02( ) CST09-22.hwp
|
|
- 여름 연
- 8 years ago
- Views:
Transcription
1 66 정보과학회논문지 : 시스템 및 이론 제 37 권 제 2 호(2010.4) 유전 알고리즘과 게임 트리를 병합한 오목 인공지능 설계 및 GPU 기반 병렬 처리 기법 (Design of Omok AI using Genetic Algorithm and Game Trees and Their Parallel Processing on the GPU) 안일준 박인규 (Il Jun Ahn) (In Kyu Park) 요 약 본 논문에서는 GPU(graphics processing unit)를 이용하여 오목의 인공지능 알고리즘 연산을 고속으로 수행하기 위한 효율적인 알고리즘 설계와 구현 방법을 제안한다. 본 논문에서 제안하는 게임 인 공지능은 최소-최대 게임 트리(min-max game tree)와 유전 알고리즘(genetic algorithm)의 협업적 구조 로 설계된다. 게임 트리와 유전 알고리즘의 평가함수(evaluation function) 부분은 많은 계산 량을 소모하 지만 해 공간(solution space)의 수많은 후보 벡터에 대해 독립적으로 수행되기 때문에 본 논문에서는 이 를 GPU 상에서의 대량 병렬처리를 통해 수행한다. NVIDIA CUDA(compute unified device architecture) 환경에서의 실제 구현을 통해 CPU에서의 처리에 비해 게임 트리는 400배 이상의 수행 속도의 향상 을, 유전 알고리즘은 300배 이상의 수행 속도의 향상을 각각 보였다. 본 논문에서는 스레드(thread)의 넘 침(overflow)을 피하고 보다 효과적인 해 공간 탐색을 위해, 게임 트리를 이용하여 근방의 몇 단계까지 전 역 탐색(full search)을 수행한 후 이후 단계는 유전 알고리즘을 이용하여 선별 탐색을 수행하는 협업적 인공지능을 제안한다. 다양한 실험 결과를 통해 제안하는 알고리즘은 게임의 인공지능을 향상시키고 게임 의 규칙으로부터 주어진 시간 내에 문제를 해결할 수 있음을 보인다. 키워드 :GPU, 게임 트리, 유전 알고리즘, 오목 인공지능, NVIDIA CUDA, 전역 탐색, 선별 탐색, 협 업적 인공지능 Abstract This paper proposes an efficient method for design and implementation of the artificial intelligence (AI) of omok game on the GPU. The proposed AI is designed on a cooperative structure using min-max game tree and genetic algorithm. Since the evaluation function needs intensive computation but is independently performed on a lot of candidates in the solution space, it is computed on the GPU in a massive parallel way. The implementation on NVIDIA CUDA and the experimental results show that it outperforms significantly over the CPU, in which parallel game tree and genetic algorithm on the GPU runs more than 400 times and 300 times faster than on the CPU. In the proposed cooperative AI, selective search using genetic algorithm is performed subsequently after the full search using game tree to search the solution space more efficiently as well as to avoid the thread overflow. Experimental results show that the proposed algorithm enhances the AI significantly and makes it run within the time limit given by the game's rule. Key words : GPU, Game tree, Genetic algorithm, Omok AI, NVIDIA CUDA, Full search, Selective search, cooperative AI 이 논문은 인하대학교의 지원에 의하여 연구되었음. 이 논문은 인하대학교 IT공과 CopyrightC2010 한국정보과학회ː개인 목적이나 교육 목적인 경우, 이 저작 대학 정보통신공학부의 정보통신 프로젝트 결과물로 작성되었음 학생회원 : 한국과학기술원 전기및전자공학과 ijahn@issserver.kaist.ac.kr 종신회원 : 인하대학교 정보통신공학부 교수 pik@inha.ac.kr 물의 전체 또는 일부에 대한 복사본 혹은 디지털 사본의 제작을 허가합니다. 이 때, 사본은 상업적 수단으로 사용할 수 없으며 첫 페이지에 본 문구와 출처 를 반드시 명시해야 합니다. 이 외의 목적으로 복제, 배포, 출판, 전송 등 모든 유형의 사용행위를 하는 경우에 대하여는 사전에 허가를 얻고 비용을 지불해야 합니다. 논문접수 : 2009년 7월 29일 정보과학회논문지: 시스템 및 이론 제37권 제2호(2010.4) 심사완료 : 2010년 2월 4일
2 유전 알고리즘과 게임 트리를 병합한 오목 인공지능 설계 및 GPU 기반 병렬 처리 기법 서 론 최근 수년간 GPU(graphics processing unit)의 연산 속도는 급격히 발전해왔다. 또한, 이와 더불어 GPU에서 쉽게 사용할 수 있는 고수준의 언어는 기존의 3차원 그 래픽스뿐만 아니라 GPGPU(general purpose GPU)라고 불리는 일반적인 용도로의 GPU 사용을 가능하게 하였 다[1,2]. 최근 공개되어 활발히 이용되고 있는 NVIDIA 사의 CUDA(compute unified device architecture)[3,4] 와 같은 통합 컴퓨팅 프레임워크는 스레드(thread) 레벨 에서 사용자가 제어할 수 있는 병렬처리 방법을 제공하 였고 전역 메모리(global memory) 전체 공간에 대한 읽기와 쓰기를 자유롭게 사용 할 수 있게 하였다[4]. 따 라서 기존의 OpenGL shading language(glsl)[5] 또 는 DirectX HLSL(high level shading language)과 같 은 shading 언어 기반의 GPGPU에 비해 프로그래밍의 자유도가 획기적으로 높아져 많은 분야의 알고리즘을 CUDA 기반으로 병렬 구현할 수 있다[6]. GPGPU의 목적은 대용량 데이터 처리나 복잡한 알고 리즘의 처리에서 CPU를 능가하여 눈부신 속도 향상을 얻는 것이다. 인공지능(artificial intelligence)을 위한 알 고리즘은 광범위한 해 공간을 순차적으로 탐색하면서 각 탐색 대상에 대해 동일하지만 많은 양의 연산을 처 리하는 방식, 즉 SIMD(single instruction multiple data) 방식의 접근을 필요로 한다. 이는 GPU의 대용량 병렬 처리 구조에 적합하다. 본 논문에서는, 다중 코어를 갖는 대용량 병렬 GPU 에서 오목의 인공지능 알고리즘 연산을 고속으로 수행 하기 위한 효율적인 구조와 방법을 제안한다. 본 논문에 서 제안하는 오목 인공지능은 광범위한 해 공간에서 최 적의 해(solution)를 탐색하기 위해, 게임 트리를 이용한 전역적 탐색과 유전 알고리즘을 이용한 선별적 탐색을 조합하여 설계되었다. 또한 각각의 알고리즘의 평가함수 부분을 GPU상에서 모두 병렬 화시켜 주어진 시간 내에 CPU에서는 수행할 수 없는 탐색 문제를 짧은 시간 내 에 해결할 수 있도록 하였다. 본 논문의 구성은 다음과 같다. 제 2장에서는 본 논문 과 관련된 기존의 연구에 관해 간략히 설명한다. 제 3장 에서는 오목의 인공지능 구현 방법을 설명한다. 제 4장 에서는 오목 인공지능의 GPU 병렬처리에 대한 구체적 방법을 제시한다. 제 5장에서는 실험 결과를 보이고, 제 6장에서는 결론을 제시한다. 2. 기존의 연구 2.1 GPU를 이용한 병렬 컴퓨팅 기술 NVIDIA는 2007년 프로그램이 가능한 그래픽 프로세 서 G80 및 병렬처리 SDK인 CUDA를 출시하였다. CUDA 는 NVIDIA의 그래픽 하드웨어를 제어하는 명령어들을 C언어 기반으로 제공하여 사용자가 스레드 레벨에서의 대용량 병렬 처리를 GPU에서 수행할 수 있게 한다. GPU는 CPU 대비 10배 가까운 메모리 인터페이스 속 도와 128개(G80)의 프로세서에서 대용량 데이터를 병렬 처리함으로써 계산 속도를 높일 수 있으며 또한 시스템 을 최적화 시킬 수 있다[3,4]. CUDA는 영상처리, 의료 데이터 처리, 컴퓨터 비젼, 그래픽스의 비주얼 컴퓨팅 분야뿐만 아니라, 연산이 많은 대형 행렬연산, 편미분 방정식 풀이, 천체 시뮬레이션, 정렬 알고리즘, 탐색알고 리즘(바이러스, 유전자, 단백질), DB 분석계산 등 다양 한 분야에서 응용되고 있다[2,7]. 그러나 방대한 탐색 공 간에서 최적의 해를 찾는 모델로 표현되는 게임 인공지 능 알고리즘에의 응용은 아직 미미한 상황이다. 2.2 딥 블루 (Deep Blue)[8] 딥 블루는 IBM의 8년에 걸쳐 개발한 슈퍼컴퓨터로 1997년 세계 체스 챔피언인 Garry Kasparov와의 대결 로 관심을 얻었다. 딥 블루는 가능한 모든 경우를 조사 하여 다음 수를 결정하기 때문에 방대한 병렬처리 능력 이 필요하다. 딥 블루는 30개의 노드로 구성된 RS/6000 SP기반 컴퓨터이고 480개의 전용 VLSI를 장착하고 있 다. 체스 인공지능은 C언어로 구현되었으며 AIX 운영 체제에서 실행했다. 1초당 2억개의 위치를 계산할 수 있 으며 GFLOPS의 최대 성능을 가진다. 이에 따라 딥 블루 시스템은 규정 시간 내에 12수 앞을 내다볼 수 있는 예측 능력을 가지고 있다. 딥 블루의 예측 함수는 많은 예측 가능한 경우를 포 함하는 일반화된 형태로 짜여 있다. 이 함수의 값들은 수 천 개 이상의 대국을 분석한 컴퓨터 자신에 의해서 결정된다. 예측 함수는 8,000개의 부분으로 나뉘어 있고 이들의 대부분은 특정한 위치에 최적화되어 있다. 초기 시스템에는 70만개 이상의 대국 정보와 4000개 정도의 위치가 기록되어 있다. 2.3 강화 학습 알고리즘 최근 강화 학습 알고리즘을 보드게임의 인공지능에 적용하는 연구가 활발히 진행되고 있다. 강화 학습 알고 리즘은 환경과 에이전트와의 상호 정보교환을 통하여 에이전트의 행동을 개선해 나가는 학습방법이다[9-11]. 환경에는 목적 달성에 필요하거나, 필요하지 않은 많은 상태들이 존재한다. 에이전트는 각각의 상태를 경험하여 목적달성의 경우 환경으로부터 보상을 받게 된다. 목적 달성을 할 수 없는 상태인 경우 보상을 받을 수 없다. 그러므로 많은 시행착오를 겪을 수 있으며, 모든 상태를 경험해 보아야 한다. 강화학습 알고리즘으로서 일반적으 로 Q-learning을 많이 사용한다.
