DBPIA-NURIMEDIA
|
|
- 민형 순
- 7 years ago
- Views:
Transcription
1 2007 년 9 월전자공학회논문지제 44 권 SP 편제 5 호 1 논문 SP-5-1 자기유사성을이용한가우시안노이즈제거알고리즘 (Gaussian Noise Reduction Algorithm using Self-similarity ) 전영은 *, 엄민영 **, 최윤식 ** * (Yougneun Jeon, Minyoung Eom, and Yoonsik Choe ) 요 약 대부분의자연영상은프랙탈이론의기반이되는자기유사성이라는특징을가지고있다. 비록국부적으로영상을정상신호라고가정할수있지만일반적으로영상신호는에지나코너부분과같은불연속성을가지고있는비정상신호이다. 이때문에대부분의선형알고리즘의성능저하가나타난다. 따라서이러한문제를해결하기위하여본논문에서는영상내에포함되어있는자기유사성을이용하는새로운비선영잡음제거알고리즘을제안한다. 이를위해우선잡음제거를수행할위치의화소주변화소들을이용하여평탄영역인지를판단한다. 평탄영역일경우그주변픽셀들의평균으로잡음을제거하고, 평탄영역이아닌경우, 블록 MSE(block Mean Square Error) 관점에서유사도가높은블록을탐색하여그블록들의중심화소값들을이용하여잡음제거를수행한다. 실험결과는 PSNR 측면에서잡음제거성능이약 1 3dB 정도향상됨을보여준다. 또한추정이론관점에서추정자의분산분석결과가장낮은분산을갖음을보였다. Abstract Most of natural images have a special property, what is called self-similarity, which is the basis of fractal image coding. Even though an image has local stationarity in several homogeneous regions, it is generally non-stationarysignal, especially in edge region. This is the main reason that poor results are induced in linear techniques. In order to overcome the difficulty, we propose a non-linear technique using self-similarity in the image. In our work, an image is classified into stationary and non-stationary region with respect to sample variance. In case of stationary region, de-noising is performed as simply averaging of its neighborhoods. However, if the region is non-stationary region, stationalization is conducted as make a set of center pixels by similarity matching with respect to bmse (block Mean Square Error). And then de-nosing is performed by Gaussian weighted averaging of center pixels of similar blocks, because the set of center pixels of similar blocks can be regarded as nearly stationary. The true image value is estimated by weighted average of the elements of the set. The experimental results show that our method has better performance and smaller variance than other methods as estimator. Keywords : 가우시안잡음, 잡음제거, 자기유사성. Ⅰ. 