 Cardiac Electrophysiology I : Automaticity : 60-100 회 /min, His bundle : 40-60 회 /min Bundle branch : 20-40 회 /min Purkinje fiber : 20 회 /min Cardiac Electrophysiology
More information20, 41..,..,.,.,....,.,, (relevant).,.,..??.,
, 41 (2007 12 ) * 1) *** ***,. IMF..,,,.,,,,.. I.. 1999 (,.),,. 2010 *. ** *** 19 20, 41..,..,.,.,....,.,, (relevant).,.,..??., 21.....,. II. 1967 G. G. Muller International Accounting. 1960. 1970... 1966,,,.
More informationuntitled
Logic and Computer Design Fundamentals Chapter 4 Combinational Functions and Circuits Functions of a single variable Can be used on inputs to functional blocks to implement other than block s intended
More informationuntitled
5. hamks@dongguk.ac.kr (regular expression): (recognizer) : F(, scanner) CFG(context-free grammar): : PD(, parser) CFG 1 CFG form : N. Chomsky type 2 α, where V N and α V *. recursive construction ) E
More information<C1A63236B1C72031C8A328C6EDC1FDC1DF292E687770>
미 술 교 육 논 총 Art Education Research Review 2012 제26권 1호 1-28 미술가의 창의적 사고와 미술문화 진화의 관계성 탐구 - 창의성의 구성요소와 전통미술을 중심으로- 1)김 혜 숙* < 요 약 > 창의성의 구성요소인 영역, 장, 개인의 관계를 조선시대 미술가, 미술계, 미술문화 를 중심으로 살펴보면 미술가의 창의적 사고와
More informationVol.258 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M
2017.12 Vol.258 C O N T E N T S 02 06 35 57 89 94 100 103 105 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2017.12 3 4 2017.12 * 6 2017.12 7 1,989,020 2,110,953 2,087,458 2,210,542 2,370,003 10,767,976
More information민속지_이건욱T 최종
441 450 458 466 474 477 480 This book examines the research conducted on urban ethnography by the National Folk Museum of Korea. Although most people in Korea
More information........pdf 16..
Abstract Prospects of and Tasks Involving the Policy of Revitalization of Traditional Korean Performing Arts Yong-Shik, Lee National Center for Korean Traditional Performing Arts In the 21st century, the
More information장양수
한국문학논총 제70집(2015. 8) 333~360쪽 공선옥 소설 속 장소 의 의미 - 명랑한 밤길, 영란, 꽃같은 시절 을 중심으로 * 1)이 희 원 ** 1. 들어가며 - 장소의 인간 차 2. 주거지와 소유지 사이의 집/사람 3. 취약함의 나눔으로서의 장소 증여 례 4. 장소 소속감과 미의식의 가능성 5.
More informationhttp://www.kbc.go.kr/ Abstract Competition and Concentration in the Market for the Multichannel Video Programming G h e e - Young Noh ( P r o f e s s o, rschool of Communication,
More informationChapter4.hwp
Ch. 4. Spectral Density & Correlation 4.1 Energy Spectral Density 4.2 Power Spectral Density 4.3 Time-Averaged Noise Representation 4.4 Correlation Functions 4.5 Properties of Correlation Functions 4.6