3 68 정보과학회논문지 : 시스템 및 이론 제 37 권 제 2 호(2010.4) 모든 가능한 상태공간에서의 특정 상태에서의 행위 중 가장 좋은 보상 값을 저장하고 산출한다. 처음에는 모든 상태에 대하여 보상을 얻기 위해 무작위로 행위를 하여 경험을 쌓게 된다. 거의 모든 상태를 경험함으로써 학습이 완료되어 지능적으로 동작하게 된다[9-11]. 강화 학습 알고리즘을 오목 인공지능에 적용할 경우 하나의 상태 공간은 이므로 225개의 격자 셀로 구성된다. 사용자의 말들의 위치, 컴퓨터의 말들의 위치, 사용자의 말들의 공격 또는 방어를 위해 이동 가능한 공간 등의 요소를 고려할 때 전체 상태공간의 크기는 로 20,503,125,000 이 된다. 평균 학 습 횟수가 1,000~4,000 임을 고려할 때 고려해야 할 상 태 공간의 크기는 기하급수적으로 증가한다. 이를 CPU 로 구현한다면 제한된 시간 내에 최적의 해를 탐색할 수 없을 뿐만 스택 오버플로가 일어날 가능성도 배제할 수 없다. 강화학습 알고리즘은 각 상황에서 선택할 수 있는 점 수 중 가장 유리한 것을 선택하게 된다. 그러나 학습의 초기에는 저장된 데이터가 많지 않아 좋은 선택을 못하 게 된다. 학습을 시키는데 많은 시간이 필요하다는 점을 감안한다면 주어진 시간 안에 최적의 해를 찾을 확률은 낮아지게 된다. 3. 오목 인공지능 설계 일반적으로 무한히 빠른 컴퓨터와 무한한 양의 메모 리가 존재할 수 없으므로 게임의 인공지능을 설계할 때 모든 경우의 수를 탐색하여 최적의 해를 도출하는 것은 불가능하다. 따라서 제한된 컴퓨팅 환경과 주어진 시간 내에 효율적으로 전역 최소값 또는 이에 근사한 값을 찾는 것이 게임 인공지능 구현의 핵심요소가 된다. 장 기, 바둑, 오목과 같은 보드 게임의 경우 현재로부터 몇 수 앞까지의 모든 경우의 수를 최소-최대 게임 트리의 구조를 이용하여 탐색한 후 가장 최선의 선택을 하는 알고리즘이 일반적이나 많은 수를 예측하기 위해서는 슈퍼컴퓨터와 같은 고성능의 컴퓨터가 필요하다. 본 논문에서는 광범위한 해 공간에서 최적의 해를 탐 색하기 위해 게임 트리를 이용한 전역적 탐색과 유전 알고리즘을 이용한 선별적 탐색을 조합한다. 각각의 평 가함수 부분은 GPU상에서 모두 병렬 처리된 고속 연산 으로 수행된다. 3.1 평가 함수 본 연구에서 설계한 평가 함수는 오목에서 일어나는 21가지의 특정한 패턴을 포함하는 일반화된 형태로 이 루어져 있으며 각 경우에 대해서 유리한 순서로 평가치 를 부여한다. 표 1은 평가 함수에 저장된 21가지의 특정 패턴과 그에 대한 평가치를 보여준다. 특정 좌표에 놓인 표 1 특정 패턴에 대한 평가치 상태 평가치 1 오목 사사 3 상대편의 방어가 없는 사삼 특이 조건 특이 조건 4 상대편의 방어가 있는 사삼 70 5 상대편의 방어가 없는 사목 상대편의 방어가 없고 중간에 하나의 빈칸이 있는 사목 한쪽에 상대편의 방어가 있고 중간에 하나의 빈칸이 있는 사목 양쪽에 상대편의 방어가 있고 중간에 하나의 빈칸이 있는 사목 9 상대편의 방어가 없는 삼삼 특이 조건 특이 조건 10 상대편의 방어가 없는 이삼 상대편의 방어가 없는 이이이 상대편의 방어가 없는 삼목 한쪽에 상대편의 방어가 있는 사목 9 14 상대편의 방어가 있는 삼삼 상대편의 방어가 없고 중간에 하나의 빈칸이 있는 삼목 한쪽에 상대편의 방어가 있고 중간에 하나의 빈칸이 있는 삼목 17 상대편의 방어가 없는 이이 5 18 상대편의 방어가 없는 삼목 4 19 한쪽에 상대편의 방어가 있는 삼목 3 20 상대편의 방어가 없는 이목 2 21 한쪽에 상대편의 방어가 있는 이목 1 돌에 대해, 평가 함수가 포함하는 경우와 논리적으로 일 치하면 그 좌표에 평가치를 부여한다. 7 6
4 유전 알고리즘과 게임 트리를 병합한 오목 인공지능 설계 및 GPU 기반 병렬 처리 기법 69 표 1에 나오는 21가지의 특정 패턴은 모두 독립적으 로 구현하는 것이 아니고 1번, 5번, 18번, 20의 기본 패 턴을 이용하여 나머지는 이것에 대한 약간의 변형 또는 조합으로 이루어진다. 예를 들어 3번 패턴은 5번 패턴과 12번 패턴의 결합으로 이루어지며, 4번 패턴은 5번 패턴 과 19번 패턴의 결합, 13번 패턴과 12번 패턴의 결합, 또는 13번 패턴과 19번 패턴의 결합으로 이루어진다. 평 가치에서 명시된 특이 조건은 다음 절에서 정의한다. 3.2 특이 조건 알고리즘을 설명하기 위하여 그림 1과 같은 특이 조 건을 정의한다. 특이 조건 발생 시 무조건 게임에 승리 한다. 연속해서 4개의 말이 놓인 경우, 3개의 말과 4개 의 말이 조합되어 놓인 경우, 4개의 말과 4개의 말이 조 합되어 놓인 경우, 3개의 말과 3개의 말이 조합되어 놓 인 경우가 그것이다. 가로, 세로, 대각선, 가운데 빈칸이 바뀌면서 발생하는 다른 조건이라도 위와 논리적으로 같다면 특이 조건으로 간주한다. 3.3 최소-최대 게임 트리와 유전 알고리즘의 협업 알 고리즘 본 논문에서는 게임 트리와 유전 알고리즘을 이용하 여 오목 인공을 구현한다. 최대-최소 게임 트리는 깊이 우선 탐색을 적용하며, 한 수를 더 내다볼 때 마다 그 단계에서의 모든 경우의 수를 게임 트리로 조직하고, 최 종 단계의 노드들을 평가한 뒤, 각 단계의 레벨에 맞게 최대값과 최소값을 탐색하여, 결과를 도출한다[12]. 게임 에서 n개의 수가 지속적으로 존재 한다면, p레벨의 게 임 트리를 조직하고 평가할 때, 그림 2와 같이 최종 레 벨에서 n p 개의 노드가 생성되고 모든 노드에 대해 평가 함수를 구한 후 각 레벨별로 나에게 유리한 최대값과 상대편에게 유리한 최소값을 취합하여 최상위 단계에서 의사결정을 수행한다. 즉 기본적으로 전역 탐색의 개념 이다. 하지만 트리의 깊이가 증가할수록 탐색해야 하는 노드의 수는 기하급수적으로 증가하므로 주어진 시간 내에 탐색할 수 있는 게임 트리의 최대 깊이가 제한된 다. 따라서 프로세서에서 처리할 수 있는 컴퓨팅 능력에 따라 최대 레벨의 크기를 제한해야 하는 단점이 있다. 이 단점을 극복하기 위해 본 논문에서는 GPU의 병렬 그림 2 최대 최소 알고리즘이 적용된 게임 트리[12] 그림 1 특이 조건의 사례
5 70 정보과학회논문지 : 시스템 및 이론 제 37 권 제 2 호(2010.4) 에서 선별적으로 이루어지며 이는 선별적 탐색의 개념 이다. 모든 범위를 탐색하는 대신 가능성이 높은 곳만을 탐색한다. 그림 3은 본 논문에서 제안하는 오목 인공지능의 기 본 구조를 나타낸다. 레벨 4까지는 게임 트리로 전역적 탐색을 한 후에 유전 알고리즘으로 선별적 탐색을 수행 한다. 각 단계에서는 평가함수가 반환하는 최대 평가치 좌표를 저장한다. 그리고 특이 조건을 만족하는 단계에 서 탐색을 종료한다. 유전 알고리즘 이 후에도 특이 조 건을 찾지 못한다면 각 단계에서 축적된 최대 평가치 좌표를 반환한다. 3.4 유전 알고리즘 설계 본 절에서는 오목 인공지능을 유전 알고리즘으로 설 계하기 위해 사용된 연산자들의 구체적 구현에 대해 기 술한다 유전자 초기화 유전자 집합은 (염색체 길이 염색체 개수)의 1차원 동적 배열(dynamic array)로 선언된다. 즉 상황에 따라 길이와 개수를 자유롭게 변경할 수 있다. 각각의 유전자 는 실수로 표현되며 0~224까지의 좌표(오목은 15 15의 바둑판에서 수행된다고 가정)중 염색체 길이만큼의 좌표 가 임의로 선택되어 하나의 염색체를 이룬다. 그림 3 오목 인공지능의 순서도 그림 4 염색체 초기화 사례 처리 능력 이상의 레벨이 되면 최소-최대 게임 트리를 유전 알고리즘으로 전환한다. 유전 알고리즘은 적자생존 과 유전의 메커니즘을 바탕으로 하는 탐색 알고리즘이 다. 다시 말해 주어진 환경에 잘 적응하는 유전자만을 선택하고 교배하며 때에 따라서는 돌연변이를 하여 다 음 세대에 우수한 유전 형질을 전달하게 된다. 따라서 진화가 거듭될수록 주어진 환경에 더 적합한 유전자들 만이 남아있게 될 것이다. 유전 알고리즘에서 사용하는 선택, 교차, 변이, 대치와 같은 연산자들은 일정 범위 안 그림 4의 경우를 표 2에 맵핑시킨다면 한 개의 염색 체는 112, 97, 98, 127, 126, 140, 142, 158 로 초기화된 다. 게임 초기에는 불필요한 좌표들이 포함될 가능성이 크므로 놓여 있는 수들로부터 일정 범위 이내에 있는 좌표들만으로 초기화시킨다. 실수 표현의 가장 큰 장점 은 선택되어질 좌표와 유전자가 일대일 대응되는 것이 다. 만약 오목 인공지능을 위해 유전자를 이진수로 표현 하였다면 각 선택되어질 좌표의 위치 관계와 상관없는 불필요한 교차나 변이가 발생하는 단점이 발생한다.