서론 잡음은영상을획득 ( 영상을얻거나, 얻은이미지를 * 정회원, 삼성전자 ( 주 ) (Samsung Electronics CO., LTD.) ** 정회원, 연세대학교전기전자공학과 (Dept. of Electrical and Electronic Engineering, Yonsei University) 본연구는 LG Phillips-LCD(LCD에최적화된 video format conversion 알고리즘개발 ) 지원으로수행되었음. 접수일자 : 2006년12월28일, 수정완료일 : 2007년8월24일 디지털화하는과정 ) 하거나전송하는과정등에서발생된다. 예를들어 CCD(Charge-Coupled Device) 카메라를통해영상을얻을때주변의밝기와센서의온도에의해노이즈가발생하며, 전송시주변의환경이나채널간섭등에의해잡음이발생하게된다 [1]. 잡음은영상의화질을떨어트릴뿐만아니라, 스케일링, 특징추출, 초해상도처리, 영상분할등다른영상처리의효과를감소시킨다. 또한압축된형태로전송되어질경우, 잡음은원영상의엔트로피를증가시켜전체적인코딩효율을감소시킨다. 따라서영상처리에있어잡음제거는선행되어야하며, 잡음제거를위한연구가오래 (500)
2 2 자기유사성을이용한가우시안노이즈제거알고리즘전영은외 전부터계속되어져왔다. 지금까지제안되어진방법들은크게선형필터와비선형필터로나눌수있는데, 선형필터로는, 픽셀을주변픽셀들의평균으로채우는평균필터 (McDonnell), 가우시안커널과잡음이섞여있는영상을컨볼루션하여얻는가우시안필터가제안되었다 [1~2]. 선형필터는구현이간단하지만, 영상신호가정상 (stationary) 적인가정하에현재픽셀은인접픽셀의선형조합으로예측가능함을전제로하기때문에, 비정상 (nonstationary) 영역, 즉영상의에지, 코너, 텍스쳐부분에대해잡음제거를많이할수록몽롱화가크게나타나는결과를가져온다. 따라서이를줄이기위한비선형필터가제안되었다. 주위픽셀들을정렬하여중간순위의픽셀로복원하는중간값필터, MSE (mean square error) 를최소화하는 LLMMSE (local linear minimum mean square error, Kuan) 필터, 추정된잡음분산을이용하여주변픽셀과중심픽셀간차이가임계치이하일때에만평균하는시그마필터와주변픽셀과중심픽셀간의차이에따라가중치를다르게주는 AWA (Adaptive weight average), 픽셀간차이뿐아니라중심으로부터의거리도고려하여가중치를주는 bilateral 필터등이제안되었다 [1][3~7]. 이러한비선형필터들은선형필터에비하여고주파성분을더보존할수있으나, 결과적으로는선형필터와마찬가지로이웃점 (neighborhood) 에가중치를어떻게줄것인가로결정되므로, 고주파영역에서의잡음제거효과가클수록몽롱화 (blurring) 가더커진다. 본논문에서는주변픽셀들이아니라, 영상의구조를고려하여잡음을제거하는알고리즘을제안하고자한다. 자연영상은높은자기유사성을가지고있다는프랙탈적근거에기반하여, 자신안에자신과비슷한또다른부분을가지고있는자기유사성 [9] 과, 대부분의가우시안잡음의평균이 0인점을사용하면효과적인잡음제거가이루어질수있다. 영상내의다른모든영역에대하여자신과의유사도를측정한후, 유사도가높은픽셀들에대해서만평균형태를취하여잡음제거에반영하도록한다. 최종적으로추정이론적관점에서봤을때, 최소분산 (minimum variance) 에가장가까운추정자 (estimator) 임을실험적으로보인다. 