More informationCan032.hwp
Chromosomal Alterations in Hepatocellular Carcinoma Cell Lines Detected by Comparative Genomic Hybridization Sang Jin Park 1, Mahn Joon Ha, Ph.D. 1, Hugh Chul Kim, M.D. 2 and Hyon Ju Kim, M.D. 1 1 Laboratory
More informationBSC Discussion 1
Copyright 2006 by Human Consulting Group INC. All Rights Reserved. No Part of This Publication May Be Reproduced, Stored in a Retrieval System, or Transmitted in Any Form or by Any Means Electronic, Mechanical,
More informationλx.x (λz.λx.x z) (λx.x)(λz.(λx.x)z) (λz.(λx.x) z) Call-by Name. Normal Order. (λz.z)
λx.x (λz.λx.x z) (λx.x)(λz.(λx.x)z) (λz.(λx.x) z) Call-by Name. Normal Order. (λz.z) Simple Type System - - 1+malloc(), {x:=1,y:=2}+2,... (stuck) { } { } ADD σ,m e 1 n 1,M σ,m e 1 σ,m e 2 n 2,M + e 2 n
More information188 최 영 환 청률을 통한 가치측정을 통한 자기 권리를 주장할 수 있 는 근거 자료로 활용할 수 있다. 즉, 방송사가 주장하는 낮은 중계권료를 주장할때는 프로야구가 낮은 시청률을 기록했을 때만이 정당하다. 하지만, 프로야구의 뜨거운 열기만큼이나 시청률도 급 성장세를
187 한국사회체육학회지, 제40호. pp. 187~196 Journal of Sport and Leisure Studies 2010. Vol. 40. pp. 187~196 프로야구 포스트 시즌 시청률 결정요인에 관한 연구 최 영 환 (남서울대학교) Ⅰ. 서 론 1. 연구의 필요성 및 목적 한국프로야구는 2008년을 기점으로 제2의 전성기를 구가하기 시작하여
More information216 동북아역사논총 41호 인과 경계공간은 설 자리를 잃고 배제되고 말았다. 본고에서는 근세 대마도에 대한 한국과 일본의 인식을 주로 영토와 경계인 식을 중심으로 고찰하고자 한다. 이 시기 대마도에 대한 한일 양국의 인식을 살펴볼 때는 근대 국민국가적 관점에서 탈피할
전근대시기 한국과 일본의 대마도 인식 215 전근대시기 한국과 일본의 대마도 인식 하우봉 전북대학교 사학과 교수 Ⅰ. 머리말 브루스 배튼(Bruce Batten)의 정의에 따르면 전근대의 국경에는 국경선으로 이루어진 boundary가 있고, 공간으로 이루어진 frontier란 개념이 있다. 전자 는 구심적이며 내와 외를 격리시키는 기능을 지니고, 후자는 원심적이며
More information<313430333033C6AFC1FD28C3E0B1B8292E687770>
스포츠와 물리학: 구기운동 안티-싸커 와 간접-축구 DOI: 10.3938/PhiT.23.005 이 인 호 Anti-soccer and Indirect Soccer 편성은 없다고 장담한다. 벨기에(FIFA 랭킹 11위), 러시아 (FIFA 랭킹 22위), 알제리(FIFA 랭킹 26위), 그리고 한국(FIFA 랭킹 61위)으로 이어지는 H조 편성 결과이다. 이
More information<313120B9DABFB5B1B82E687770>
한국민족문화 40, 2011. 7, 347~388쪽 1)중화학공업화선언과 1973년 공업교육제도 변화* 2)박 영 구** 1. 머리말 2. 1973년, 중화학공업화선언과 과학기술인력의 부족 3. 1973년 전반기의 교육제도 개편과 정비 1) 계획과 개편 2) 기술교육 개선안과 인력개발 시책 4. 1973년 후반기의 개편과 정비 5. 정비된 정규교육제도의 특징
More informationDBPIA-NURIMEDIA
김진주 김수연. 초등학생대상장애이해교육에활용된동화에나타난장애인관분석. 특수교육, 2013, 제12권, 제2호, 135-160... 20.,,. 4.,,.,..... 주제어 : 장애이해교육, 동화, 장애인관 1. ( 1 ) Incheon Munhak Elementary School ( )(, E-mail: sooyoun@ginue.ac.kr) Dept. of
More information에너지경제연구 제13권 제1호
에너지경제연구 Korean Energy Economic Review Volume 13, Number 1, March 2014 : pp. 83~119 거시계량모형을이용한유가변동및 유류세변화의파급효과분석 * 83 84 85 86 [ 그림 1] 모형의해결정과정 87 [ 그림 2] 거시계량모형의흐름도 (flow chart) 88 89 < 표 1> 유류세현황 (2013
More information