6 유전 알고리즘과 게임 트리를 병합한 오목 인공지능 설계 및 GPU 기반 병렬 처리 기법 71 표 2 염색체 초기화 사례 선택 선택 연산을 위해 본 논문에서는 품질 비례/룰렛 휠 에 의한 선택을 적용한다. 각 해의 평가치를 평가한 다 음 가장 좋은 해의 평가치가 가장 나쁜 해의 적합도의 배가 되도록 조절한다. 해 집단 내의 번째 해의 평가 치 는 다음과 같이 구할 수 있다. (1) 여기서 와 는 해 집단 내에서 가장 좋은 해의 평 가치 및 가장 나쁜 해의 평가치를 의미하며, 는 해 의 평가치를 나타낸다. 일반적으로 사용하는 값은 3~4 이다. 본 논문에서는 값을 3으로 하여 가장 좋은 해의 평가치가 가장 나쁜 해의 평가치의 3배가 되도록 조절 하였다. 평가치를 조절하지 않는다면 해 집단에서 가장 좋은 해의 선택압(selection pressure)이 너무 커져 해 의 다양성을 급속히 떨어뜨리므로 바람직하지 않다. 앞과 같이 계산한 각 염색체의 평가치를 모두 합한 값만큼의 크기를 가진 룰렛 휠을 가정한다. 각 염색체는 이 룰렛 휠 상에 자신의 적합도 만큼의 공간을 배정받 는다. 여기에 활을 쏘면 각 염색체의 선택 확률은 배정 된 공간의 크기에 비례하게 된다. 룰렛 휠 선택은 그림 5와 같이 간단히 구현할 수 있다. 그림 5에서 는 염색체 의 적합도이고, SumOfFitnesses는 모든 염색체들의 적합도 값을 더한 수치다. random(0, SumOfFitnesses)은 [0, SumOfFitnesses) 구간에서의 난수를 의미한다[13] 교차 각 염색체의 순서까지 섞기 위해 순서 교차(order crossover)를 적용한다. 오목의 경우 수를 두는 순서가 매우 중요한다. 하지만 보편적으로 사용하는 일점 교차 (one-point crossover)는 부모 각각의 일정 부분을 순 그림 5 품질 비례 룰렛 휠 선택의 순서도 서는 변형시키지 않고 서로 교환한다. 따라서 본 논문에 서는 인자의 순서도 교차시킬 수 있는 순서 교차를 사 용한다. 그림 6은 순서 교차의 방법을 나타낸다. 우선 선택된 두 부모 s 1, s 2에 임의로 두 개의 자름 선을 정 한 다음 자름선 사이에 있는 부분을 s 1로부터 복사한다. 나머지 위치는 s 2로부터 복사하고, 두 번째 자름선 바로 다음 위치부터 시작해 사용된 위치는 제외하고 순서대 로 복사한다[13]. 이렇게 되면 s 1의 뒷부분이 자식해의 앞부분으로 오게 된다. 만약 s 1의 뒷부분의 패턴이 후반 보다 초반에 더 효과적인 패턴이라면 자식해는 부모해 보다 높은 평가치를 받을 것이다.
7 72 정보과학회논문지 : 시스템 및 이론 제 37 권 제 2 호(2010.4) 그림 6 순서 교차[13] 변이 유전 알고리즘의 초기에는 해들의 평가치 좋지 않은 것이 보통이고 시간이 지남에 따라 점차적으로 품질이 개선된다. 따라서 초반에는 변이의 정도가 다소 강하여 도 평가치 향상이 일어날 가능성이 있지만, 해의 개선이 상당한 수준에 이른 후반에는 변이가 강하면 평가치 향 상이 일어나기 어렵다. 이에 착안하여 비균 등 변이 (non-uniform mutation)를 적용한다. 비균등 변이는 이진 난수 을 발생시킨 다음 아래와 같이 이루어진다. if (2) if 여기서 는 염색체의 평가치고, U와 L은 염색체가 가 질 수 있는 평가치의 상한 값과 하한 값이다. 즉, 본 논 문에서는 U는 224이고, L은 0이다. 는 0과 y 사 이의 값을 갖는데 시간 t가 증가함에 따라 점점 0으로 근접하는 특성을 갖는다. 을 위해 난수 을 발 생시켜 아래와 같은 식을 사용할 수 있다[13]. 본 논문 에서는 최대 세대수를 1,000으로 제안하였다. (3) 여기서 : [0, 1]범위의 난수 : 최대 세대수 대치 유전 알고리즘에서 해 집단의 다양성을 유지하는 것 은 매우 중요하다. 유전 알고리즘 초반에 해 집단이 설 익은 수렴(premature convergence)을 한다면 최적화된 해를 구하기 어렵다. 본 논문에서는 다양성을 알고리즘 후반까지 유지하기 위해 교차 연산 후 자식 해를 두 부 모 해 중 품질이 나쁜 해와 대치한다. 해 집단에서 자신 과 닮았을 가능성이 가장 높은 해가 부모 해이므로 다 른 해보다 부모 해 중의 하나를 제거하는 것은 해 집단 의 다양성을 오래 유지시키는 데 도움이 된다. 만일 자 식 해를 해 집단 중 평가치가 가장 낮은 해와 대치한다 면 다양성이 급격히 줄어 설익은 수렴을 할 가능성이 커진다. 그림 7 유전 알고리즘과 게임 트리의 순서도 4. 오목 인공지능의 GPU 기반 구현 4.1 최소-최대 게임 트리의 GPU 기반 구현 그림 7에 제시한 바와 같이 유전 알고리즘과 게임 트 리는 동일한 평가함수를 사용한다. 보드(board)의 각 좌 표(225개)에 평가함수를 적용하면 상황별 21가지의 평 가치 중 하나를 반환한다. 평가함수를 CUDA로 구현하 기 위해 좌표 1개를 하나의 스레드에 할당하고, 보드 1 개를 하나의 블록(block)에 할당한다. 즉 하나의 블록은 225개의 스레드로 구성된다. 게임 트리의 경우 한 개의 노드(node)에 한 개의 블록이 할당되어 적합도(fitness) 를 평가한다. 커널 (kernel) 함수는 각각의 상황을 판단할 수 있는 21개의 device 함수로 구성된다. 각 좌표에 할당된 스레드는 커널 함수를 통해 적합도를 계산한다. 좀 더 정교한 평가함수를 구현하고자 한다면 더욱 구체적인 상황을 판단할 수 있는 device 함수를 구현한 후 추 가하면 되므로 확장성이 용이하다. 각 노드는 보드의 상태를 나타내는 1 225의 1차원 배 열을 포함하는 구조체로 구현된다. 먼저 플레이어가 어 떤 행동을 취한 경우, 인공지능은 거기에 어떤 행동으로 대응할 것인가를 결정해야 한다. 이때 다음에 나타날 수 있는 모든 보드의 상황을 평가함수로 분석하여 다음에 취할 가장 유리한 행동을 탐색한다. 게임 초반에는 다음 에 둘 수 있는 가능한 수가 많고, 유효한 수가 적기 때 문에 일정 turn까지는 heuristic 기법을 사용하여 이미 놓여 있는 수들로부터 일정 범위 이내에 있는 좌표들만 탐색한다.