본논문의 Ⅱ장에서는기존의잡음제거알고리즘에대해서술하고문제점에대해설명하겠다. Ⅲ장에서는자기유사성를이용한잡음제거알고리즘을제안한다. Ⅳ장에서는기존의알고리즘과제안하는방법 에대해실험및결과를분석하고 Ⅴ장에서는결론을기술하겠다. Ⅱ. 기존알고리즘 원영상을 라하고, 인가우시안잡음을 라고하면식 (2.1) 과같은잡음이섞여있는영상모델을정의할수있다. (2.1) 는평균이 0이고, i.i.d(independent identical distributed) 인백색가우시안잡음을가정한다. 여기서, 이다. 1. 선형필터 선형필터링이란, 영상을대칭적인윈도우와컨볼루션하는것을말한다. 복원되는각픽셀값은주변픽셀들의가중평균값으로나타낼수있다. (2.2) 여기에서 은각픽셀에곱해지는가중치이고, 는픽셀 를중심으로하는윈도우 의이웃점의인덱스집합이다. (2.3) W 는정규화상수로써, 아래식과같다. (2.4) 평균필터는, 컨볼루션하는윈도우의가중치 가 윈도우내에서균일하게 으로써주변픽셀들의평균값으로복원된다 [2]. 가우시안필터는윈도우의가중치값이가우시안함수분포를가짐으로써윈도우의중심에더큰가중치를준다 [1]. 그림 2-1. 잡음섞인영상모델 Fig Noisy image Model. (501)
3 2007 년 9 월전자공학회논문지제 44 권 SP 편제 5 호 3 (2.5) 선형필터는구현이간단하여가장많이사용되지만, 영상이정상 (stationary) 적이라는가정을전제로한다. 평탄한영역같이변화도가작은영상신호에서는좋은성능을보이나, 정상상태가성립되지않는부분인에지나, 코너등에서의선형필터링은몽롱화현상을가져온다. 2. 비선형필터 선형필터링으로인해생기는에지등의고주파정보의손실을막기위한다양한비선형필터들이제안되었다. OS(order statistic) 을이용하는중간값필터와윈도우내의평균과분산등의국부적통계적성질을바탕으로한필터들이그예이다. 가. OS 필터 중간값필터는, 윈도우내의픽셀값들의크기순서대로정렬한후, 중간순위에해당되는픽셀값으로복원하는대표적인 OS 필터이다 [3]. 에지보존이잘되어몽롱화현상이적으나, 가우시안노이즈제거효과가적고, 솔트앤페퍼 (salt-and-pepper) 등의임펄스성잡음제거에적합하다. 나. AWA 필터 AWA 필터는중심픽셀을기준으로잡은윈도우내에서주변픽셀들의가중평균으로복원하되, 각픽셀마다가중치를다르게주는필터이다 [6]. (2.6) 따라서윈도우내의각픽셀값이중심픽셀값과유 사하면, 의가중치를줌으로써평균하는형태이 고, 윈도우내의픽셀값이중심픽셀값과차이가큰픽셀에대해서는픽셀간의차이값이클수록가중치를적게주는형태를취한다. 여기에서 은가우시안잡음의분산을추정하여결정한다. 보통, 을사용한다. 다. Sigma 필터 시그마필터는윈도우내픽셀들중에서, 중심픽셀 값과유사한픽셀들만의평균으로복원한다 [4]. (2.7) 따라서중심픽셀과주변픽셀의차이가큰경우, 즉윈도우가에지를포함하는경우에서에지를가로질러평균하지않음으로몽롱화현상이선형필터를쓸때보다작다. AWA필터와마찬가지로임계치 는추정된잡음분산을이용하여결정하는것이효과적이다. 보통 는 의값을사용한다. 라. Bilateral 필터 Bilateral 필터는중심픽셀로부터주변픽셀간의거리뿐만아니라픽셀값의차이도고려하여가중치를주는필터이다 [7]. (2.8) 는픽셀간의거리에대한함수이고, 는픽셀값의차이에대한함수이다. 가우시안함수를사용하여 와 를정의할수있다. (2.9) 즉, 윈도우의중심에서거리가가까울수록, 중심픽셀의픽셀값과비슷할수록더많은가중치를준다. 마. Local LMMSE 필터 위식 (2.1) 의영상모델을가정하고,,, 을각각,, 을렉시코그래픽컬정렬화 (lexicographical ordering) 에의한정렬신호라고하자. 국부적 LMMSE 필터의식은다음과같다. (2.10) 와 을각각윈도우내의표본평균과분산을이용하여얻으면, 식 (2.11) 로전개될수있다. (2.11) 따라서 이면, 평탄한영역에잡음이있는경 (502)