8 유전 알고리즘과 게임 트리를 병합한 오목 인공지능 설계 및 GPU 기반 병렬 처리 기법 73 표 3 레벨 별 노드, 블록, 스레드의 개수 노드 블록 스레드 레벨 (= 225C 1 ) ,625 레벨 3 25,200 (= 225C 2 ) 25,200 5,670,000 레벨 4 1,873,200 (= 225C 3 ) 1,873, ,470,000 인공지능은 평가함수의 반환 값이 특이조건을 만족시 킬 때 까지 게임 트리를 레벨 2에서 레벨 4까지 순차적 으로 적용한다. 표 3은 heuristic 기법을 사용하지 않았 을 때 각 레벨에서의 게임 트리의 노드의 개수, CUDA 에서의 블록과 스레드의 개수를 나타낸다. 레벨 1의 경 우 노드의 개수는 225( 225C 1) 개이다. 이 노드들을 평가 함수에 적용할 시 CUDA는 블록은 225개, 스레드는 50,400( )개를 발생시킨다. 이 때, 게임 초반에는 heuristic 기법을 사용하기 때문에 각 레벨의 노드의 개 수는 40%이상 줄어든다. 또한 게임 후반에는 보드에 놓 일 수 있는 수의 위치가 줄어들기 때문에 노드의 개수 는 매 turn 마다 일정하게 줄어든다. GPU에서 커널 함수를 수행하기 전에 레벨 4까지의 노드 정보와 평가 함수가 반환하는 평가치를 저장할 수 있는 메모리를 device의 전역 메모리(global memory) 에 할당한다. 그리고 레벨 4까지의 모든 보드 정보를 시 스템 메모리에서 전역 메모리로 복사한다. 이후, GPU에 서 수행되는 모든 연산들은 전역 메모리에 저장된 정보 를 액세스하여 수행한다. 커널 함수가 수행되면 각 스레드는 전역 메모리에서 해당 구조체를 읽어, 내부적으로 전역 메모리에 평가함 수가 반환하는 평가치를 저장하는 연산을 수행한다. 각 레벨 별로 평가치의 최소값과 최대값을 가지는 노드는 별도로 저장한다. 그 후, CPU에서는 전역 메모리에 저 장된 정보를 시스템 메모리로 받아 각 레벨의 최소-최 대 노드를 선택하고 최종적으로 주어진 상황에서의 의 사결정을 수행한다. 4.2 유전 알고리즘의 GPU 기반 구현 유전 알고리즘과 게임 트리에 동일한 평가함수를 적 용하기 위해 유전 알고리즘에서 사용하는 해의 형태와 게임 트리에서 사용하는 해의 형태를 맞춰줘야 한다. 이 를 위해 평가함수의 입력 변수는 1 225의 1차원 배열로 하고 유전 알고리즘에서 평가함수 적용 전에 해의 형태 를 변형시킨다. 염색체 초기화 후 유전 알고리즘에서 사 용하는 해의 형식을 게임 트리의 해의 형식으로 변형시 키는 adapter 함수를 별도로 구현한 후 적용한다. adapter 함수는 각각의 염색체를 보드에 매핑(mapping) 시켜 염 색체 개수만큼의 1 225의 1차원 배열로 변형 후 평가 함수에 적용한다. 유전 알고리즘은 평가함수의 반환 값이 특이조건을 표 4 염색체 개수 별 블록, 스레드의 개수 블록 스레드의 개수 , ,000 1,125, ,000 11,250, ,000 22,500, ,000 33,750, ,000 45,000, ,000 56,250,000 1, , ,500,000 만족시키거나, 특정 좌표의 평가치가 정해진 값을 넘어 설 때까지 반복된다. 표 4는 평균 세대수를 500이라고 가정했을 때 유전 알고리즘 수행 중 발생하는 염색체 개수에 따른 CUDA에서의 블록과 스레드의 개수를 나 타낸다. 5. 실험 결과 오목의 인공지능을 위한 평가함수는 우선 CPU 코드 로 구현되었고 CUDA를 이용하여 모두 병렬화 하였다. 모든 실험은 Intel CPU(21.28 GFLOPS의 E6750)와 128개의 코어를 갖는 NVIDIA G92b(705 GFLOPS의 GeForce 9800 GTX+ 및 70.4 GB/s의 메모리 대역폭) 그래픽카드를 이용하여 수행되었다. 실험은 게임 트리와 유전 알고리즘에서 평가함수를 CPU와 GPU에서 실행 시켰을 때 수행속도를 비교하였다. 5.1 게임 트리의 실험 결과 표 5에 게임 트리의 각 레벨에 따른 실험 결과를 제시 하였다. 이 때 GPU의 수행 시간은 커널의 수행 시간뿐 만 아니라 메모리의 이동까지 모두 포함하고 있다. CPU 상에서의 실행은 최적화된 CPU 코드를 사용하지 않았으 나, GPU상에서의 구현에 의한 전반적인 수행 속도 향상 을 비교하는 데 큰 문제는 없을 것으로 생각된다. 스레드의 개수가 225개인 레벨 1에서는 5배 정도의 성능향상을 보였으나 스레드가 많아질수록 속도향상도 커지는 것을 확인할 수 있다. 특히 레벨 3인 경우 CPU 수행시간 대비 0.3%이하로 대폭 감소하였음을 알 수 있 다. 레벨 4는 CPU의 속도가 실시간으로 게임을 진행할 수 있는 시간을 벗어나기 때문에 실험에서 제외시켰다. 표 5 한 수를 두기 위한 CPU 대비 GPU 기반 게임 트 리의 속도 향상 레벨 CPU (E6750) 수행 시간 GPU (9800GTX+) CPU 대비 속도 향상 CPU/GPU x x x
9 74 정보과학회논문지 : 시스템 및 이론 제 37 권 제 2 호(2010.4) 5.2 유전 알고리즘의 실험 결과 표 6에 유전 알고리즘의 염색체 개수에 따른 실험 결 과를 제시하였다. 염색체를 보드에 맵핑시킨 후 게임 트 리와 동일한 평가함수를 적용시킨 후 수행시간을 측정 하였다. 제시된 바와 같이 염색체 개수가 증가할수록 수 행시간이 단축되었음을 알 수 있다. 염색체 개수가 1,000 개인 경우 CPU 수행시간 대비 0.3%이하로 대폭 감소 표 6 한 수를 두기 위한 CPU 대비 GPU 기반 유전 알 고리즘의 속도 향상 염색체 개수 CPU (E6750) 수행 시간 GPU (9800GTX+) CPU 대비 속도 향상 9800GTX+ / E x x x x x x x 1, x 하였음을 알 수 있다. 5.3 제안된 인공지능의 성능 평가 본 논문에서는 GPU가 동시에 실행할 수 있는 전역적 탐색 이후, 최적의 해를 찾지 못할 경우 범위를 넓혀 선 별적 탐색을 수행할 것을 제안했다. 그러므로 지능 평가 를 위해, 제안된 인공지능과 레벨 4의 게임 트리로 만든 인공지능을 서로 대전시켜 성능을 비교하였다. 그림 8의 (a), (b)는 게임 트리의 레벨 4를 이용한 인 공지능이 흑으로 본 논문에서 제안된 인공지능이 백으 로 대전한 결과이다. (a), (b) 모두 제안된 인공지능이 승리하였다. (c), (d)는 흑과 백의 순서를 바꾸어 대전한 결과이다. 이 또한 제안된 인공지능이 모두 승리하였다. 결과적으로 게임 트리 레벨4 이후 유전 알고리즘의 사 용이 훨씬 효과적임을 나타낸다. 5.4 사용자 평가 제안하는 인공지능 알고리즘과 GPU 구현의 효용을 주관적으로 검증하기 위하여 사용자 평가를 실시하였다. 평가 대상은 제안된 인공지능과 동일한 평가함수를 사 용하는 게임트리 레벨2로 구현한 인공지능에 승리한 초 등학생 3명, 게임트리 레벨3에 승리한 중학생 3명, 그리 (a) (b) (c) 그림 8 (a),(b)흑(게임 트리 레벨4) VS 백(제안된 인공지능), (c),(d)흑(제안된 인공지능) VS 백(게임 트리 레벨4) (d)
10 유전 알고리즘과 게임 트리를 병합한 오목 인공지능 설계 및 GPU 기반 병렬 처리 기법 75 표 7 사용자 평가(User Study) 결과 User 승 제안된 User 제안된 인공지능 인공지능 승률 초등학생 3명 % 중학생 3명 % 고등학생 5명 % 대학생 20명 % 고 게임트리 레벨 4로 구현한 인공지능에 승리한 고등 학생 5명, 대학생 20명의 총 31명을 선택하였다. 오목은 흑으로 두었을 때 항상 유리하므로 모든 실험은 제안된 인공지능을 백으로 하였다. 사용자 1명 당 3전 2선승제 로 하였으며, 평가 결과는 표 7과 같다. 결과를 통해 유추하면, 초등학생과 중학생의 대전을 통해서도 게임트리 레벨 2나 레벨 3로 구현된 인공지능 보다 본 논문에서 제안한 인공지능이 훨씬 효과적임을 알 수 있다. 고등학생과 대학생의 대전을 통해서는 게임 트리 레벨 4보다 실전에서 평균 73%의 성능향상이 있 음을 알 수 있다. 6. 결 론 본 논문에서는 오목의 인공지능을 게임 트리와 유전 알고리즘을 이용하여 구현하고 NVIDIA의 차세대 GPU 구조인 CUDA를 이용하여 고속으로 수행하였다. 수행속 도 비교를 위해 모든 알고리즘은 우선 CPU 코드로 구 현되었고 CUDA를 이용하여 모두 병렬화 하였다. 실험 결과 CPU에서의 처리에 비해 CUDA에 맵핑한 경우 최 대 442배의 수행 속도 향상을 보였다. GPU는 지속적으 로 고성능의 신제품이 출시되므로 본 논문에서 제시된 결과는 상위 기종의 GPU를 사용함에 따라 그 성능에 비례하여 수행 속도가 빨라질 것이다. 또한 제한된 시간 안에 최적의 해를 찾기 위해 게임 트리를 이용하여 일 정 레벨까지는 전역적 탐색을 하고, 이 후 유전 알고리 즘으로 선별적 탐색을 할 것을 제안하였다. 제안된 방법 을 이용하면 주어진 시간 안에 답을 찾는 의사결정 문 제를 더 효율적으로 접근할 수 있다. 향후 인공지능의 평가함수의 성능을 개선하여 오목 인 공지능의 승률을 높일 계획이다. 또한 CPU코드를 최적 화 시켜 전반적인 성능을 더 개선시킬 것이다. 또한, 인 공지능의 평가함수 부분에 좀 더 구체적인 상황에 대한 평가치를 추가한다면 승률은 더욱 높아질 것이라 기대한다. 참 고 문 헌 [ 1 ] General Purpose GPU (GPGPU) Homepage, [2] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, "GPU computing," Proceedings of the IEEE, vol.96, no.5, pp , May [3] NVIDIA Corporation, Compute Unified Device Architecture (CUDA), cuda.html [4] NVIDIA Corporation, CUDA TM Programming Guide, June [5] R. Rost, OpenGL Shading Language Second Edition, Addison-Wesley, [6] I. K. Park, N. Singhal, M. H. Lee, and S. Cho, "Efficient design and implementation of visual computing algorithms on the GPU," Proc. IEEE International Conference on Image Processing (ICIP 2009), pp , November [7] J. Lee and H. Ryu, "Current status and future prospect of personal supercomputer using GPU parallel computing," The Magazine of the IEEK, vol.36, no.5, pp.18-27, May [ 8 ] computer) [9] R. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT Press, [10] N. J. van Eck and M. van Wezel, "Application of reinforcement learning to the game of Othello," Computers and Operations Research, vol.35, no.6, pp , June [11] I. Ghory, "Reinforcement learning in board games," CSTR , Dept. of Computer Science, University of Bristol, May [12] M. Deloura, Game Programming Gems, Charles River Media, [13] B.-R. Moon, Easy-to-learn genetic algorithm : Evolutionary approach, Hanbit Media, 안 일 준 2010년 2월 인하대학교 정보통신공학부 공학사. 2010년 3월~현재 한국과학기술 원 전기및전자공학과 석사과정. 관심분야 는 GPGPU, 게임 인공지능, 의료영상처 리 박 인 규 1995년 2월 서울대학교 제어계측공학과 공학사. 1997년 2월 서울대학교 제어계 측공학과 공학석사. 2001년 8월 서울대 학교 전기컴퓨터공학부 공학박사 년 9월~2004년 3월 삼성종합기술원 전 문연구원. 2007년 1월~2008년 1월 미국 Mitsubishi Electric Research Laboratories (MERL) 방문 연구원. 2004년 3월~현재 인하대학교 정보통신공학부 조교 수. 관심분야는 컴퓨터그래픽스 및 비젼, 영상처리, 멀티미 디어응용분야
04 Çмú_±â¼ú±â»ç
42 s p x f p (x) f (x) VOL. 46 NO. 12 2013. 12 43 p j (x) r j n c f max f min v max, j j c j (x) j f (x) v j (x) f (x) v(x) f d (x) f (x) f (x) v(x) v(x) r f 44 r f X(x) Y (x) (x, y) (x, y) f (x, y) VOL.
More informationⅡ. Embedded GPU 모바일 프로세서의 발전방향은 저전력 고성능 컴퓨팅이다. 이 러한 목표를 달성하기 위해서 모바일 프로세서 기술은 멀티코 어 형태로 발전해 가고 있다. 예를 들어 NVIDIA의 최신 응용프 로세서인 Tegra3의 경우 쿼드코어 ARM Corte
스마트폰을 위한 A/V 신호처리기술 편집위원 : 김홍국 (광주과학기술원) 스마트폰에서의 영상처리를 위한 GPU 활용 박인규, 최호열 인하대학교 요 약 본 기고에서는 최근 스마트폰에서 요구되는 다양한 멀티미 디어 어플리케이션을 embedded GPU(Graphics Processing Unit)를 이용하여 고속 병렬처리하기 위한 GPGPU (General- Purpose
More information회원번호 대표자 공동자 KR000****1 권 * 영 KR000****1 박 * 순 KR000****1 박 * 애 이 * 홍 KR000****2 김 * 근 하 * 희 KR000****2 박 * 순 KR000****3 최 * 정 KR000****4 박 * 희 조 * 제
회원번호 대표자 공동자 KR000****1 권 * 영 KR000****1 박 * 순 KR000****1 박 * 애 이 * 홍 KR000****2 김 * 근 하 * 희 KR000****2 박 * 순 KR000****3 최 * 정 KR000****4 박 * 희 조 * 제 KR000****4 설 * 환 KR000****4 송 * 애 김 * 수 KR000****4
More information3 : OpenCL Embedded GPU (Seung Heon Kang et al. : Parallelization of Feature Detection and Panorama Image Generation using OpenCL and Embedded GPU). e
(JBE Vol. 19, No. 3, May 2014) (Special Paper) 19 3, 2014 5 (JBE Vol. 19, No. 3, May 2014) http://dx.doi.org/10.5909/jbe.2014.19.3.316 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) OpenCL Embedded GPU
More information- 2 -
- 1 - - 2 - - - - 4 - - 5 - - 6 - - 7 - - 8 - 4) 민원담당공무원 대상 설문조사의 결과와 함의 국민신문고가 업무와 통합된 지식경영시스템으로 실제 운영되고 있는지, 국민신문 고의 효율 알 성 제고 등 성과향상에 기여한다고 평가할 수 있는지를 치 메 국민신문고를 접해본 중앙부처 및 지방자 였 조사를 시행하 였 해 진행하 월 다.
More information<33312D312D313220C0CCC7D1C1F820BFB0C3A2BCB12E687770>
Journal of the Society of Korea Industrial and Systems Engineering Vol No pp March 8 Scatter Search를 이용한 신뢰성 있는 네트워크의 경제적 설계 * ** * ** Economic Design of Reliable Networks Using Scatter Search HanJin Lee*
More information= ``...(2011), , (.)''
Finance Lecture Note Series 사회과학과 수학 제2강. 미분 조 승 모2 영남대학교 경제금융학부 학습목표. 미분의 개념: 미분과 도함수의 개념에 대해 알아본다. : 실제로 미분을 어떻게 하는지 알아본다. : 극값의 개념을 알아보고 미분을 통해 어떻게 구하는지 알아본다. 4. 미분과 극한: 미분을 이용하여 극한값을 구하는 방법에 대해 알아본다.
More information45-51 ¹Ú¼ø¸¸
A Study on the Automation of Classification of Volume Reconstruction for CT Images S.M. Park 1, I.S. Hong 2, D.S. Kim 1, D.Y. Kim 1 1 Dept. of Biomedical Engineering, Yonsei University, 2 Dept. of Radiology,
More informationMicrosoft PowerPoint - 30.ppt [호환 모드]
이중포트메모리의실제적인고장을고려한 Programmable Memory BIST 2010. 06. 29. 연세대학교전기전자공학과박영규, 박재석, 한태우, 강성호 hipyk@soc.yonsei.ac.kr Contents Introduction Proposed Programmable Memory BIST(PMBIST) Algorithm Instruction PMBIST
More information<4D6963726F736F667420576F7264202D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>
주간기술동향 2016. 5.18. 컴퓨터 비전과 인공지능 장혁 한국전자통신연구원 선임연구원 최근 많은 관심을 받고 있는 인공지능(Artificial Intelligence: AI)의 성과는 뇌의 작동 방식과 유사한 딥 러닝의 등장에 기인한 바가 크다. 이미 미국과 유럽 등 AI 선도국에서는 인공지능 연구에서 인간 뇌 이해의 중요성을 인식하고 관련 대형 프로젝트들을
More informationCh 1 머신러닝 개요.pptx
Chapter 1. < > :,, 2017. Slides Prepared by,, Biointelligence Laboratory School of Computer Science and Engineering Seoul National University 1.1 3 1.2... 7 1.3 10 1.4 16 1.5 35 2 1 1.1 n,, n n Artificial
More information1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut
경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si
More information지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월
지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support
More information01이국세_ok.hwp
x264 GPU 3 a), a), a) Fast Stereoscopic 3D Broadcasting System using x264 and GPU Jung-Ah Choi a), In-Yong Shin a), and Yo-Sung Ho a) 3 2. 2 3. H.264/AVC x264. GPU(Graphics Processing Unit) CUDA API, GPU
More information2013unihangulchar {45380} 2unihangulchar {54617}unihangulchar {44592} unihangulchar {49328}unihangulchar {50629}unihangulchar {51312}unihangulchar {51
Proem Se 4 산업조직론 (ECM004N) Fall 03. 독점기업이 다음과 같은 수요함수를 각각 가지고 있는 두 개의 소비자 그룹에게 제품을 공급한다고 하자. 한 단위 제품을 생산하는 데 드는 비용은 상수 이다. 다음 질문에 답하시오. P = A B Q P = A B Q () 두 그룹에 대하여 가격차별을 하고자 할 때 각 그룹의 균형생산량(Q, Q )과
More information6.24-9년 6월
리눅스 환경에서Solid-State Disk 성능 최적화를 위한 디스크 입출력요구 변환 계층 김태웅 류준길 박찬익 Taewoong Kim Junkil Ryu Chanik Park 포항공과대학교 컴퓨터공학과 {ehoto, lancer, cipark}@postech.ac.kr 요약 SSD(Solid-State Disk)는 여러 개의 낸드 플래시 메모리들로 구성된
More information<C3E1B0E8C7D0C8B8B3EDB9AE28BCAEB9AEB1E E322E687770>
GPGPU 를활용한 PDEVS 시뮬레이터개발방법론 Abstract Key Words : DEVS, PDEVS, GPGPU, CUDA 한국시뮬레이션학회 10 춘계학술대회 2010.05.28 홍익대학교조치원캠퍼스 1. 서론게임소프트웨어발전과더불어그래픽카드도발전해왔고더불어 GPU내프로세서의수도증가하였다. 표 1은최근의그래픽카드의프로세서의수를나타낸다. 표 1. NVIDIA
More information03홍성욱.hwp
(JBE Vol. 18, No. 6, November 2013) (Special Paper) 18 6, 2013 11 (JBE Vol. 18, No. 6, November 2013) http://dx.doi.org/10.5909/jbe.2013.18.6.816 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) HEVC UHD
More information2. 4. 1. 업무에 활용 가능한 플러그인 QGIS의 큰 들을 찾 아서 특징 설치 마 폰 은 스 트 그 8 하 이 업무에 필요한 기능 메뉴 TM f K 플러그인 호출 와 TM f K < 림 > TM f K 종항 그 중에서 그 설치 듯 할 수 있는 플러그인이 많이 제공된다는 것이다. < 림 > 다. 에서 어플을 다운받아 S or 8, 9 의 S or OREA
More information<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>
Journal of the Korea Academia-Industrial cooperation Society Vol. 13, No. 2 pp. 866-871, 2012 http://dx.doi.org/10.5762/kais.2012.13.2.866 증강현실을 이용한 아동교육프로그램 모델제안 권미란 1*, 김정일 2 1 나사렛대학교 아동학과, 2 한세대학교 e-비즈니스학과
More informationMicrosoft PowerPoint - chap02-C프로그램시작하기.pptx
#include int main(void) { int num; printf( Please enter an integer "); scanf("%d", &num); if ( num < 0 ) printf("is negative.\n"); printf("num = %d\n", num); return 0; } 1 학습목표 을 작성하면서 C 프로그램의
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2017 Mar.; 28(3), 163 169. http://dx.doi.org/10.5515/kjkiees.2017.28.3.163 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) PCB
More information문제지 제시문 2 보이지 않는 영역에 대한 정보를 얻기 위하여 관측된 다른 정보를 분석하여 역으로 미 관측 영역 에 대한 정보를 얻을 수 있다. 가령 주어진 영역에 장애물이 있는 경우 한 끝 점에서 출발하여 다른 끝 점에 도달하는 최단 경로의 개수를 분석하여 장애물의
제시문 문제지 2015학년도 대학 신입학생 수시모집 일반전형 면접 및 구술고사 수학 제시문 1 하나의 동전을 던질 때, 앞면이나 뒷면이 나온다. 번째 던지기 전까지 뒷면이 나온 횟수를 라 하자( ). 처음 던지기 전 가진 점수를 점이라 하고, 번째 던졌을 때, 동전의 뒷면이 나오면 가지고 있던 점수를 그대로 두고, 동전의 앞면이 나오면 가지고 있던 점수를 배
More information이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론
이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론 2. 관련연구 2.1 MQTT 프로토콜 Fig. 1. Topic-based Publish/Subscribe Communication Model. Table 1. Delivery and Guarantee by MQTT QoS Level 2.1 MQTT-SN 프로토콜 Fig. 2. MQTT-SN
More informationwtu05_ÃÖÁ¾
한 눈에 보는 이달의 주요 글로벌 IT 트렌드 IDG World Tech Update May C o n t e n t s Cover Story 아이패드, 태블릿 컴퓨팅 시대를 열다 Monthly News Brief 이달의 주요 글로벌 IT 뉴스 IDG Insight 개발자 관점에서 본 윈도우 폰 7 vs. 아이폰 클라우드 컴퓨팅, 불만 검증 단계 돌입 기업의
More information<C3E6B3B2B1B3C0B0313832C8A32DC5BEC0E7BFEB28C0DBB0D4292D332E706466>
11-8140242-000001-08 2013-927 2013 182 2013 182 Contents 02 16 08 10 12 18 53 25 32 63 Summer 2 0 1 3 68 40 51 57 65 72 81 90 97 103 109 94 116 123 130 140 144 148 118 154 158 163 1 2 3 4 5 8 SUMMER
More informationexp
exp exp exp exp exp exp exp exp exp exp exp log 第 卷 第 號 39 4 2011 4 투영법을 이용한 터빈 블레이드의 크리프 특성 분석 329 성을 평가하였다 이를 위해 결정계수값인 값 을 비교하였으며 크리프 시험 결과를 곡선 접합 한 결과와 비선형 최소자승법으로 예측한 결과 사 이 결정계수간 정도의 오차가 발생하였고
More information......