4 4 자기유사성을이용한가우시안노이즈제거알고리즘전영은외 우이므로주변픽셀들의평균으로복원되고, 일경우, 즉에지등의성분을포함하여분산이노이즈분산에비해큰경우에는, 그대로복원된다. 이와같은비선형필터들은영상의정상상태를가정하지않음으로, 평탄한영역의잡음을제거하면서에지영역등에서몽롱화가적어선형필터보다좋은성능을보인다. 그러나결과적으로각픽셀은주변픽셀들의가중평균으로복원되므로, 주변픽셀들의영향을받아몽롱화현상등을피할수없다. 1. 영역분할 Ⅲ. 제안하는알고리즘 를중심으로하는크기 블록의인덱스집합 를아래와같이정의하자. (3,1) 는영상 에서 에해당되는인덱스의화소값을렉시코그래피컬정렬 (lexicographical ordering) 에의하여정렬된 1D 벡터라고하면다음과같이표현할수있다. (3.2) 또한원영상에 의가우시안잡음이더해진 는, (3.3) 여기에서 는 가지는랜덤변수이다. 랜덤변수 을 의표본평균으로정의하자. (3.4) 은 의가우시안랜덤변수이다. 여기에 서 는블록내픽셀값의평균으로 이다. 랜덤변수 와 를아래식과같이정의하자. (3.5) 와 를, 로정의하 면, 이이고, 는 의분포를가지는 랜덤변수이고, 의분포는식 (3.6) 과같다. 의평균은, (3.6) (3.7) 랜덤변수 을 의표본분산으로정의하자. (3.8) 표본분산 의평균은식 (3.9) 로서구할수있다. (3.9) 식 (3.9) 에서 의평균은잡음의분산 ( ) 과, 블록의크기 ( ), 원영상블록내픽셀들의표본평균으로부터의차이값 에의해결정됨을알수있다. 원영상에서블록내픽셀들의픽셀값의변화가클수록, 즉표본평균으로부터차이가클수록, 표본분산은대체로커질것이다. 따라서표본분산을블록내의평탄한정도를판단하는척도로사용할수있다. 블록의표본분산이임계치 이하면평탄하다고간주하고, 그렇지않으면평탄한영역이아니라고판단한다. 2. 평탄영역에서의잡음제거 원영상의화소위치 주위의블록이평탄하다면블록내의화소값들은 위치에서의화소값과비슷한값을가질것이고, 이경우주변화소들만사용하더라도충분한잡음제거가가능하다. 따라서평탄한블 (503)
5 2007 년 9 월전자공학회논문지제 44 권 SP 편제 5 호 5 록의경우유사도가높은블록들을탐색하는과정없이블록내의화소값들을이용하여식 (3.10) 과같이잡음을제거한다. (3.10) 여기서 는 1 이고 이다. 3. 비평탄영역에서의잡음제거 대부분의자연영상은높은중복성을가진다. 부분이전체와비슷하고전체가부분과비슷해서부분을보면전체를볼수있는현상을자기유사성을이용하여표현한다. 이는프렉탈이론의근간이되는것으로대부분의영상내에서도이러한자기유사성을이용하여표현할수있는부분들을포함하고있다. 대부분의잡음제거알고리즘이갖는문제는주어진블록내에존재하는픽셀들의가중치평균값으로잡음제거를하기때문에결과적으로비정상영역에서의몽롱화현상을초래하게된다. 이를해결하기위해본논문에서는자기유사성의특징을이용한다. 유사도가높은블록들의중심화소값의집합을, 잡음제거를해야할현재위치 에서의화소값을 ( 라고하자. 그러면잡음제거문제는관측되어진표본 에서의 DC레벨의참값 를추청하는문제로바뀔수있다. 따라서본논문에서는비평탄영역에서는유사도가높은블록을탐색하여그중심화소값을이용하여적응적으로잡음을제거한다. 정의할수있다. (3.13) 여기에서각, 는가우시안분포를가지는랜덤변수이다. (3.14) 랜덤변수 를 와 의차로, 랜덤변수 를 의제곱으로정의하자. (3.15) 는 의가우시안랜덤변수이고, 의분포는식 (3.7) 와같다. (3.16) 의평균 (mean) 과분산은식 (3.17), (3.19) 를통해얻을수있다. (3.17) 가. 유사도측정 Ⅲ-1에서정의한영상모델에서원영상의 를중심으로하는블록 B1과 를중심으로하는블록 B2를다음과같은정렬된 1차원벡터로정의하자. (3.11) 여기에서 는각화소값의차이라고정의하면 는식 (3.3) 와같다. (3.12) 원영상에 의가우시안노이즈 가더해진경우를가정하면, 벡터, 는다음과같이 (3.18) (3.19) 따라서노이즈가더해진두블록 B1, B2의 MSE는아래식과같다. (3.20) 식 (3.20) 에서, 잡음섞인영상의블록간의 MSE는잡음의분산 ( σ 2 ) 과, 블록의크기 ( ), 원영상블록과의차이 에의해결정됨을알수있다. 두블록의픽셀값 (504)