Introduction to Computers 3 4 5 6 01 7 02 8 03 9 04 05 10 06 11 07 12 08 13 09 10 14 11 15 12 16 13 17 14 15 18 19 01 48 Introduction to Computers 임들을 많이 볼 수 있다. 과거에는 주로 컴퓨터
More information05(533-537) CPLV12-04.hwp
모바일 OS 환경의 사용자 반응성 향상 기법 533 모바일 OS 환경의 사용자 반응성 향상 기법 (Enhancing Interactivity in Mobile Operating Systems) 배선욱 김정한 (Sunwook Bae) 엄영익 (Young Ik Eom) (Junghan Kim) 요 약 사용자 반응성은 컴퓨팅 시스템에서 가장 중요 한 요소 중에 하나이고,
More information06_ÀÌÀçÈÆ¿Ü0926
182 183 184 / 1) IT 2) 3) IT Video Cassette Recorder VCR Personal Video Recorder PVR VCR 4) 185 5) 6) 7) Cloud Computing 8) 186 VCR P P Torrent 9) avi wmv 10) VCR 187 VCR 11) 12) VCR 13) 14) 188 VTR %
More informationCR2006-41.hwp
연구책임자 가나다 순 머 리 말 2006년 12월 한국교육학술정보원 원장 - i - - ii - - iii - 평가 영역 1. 교육계획 2. 수업 3. 인적자원 4. 물적자원 5. 경영과 행정 6. 교육성과 평가 부문 부문 배점 비율(%) 점수(점) 영역 배점 1.1 교육목표 3 15 45점 1.2 교육과정 6 30 (9%) 2.1 수업설계 6 30 2.2
More information19_9_767.hwp
(Regular Paper) 19 6, 2014 11 (JBE Vol. 19, No. 6, November 2014) http://dx.doi.org/10.5909/jbe.2014.19.6.866 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) RGB-Depth - a), a), b), a) Real-Virtual Fusion
More information2002년 2학기 자료구조
자료구조 (Data Structures) Chapter 1 Basic Concepts Overview : Data (1) Data vs Information (2) Data Linear list( 선형리스트 ) - Sequential list : - Linked list : Nonlinear list( 비선형리스트 ) - Tree : - Graph : (3)
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2016 Jun.; 276), 504511. http://dx.doi.org/10.5515/kjkiees.2016.27.6.504 ISSN 1226-3133 Print)ISSN 2288-226X Online) Near-Field
More information엔비디아 Nvidia (NVDA US) 4차 산업혁명의 BRAIN 미래에셋대우 리서치센터 글로벌 포트폴리오 GPU(Graphic Processing Unit)는 무엇인가? GPU (Graphic Processing Unit) NVIDIA는 GPU 설계를 메인 사업으로
USD 16.5 USD 114.38 NASDAQ 7.4% Bloomberg Rating 4 3 2 1 Nvidia S&P 5 16.1 16.7 17.1 Youngho Ryu, Analyst 2-3774-14491449 young.ryu@miraeasset.com 엔비디아 Nvidia (NVDA US) 4차 산업혁명의 BRAIN 미래에셋대우 리서치센터 글로벌
More information<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>
한국지능시스템학회 논문지 2010, Vol. 20, No. 3, pp. 375-379 유전자 알고리즘을 이용한 강인한 Support vector machine 설계 Design of Robust Support Vector Machine Using Genetic Algorithm 이희성 홍성준 이병윤 김은태 * Heesung Lee, Sungjun Hong,
More informationChapter ...
Chapter 4 프로세서 (4.9절, 4.12절, 4.13절) Contents 4.1 소개 4.2 논리 설계 기초 4.3 데이터패스 설계 4.4 단순한 구현 방법 4.5 파이프라이닝 개요*** 4.6 파이프라이닝 데이터패스 및 제어*** 4.7 데이터 해저드: 포워딩 vs. 스톨링*** 4.8 제어 해저드*** 4.9 예외 처리*** 4.10 명령어 수준
More information13김상민_ok.hwp
3 : HEVC GPU (Sangmin Kim et al. : Adaptive Search Range Decision for Accelerating GPU-based Integer-pel Motion Estimation in HEVC Encoders) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September
More information소성해석
3 강유한요소법 3 강목차 3. 미분방정식의근사해법-Ritz법 3. 미분방정식의근사해법 가중오차법 3.3 유한요소법개념 3.4 편미분방정식의유한요소법 . CAD 전처리프로그램 (Preprocessor) DXF, STL 파일 입력데이타 유한요소솔버 (Finite Element Solver) 자연법칙지배방정식유한요소방정식파생변수의계산 질량보존법칙 연속방정식 뉴톤의운동법칙평형방정식대수방정식
More information(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228
(JBE Vol. 1, No. 1, January 016) (Regular Paper) 1 1, 016 1 (JBE Vol. 1, No. 1, January 016) http://dx.doi.org/10.5909/jbe.016.1.1.60 ISSN 87-9137 (Online) ISSN 16-7953 (Print) a), a) An Efficient Method
More informationDBPIA-NURIMEDIA
논문 10-35-03-03 한국통신학회논문지 '10-03 Vol. 35 No. 3 원활한 채널 변경을 지원하는 효율적인 IPTV 채널 관리 알고리즘 준회원 주 현 철*, 정회원 송 황 준* Effective IPTV Channel Control Algorithm Supporting Smooth Channel Zapping HyunChul Joo* Associate
More information63-69±è´ë¿µ
Study on the Shadow Effect of 3D Visualization for Medical Images ased on the Texture Mapping D.Y. Kim, D.S. Kim, D.K. Shin, D.Y. Kim 1 Dept. of iomedical Engineering, Yonsei University = bstract = The
More information152*220
152*220 2011.2.16 5:53 PM ` 3 여는 글 교육주체들을 위한 교육 교양지 신경림 잠시 휴간했던 우리교육 을 비록 계간으로이지만 다시 내게 되었다는 소식을 들으니 우 선 반갑다. 하지만 월간으로 계속할 수 없다는 현실이 못내 아쉽다. 솔직히 나는 우리교 육 의 부지런한 독자는 못 되었다. 하지만 비록 어깨너머로 읽으면서도 이런 잡지는 우 리
More informationDBPIA-NURIMEDIA
무선 센서 네트워크 환경에서 링크 품질에 기반한 라우팅에 대한 효과적인 싱크홀 공격 탐지 기법 901 무선 센서 네트워크 환경에서 링크 품질에 기반한 라우팅에 대한 효과적인 싱크홀 공격 탐지 기법 (A Effective Sinkhole Attack Detection Mechanism for LQI based Routing in WSN) 최병구 조응준 (Byung
More informationContributors: Myung Su Seok and SeokJae Yoo Last Update: 09/25/ Introduction 2015년 8월현재전자기학분야에서가장많이쓰이고있는 simulation software는다음과같은알고리즘을사용하고있다.
Contributors: Myung Su Seok and SeokJae Yoo Last Update: 09/25/2015 1. Introduction 2015년 8월현재전자기학분야에서가장많이쓰이고있는 simulation software는다음과같은알고리즘을사용하고있다. 2. Installation 2.1. For Debian GNU/Linux 국내에서사용되는컴퓨터들의
More information아이콘의 정의 본 사용자 설명서에서는 다음 아이콘을 사용합니다. 참고 참고는 발생할 수 있는 상황에 대처하는 방법을 알려 주거나 다른 기능과 함께 작동하는 방법에 대한 요령을 제공합니다. 상표 Brother 로고는 Brother Industries, Ltd.의 등록 상
Android 용 Brother Image Viewer 설명서 버전 0 KOR 아이콘의 정의 본 사용자 설명서에서는 다음 아이콘을 사용합니다. 참고 참고는 발생할 수 있는 상황에 대처하는 방법을 알려 주거나 다른 기능과 함께 작동하는 방법에 대한 요령을 제공합니다. 상표 Brother 로고는 Brother Industries, Ltd.의 등록 상표입니다. Android는
More informationA Time Series and Spatial Analysis of Factors Affecting Housing Prices in Seoul Ha Yeon Hong* Joo Hyung Lee** 요약 주제어 ABSTRACT:This study recognizes th
A Time Series and Spatial Analysis of Factors Affecting Housing Prices in Seoul Ha Yeon Hong*Joo Hyung Lee** 요약 주제어 ABSTRACT:This study recognizes that the factors which influence the apartment price are
More informationHigh Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo
High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a low-resolution Time-Of- Flight (TOF) depth camera and
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2014 Nov.; 25(11), 11351141. http://dx.doi.org/10.5515/kjkiees.2014.25.11.1135 ISSN 1226-3133 (Print)ISSN 2288-226X (Online)
More information28 저전력복합스위칭기반의 0.16mm 2 12b 30MS/s 0.18um CMOS SAR ADC 신희욱외 Ⅰ. 서론 Ⅱ. 제안하는 SAR ADC 구조및회로설계 1. 제안하는 SAR ADC의전체구조
Journal of The Institute of Electronics and Information Engineers Vol.53, NO.7, July 2016 http://dx.doi.org/10.5573/ieie.2016.53.7.027 ISSN 2287-5026(Print) / ISSN 2288-159X(Online) 논문 2016-53-7-4 c Abstract
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Oct.; 29(10), 799 804. http://dx.doi.org/10.5515/kjkiees.2018.29.10.799 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Method
More informationºñ»óÀå±â¾÷ ¿ì¸®»çÁÖÁ¦µµ °³¼±¹æ¾È.hwp
V a lu e n C F = t 1 (1 r ) t t = + n : 평 가 자 산 의 수 명 C F t : t 기 의 현 금 흐 름 r: 할 인 율 또 는 자 본 환 원 율 은 행 1. 대 부 금 5. 대 부 금 상 환 E S O P 2. 주 식 매 입 3. 주 식 4. E S O P 기 여 금 기 업 주인으로 쌍방향의 투명
More information김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More informationArtificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제
Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, 2018 1 1.1 Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제 6.5에서 찾아볼 수 있다. http://incompleteideas.net/book/bookdraft2017nov5.pdf
More information17-5-1-2 최홍준(수정).hwp
Journal of The Korea Society of Computer and Information Vol. 17 No. 5, May 2012 2012-17-5-1-2 응용프로그램 실행에 따른 CPU/GPU의 온도 및 컴퓨터 시스템의 에너지 효율성 분석 최 홍 준*, 강 승 구*, 김 종 면**, 김 철 홍*1) Analysis of the CPU/GPU
More information<5BB0EDB3ADB5B55D32303131B3E2B4EBBAF12DB0ED312D312DC1DFB0A32DC0B6C7D5B0FAC7D02D28312E28322920BAF2B9F0B0FA20BFF8C0DAC0C720C7FCBCBA2D3031292D3135B9AEC7D72E687770>
고1 융합 과학 2011년도 1학기 중간고사 대비 다음 글을 읽고 물음에 답하시오. 1 빅뱅 우주론에서 수소와 헬륨 의 형성에 대한 설명으로 옳은 것을 보기에서 모두 고른 것은? 4 서술형 다음 그림은 수소와 헬륨의 동위 원 소의 을 모형으로 나타낸 것이. 우주에서 생성된 수소와 헬륨 의 질량비 는 약 3:1 이. (+)전하를 띠는 양성자와 전기적 중성인 중성자
More informationJournal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc
Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp.251-273 DOI: http://dx.doi.org/10.21024/pnuedi.27.2.201706.251 : 1997 2005 Research Trend Analysis on the Korean Alternative Education
More information= Fisher, I. (1930), ``The Theory of Interest,'' Macmillan ,
Finance Lecture Note Series 학습목표 제4강 소유와 경영의 분리 효용함수(utility function): 효용함수, 한계효용(marginal utility), 한계대체율(marginal rate of substitution) 의 개념에 대해 알아본다 조 승 모2 (production possibility curve): 생산가능곡선과 한계변환율(marginal
More information41-4....
ISSN 1016-9288 제41권 4호 2014년 4월호 제 4 1 권 제 4 호 ( ) 2 0 1 4 년 4 월 차 세 대 컴 퓨 팅 보 안 기 술 The Magazine of the IEIE 차세대 컴퓨팅 보안기술 vol.41. no.4 새롭게 진화하는 위협의 패러다임 - 지능형 지속 위협(APT) 인터넷을 통해 유포되는 악성 프로그램 대응전략 차세대
More informationJkafm093.hwp
가정의학회지 2004;25:721-739 비만은 심혈관 질환, 고혈압 및 당뇨병에 각각 위험요인이고 다양한 내과적, 심리적 장애와 연관이 있는 질병이다. 체중감소는 비만한 사람들에 있어 이런 위험을 감소시키고 이들 병발 질환을 호전시킨다고 알려져 있고 일반적으로 많은 사람들에게 건강을 호전시킬 것이라는 믿음이 있어 왔다. 그러나 이런 믿음을 지지하는 연구들은
More information<352831292E5FBBEABEF7C1DFBAD0B7F9BAB02C5FC1B6C1F7C7FCC5C25FB9D75FB5BFBAB05FBBE7BEF7C3BCBCF65FA1A4C1BEBBE7C0DABCF62E786C73>
5. 산업중분류, 조직형태 및 동별 사업체수, 종사자수 단위 : 개, 명 금정구 서1동 서2동 서3동 Geumjeong-gu Seo 1(il)-dong Seo 2(i)-dong Seo 3(sam)-dong TT전 산 업 17 763 74 873 537 1 493 859 2 482 495 1 506 15 519 35 740 520 978 815 1 666 462
More information33 래미안신반포팰리스 59 문 * 웅 입주자격소득초과 34 래미안신반포팰리스 59 송 * 호 입주자격소득초과 35 래미안신반포팰리스 59 나 * 하 입주자격소득초과 36 래미안신반포팰리스 59 최 * 재 입주자격소득초
1 장지지구4단지 ( 임대 ) 59A1 김 * 주 830516 입주자격소득초과 2 장지지구4단지 ( 임대 ) 59A1 김 * 연 711202 입주자격소득초과 3 장지지구4단지 ( 임대 ) 59A1 이 * 훈 740309 입주자격소득초과 4 발산지구4단지 ( 임대 ) 59A 이 * 희 780604 입주자격소득초과 5 발산지구4단지 ( 임대 ) 59A 안 * 현
More information김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월
지능정보연구제 17 권제 4 호 2011 년 12 월 (pp.241~254) Support vector machines(svm),, CRM. SVM,,., SVM,,.,,. SVM, SVM. SVM.. * 2009() (NRF-2009-327- B00212). 지능정보연구제 17 권제 4 호 2011 년 12 월 김경재 안현철 지능정보연구제 17 권제 4 호
More informationC# Programming Guide - Types
C# Programming Guide - Types 최도경 lifeisforu@wemade.com 이문서는 MSDN 의 Types 를요약하고보충한것입니다. http://msdn.microsoft.com/enus/library/ms173104(v=vs.100).aspx Types, Variables, and Values C# 은 type 에민감한언어이다. 모든
More information안 산 시 보 차 례 훈 령 안산시 훈령 제 485 호 [안산시 구 사무 전결처리 규정 일부개정 규정]------------------------------------------------- 2 안산시 훈령 제 486 호 [안산시 동 주민센터 전결사항 규정 일부개정 규
발행일 : 2013년 7월 25일 안 산 시 보 차 례 훈 령 안산시 훈령 제 485 호 [안산시 구 사무 전결처리 규정 일부개정 규정]------------------------------------------------- 2 안산시 훈령 제 486 호 [안산시 동 주민센터 전결사항 규정 일부개정 규정]--------------------------------------------
More informationMicrosoft PowerPoint - 알고리즘_5주차_1차시.pptx
Basic Idea of External Sorting run 1 run 2 run 3 run 4 run 5 run 6 750 records 750 records 750 records 750 records 750 records 750 records run 1 run 2 run 3 1500 records 1500 records 1500 records run 1
More informationCUDA Programming Tutorial 2 - Memory Management – Matrix Transpose
CUDA Programming Tutorial 2 Memory Management Matrix Transpose Sungjoo Ha April 20th, 2017 Sungjoo Ha 1 / 29 Memory Management 병렬연산장치를활용하기위해하드웨어구조의이해를바탕에둔메모리활용이필요 CUDA 프로그래밍을하며알아야하는두가지메모리특성을소개 전치행렬계산을예제로
More informationSoftware Requirrment Analysis를 위한 정보 검색 기술의 응용
EPG 정보 검색을 위한 예제 기반 자연어 대화 시스템 김석환 * 이청재 정상근 이근배 포항공과대학교 컴퓨터공학과 지능소프트웨어연구실 {megaup, lcj80, hugman, gblee}@postech.ac.kr An Example-Based Natural Language System for EPG Information Access Seokhwan Kim
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2015 Nov.; 26(11), 985991. http://dx.doi.org/10.5515/kjkiees.2015.26.11.985 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) Analysis
More information03_queue
Queue Data Structures and Algorithms 목차 큐의이해와 ADT 정의 큐의배열기반구현 큐의연결리스트기반구현 큐의활용 덱 (Deque) 의이해와구현 Data Structures and Algorithms 2 큐의이해와 ADT 정의 Data Structures and Algorithms 3 큐 (Stack) 의이해와 ADT 정의 큐는 LIFO(Last-in,
More informationActFax 4.31 Local Privilege Escalation Exploit
NSHC 2013. 05. 23 악성코드 분석 보고서 [ Ransomware 악성코드 ] 사용자의 컴퓨터를 강제로 잠그고 돈을 요구하는 형태의 공격이 기승을 부리고 있 습니다. 이러한 형태의 공격에 이용되는 악성코드는 Ransomware로 불리는 악성코 드 입니다. 한번 감염 시 치료절차가 복잡하며, 보고서 작성 시점을 기준으로 지속 적인 피해자가 발생되고
More information(JBE Vol. 23, No. 5, September 2018) (Special Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN
(JBE Vol. 23, No. 5, September 2018) (Special Paper) 23 5, 2018 9 (JBE Vol. 23, No. 5, September 2018) https://doi.org/10.5909/jbe.2018.23.5.614 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) Generative
More informationMicrosoft PowerPoint - chap01-C언어개요.pptx
#include int main(void) { int num; printf( Please enter an integer: "); scanf("%d", &num); if ( num < 0 ) printf("is negative.\n"); printf("num = %d\n", num); return 0; } 1 학습목표 프로그래밍의 기본 개념을
More information09권오설_ok.hwp
(JBE Vol. 19, No. 5, September 2014) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September 2014) http://dx.doi.org/10.5909/jbe.2014.19.5.656 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) Reduction
More information(JBE Vol. 20, No. 5, September 2015) (Special Paper) 20 5, (JBE Vol. 20, No. 5, September 2015) ISS
(Special Paper) 20 5, 2015 9 (JBE Vol. 20, No. 5, September 2015) http://dx.doi.org/10.5909/jbe.2015.20.5.676 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) 4 Light Field Dictionary Learning a), a) Dictionary
More informationNCS 기반일학습병행대학표준모델개발 책을펴내며 목차 표목차 그림목차 요약 i ii NCS 기반일학습병행대학표준모델개발 요약 iii iv NCS 기반일학습병행대학표준모델개발 요약 v vi NCS 기반일학습병행대학표준모델개발 요약 vii viii NCS 기반일학습병행대학표준모델개발 요약 ix x NCS 기반일학습병행대학표준모델개발 제 1 장서론
More information방송공학회 논문지_최정아_심사용.hwp
본 논문은 한국방송공학회 논문지 투고본입니다. 1. 제목 (국문) x264와 GPU를 이용한 실시간 양안식 3차원 방송 시스템 (영문) Real-time Stereoscopic 3D Broadcasting System using x264 and GPU 2. 연구 분야 3차원 방송 시스템 3. 저자 1) 최정아(Jung-Ah Choi) (500-712) 광주광역시
More informationMicrosoft PowerPoint - [2009] 02.pptx
원시데이터유형과연산 원시데이터유형과연산 원시데이터유형과연산 숫자데이터유형 - 숫자데이터유형 원시데이터유형과연산 표준입출력함수 - printf 문 가장기본적인출력함수. (stdio.h) 문법 ) printf( Test printf. a = %d \n, a); printf( %d, %f, %c \n, a, b, c); #include #include
More information<4D6963726F736F667420576F7264202D20C3D6BDC52049435420C0CCBDB4202D20BAB9BBE7BABB>
최신 ICT 이슈 최신 ICT 이슈 알파고의 심층강화학습을 뒷받침한 H/W 와 S/W 환경의 진화 * 알파고의 놀라운 점은 바둑의 기본규칙조차 입력하지 않았지만 승리 방식을 스스로 알아 냈다는 것이며, 알파고의 핵심기술인 심층강화학습이 급속도로 발전한 배경에는 하드웨 어의 진화와 함께 오픈소스화를 통해 발전하는 AI 관련 소프트웨어들이 자리하고 있음 2014
More information3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < >
. 변수의수 ( 數 ) 가 3 이라면카르노맵에서몇개의칸이요구되는가? 2칸 나 4칸 다 6칸 8칸 < > 2. 다음진리표의카르노맵을작성한것중옳은것은? < 나 > 다 나 입력출력 Y - 2 - 3. 다음은카르노맵의표이다. 논리식을간략화한것은? < 나 > 4. 다음카르노맵을간략화시킨결과는? < > 2 2 2 2 2 2 2-3 - 5. 다음진리표를간략히한결과
More information<C1DF29B1E2BCFAA1A4B0A1C1A420A8E85FB1B3BBE7BFEB20C1F6B5B5BCAD2E706466>
01 02 8 9 32 33 1 10 11 34 35 가족 구조의 변화 가족은 가족 구성원의 원만한 생활과 사회의 유지 발전을 위해 다양한 기능 사회화 개인이 자신이 속한 사회의 행동 가구 가족 규모의 축소와 가족 세대 구성의 단순화는 현대 사회에서 가장 뚜렷하게 나 1인 또는 1인 이상의 사람이 모여 주거 및 생계를 같이 하는 사람의 집단 타나는 가족 구조의
More informationDBPIA-NURIMEDIA
2007 년 11 월전자공학회논문지제 44 권 SP 편제 6 호 9 논문 2007-44SP-6-2 GPU 를이용한 DWT 및 JPEG2000 의고속연산 (Fast Computation of DWT and JPEG2000 using GPU ) 이만희 *, 박인규 **, 원석진 ***, 조성대 *** * (Man Hee Lee, In Kyu Park, Seok
More informationMicrosoft PowerPoint - chap03-변수와데이터형.pptx
#include int main(void) { int num; printf( Please enter an integer: "); scanf("%d", &num); if ( num < 0 ) printf("is negative.\n"); printf("num %d\n", num); return 0; } 1 학습목표 의 개념에 대해 알아본다.
More information(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.
: 565 (Special Paper) 7 4, 0 7 (JBE Vol. 7, No. 4, July 0) http://dx.doi.org/0.5909/jbe.0.7.4.565 a), b), a) Depth Map Denoising Based on the Common Distance Transform Sung-Yeol Kim a), Manbae Kim b),
More informationch3.hwp
미디어정보처리 (c) -4 한남대 정보통신멀티미디어학부 MCCLab. - -...... (linear filtering). Z k = n i = Σn m Σ j = m M ij I ji 컨볼루션 영역창 I I I I 3 I 4 I 5 I 6 I 7 I 8 x 컨볼루션 마스크 M M M M 3 M 4 M 5 M 6 M 7 M 8 I 입력 영상 Z 4 = 8 k
More informationDBMS & SQL Server Installation Database Laboratory
DBMS & 조교 _ 최윤영 } 데이터베이스연구실 (1314 호 ) } 문의사항은 cyy@hallym.ac.kr } 과제제출은 dbcyy1@gmail.com } 수업공지사항및자료는모두홈페이지에서확인 } dblab.hallym.ac.kr } 홈페이지 ID: 학번 } 홈페이지 PW:s123 2 차례 } } 설치전점검사항 } 설치단계별설명 3 Hallym Univ.
More information슬라이드 1
-Part3- 제 4 장동적메모리할당과가변인 자 학습목차 4.1 동적메모리할당 4.1 동적메모리할당 4.1 동적메모리할당 배울내용 1 프로세스의메모리공간 2 동적메모리할당의필요성 4.1 동적메모리할당 (1/6) 프로세스의메모리구조 코드영역 : 프로그램실행코드, 함수들이저장되는영역 스택영역 : 매개변수, 지역변수, 중괄호 ( 블록 ) 내부에정의된변수들이저장되는영역
More information....pdf..
Korea Shipping Association 조합 뉴비전 선포 다음은 뉴비전 세부추진계획에 대한 설명이다. 우리 조합은 올해로 창립 46주년을 맞았습니다. 조합은 2004년 이전까 지는 조합운영지침을 마련하여 목표 를 세우고 전략적으로 추진해왔습니 다만 지난 2005년부터 조합원을 행복하게 하는 가치창출로 해운의 미래를 열어 가자 라는 미션아래 BEST
More informationÀ±½Â¿í Ãâ·Â
Representation, Encoding and Intermediate View Interpolation Methods for Multi-view Video Using Layered Depth Images The multi-view video is a collection of multiple videos, capturing the same scene at
More informationPowerPoint Presentation
자바프로그래밍 1 배열 손시운 ssw5176@kangwon.ac.kr 배열이필요한이유 예를들어서학생이 10 명이있고성적의평균을계산한다고가정하자. 학생 이 10 명이므로 10 개의변수가필요하다. int s0, s1, s2, s3, s4, s5, s6, s7, s8, s9; 하지만만약학생이 100 명이라면어떻게해야하는가? int s0, s1, s2, s3, s4,
More information( 단위 : 가수, %) 응답수,,-,,-,,-,,-,, 만원이상 무응답 평균 ( 만원 ) 자녀상태 < 유 자 녀 > 미 취 학 초 등 학 생 중 학 생 고 등 학 생 대 학 생 대 학 원 생 군 복 무 직 장 인 무 직 < 무 자 녀 >,,.,.,.,.,.,.,.,.
. 대상자의속성 -. 연간가수 ( 단위 : 가수, %) 응답수,,-,,-,,-,,-,, 만원이상 무응답평균 ( 만원 ) 전 국,........,. 지 역 도 시 지 역 서 울 특 별 시 개 광 역 시 도 시 읍 면 지 역,,.,.,.,.,. 가주연령 세 이 하 - 세 - 세 - 세 - 세 - 세 - 세 세 이 상,.,.,.,.,.,.,.,. 가주직업 의회의원
More information나하나로 5호
Vol 3, No. 1, June, 2009 Korean Association of CardioPulmonary Resuscitation Korean Association of CardioPulmonary Resuscitation(KACPR) Newsletter 01 02 03 04 05 2 3 4 대한심폐소생협회 소식 교육위원회 소식 일반인(초등학생/가족)을
More information41-5....
ISSN 1016-9288 제41권 5호 2014년 5월호 제 4 1 권 제 5 호 ( ) 2 0 1 4 년 5 월 SSD (Solid State Drive) The Magazine of the IEIE vol.41. no.5 SSD (Solid State Drive) SSD (Solid State Drive)를 이루는 기술과 미래 SSD의 등장에 따른 OS의
More information08이규형_ok.hwp
(JBE Vol. 18, No. 2, March 2013) (Regular Paper) 18 2, 2013 3 (JBE Vol. 18, No. 2, March 2013) http://dx.doi.org/10.5909/jbe.2013.18.2.204 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) DVB-T GPU FFT a),
More informationPowerPoint 프레젠테이션
System Software Experiment 1 Lecture 5 - Array Spring 2019 Hwansoo Han (hhan@skku.edu) Advanced Research on Compilers and Systems, ARCS LAB Sungkyunkwan University http://arcs.skku.edu/ 1 배열 (Array) 동일한타입의데이터가여러개저장되어있는저장장소
More informationGray level 변환 및 Arithmetic 연산을 사용한 영상 개선
Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a
More information= Fisher, I. (1930), ``The Theory of Interest,'' Macmillan ,
Finance Lecture Note Series 금융시장과 투자분석 연구 제4강. 소유와 경영의 분리1 조 승 모2 영남대학교 대학원 경제학과 2015학년도 2학기 Copyright 2015 Cho, Seung Mo 1 기본적으로 Fisher, I. (1930), The Theory of Interest, Macmillan의 내용을 바탕으로 작성되었으며,
More information3. 클라우드 컴퓨팅 상호 운용성 기반의 서비스 평가 방법론 개발.hwp
보안공학연구논문지 Journal of Security Engineering Vol.11, No.4 (2014), pp.299-312 http://dx.doi.org/10.14257/jse.2014.08.03 클라우드 컴퓨팅 상호 운용성 기반의 서비스 평가 방법론 개발 이강찬 1), 이승윤 2), 양희동 3), 박철우 4) Development of Service
More informationVector Differential: 벡터 미분 Yonghee Lee October 17, 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표
Vector Differential: 벡터 미분 Yonhee Lee October 7, 08 벡터미분의 표기 스칼라미분 벡터미분(Vector diffrential) 또는 행렬미분(Matrix differential)은 벡터와 행렬의 미분식에 대 한 표기법을 정의하는 방법이다 보통 스칼라(scalar)에 대한 미분은 일분수 함수 f : < < 또는 다변수 함수(function
More information[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp
RUF * (A Simple and Efficient Antialiasing Method with the RUF buffer) (, Byung-Uck Kim) (Yonsei Univ. Depth of Computer Science) (, Woo-Chan Park) (Yonsei Univ. Depth of Computer Science) (, Sung-Bong
More information