6 6 자기유사성을이용한가우시안노이즈제거알고리즘전영은외 차이가클수록 MSE는큰값을가지므로제곱에러를유사도의척도로사용할수있다. 따라서 를중심으로하는블록 과 을중심으로하는블록 의유사도는식 (3.21) 과같이두벡터 와 의각픽셀값차이의제곱의합, 즉유클리디안거리의제곱으로측정한다. 나. 유사도를이용한노이즈제거알고리즘 (3.21) 위치 에서의블록 B1과유사도가높은블록들의중심위치의인덱스집합을 로정의하자. 유사도가높은블록은유클리디언거리의제곱값이작을것이다. 다시말하면특정임계치 () 이하인값을가질것이다. 따라서 는식 (3.22) 과같이표현될수있다. (3.22) 잡음섞인영상의위치 에서의화소값복원시, 자기유사성을가지는 를사용하여, 잡음을제거하는방법을식 (3.23) 로재정의할수있다. 여기에서 은 이고, (3.23) 이다. (3.24) 예를들어그림 3-1. 의블록 A와다른블록 B1, B2간의유사도를비교하는경우를가정해보자. 블록 A와 B1 의거리 는임계치보다크므로, 픽셀 은 의화소값복원에사용되지않는다. 반면블록 A와 B2의거리 은임계치 보다작으므로, 에서의화소값은 에서의화소값복원에사용되어진다. 이를식으로표현하면식 (3.25) 과같다. 4. 적응적임계치결정 가. MSE 를이용한유사도결정의적응적임계치 (3.25) 두벡터 과 의유클리디안거리의제곱값이임계치 이하의값을가지는경우, 원영상의두블록이유사하다고생각할수있다. 임계치를높게설정하면유사하지않은블록의중심화소들을 에포함하게되어블러등의현상이나타날것이고, 임계치를작게설정하면잡음제거에충분한화소값들확보하지못하여, 즉집합 의원소개수가너무적어노이즈제거효과가떨어진다. 따라서유사성여부를결정짓는임계치값을결정하는일이중요하며, 이임계치값은블록의크기와잡음의분산에따라적응적으로결정되어야한다. 식 (3.13),(3.14) 에서두블록 B1, B2가똑같다고가정하면식 (3.15) 에서정의된 는 의가우시안랜덤변수이고, 랜덤변수 의제곱으로정의된랜덤변수 의분포는식 (3.26) 과같다. (3.26) 랜덤변수 는감마랜덤변수로써, 의분포를가짐을알수있다. 랜덤변수 를독립적인 의분포를가지는 개의 의합으로정의하자. 그림 3-1. 유사도비교 Fig Similarity comparison. (3.27) (505)
7 2007 년 9 월전자공학회논문지제 44 권 SP 편제 5 호 7 그러면랜덤변수 역시 의감마랜 덤변수로써, 평균과분산은식 (3.28) 와같다. (3.28) 즉, 똑같은두개의블록에잡음이첨가됐을때, 두블록의 MSE는식 (3.36) 과같다. (a) (b) (3.29) 그림 3-2.(a)(c) 는 일때, 의분포를나타낸그림이다. 두벡터 과 의유클리디안거리의제곱이 이하의값을가질확률은약 53% 이고, 이하의값을가질확률은거의 100% 이다. 그림 3-4(b)(d) 는각각의경우잡음제거를위하여사용되는화소의위치를나타낸그림이다. 나. 평탄영역결정의적응적임계치블록의표본분산이임계치 이하면평탄하다고간주하면, 의값을크게설정하면실제로평탄하지않은, 즉에지등의구조를포함하는영역임에도평탄하 그림 3-3. (c) 에따라선택되는영역 (a) 의분포 (b) 원영상 (c) Fig Selected pixels by / (a) Distribution of. (b) Original Image (c) 다고간주하므로효과적인노이즈제거가이루어질수없으며, 값을작게설정하면평탄한영역임에도전체영상에서자기유사성을찾으므로효율적이지못하다. 블록의크기와노이즈에적응적인임계치를결정하는일이중요하다. 블록내의모든픽셀이같은값 라고가정하자. 식 (a) (c) (b) (d) (3.5) 에서정의된 는 의분포를 따르며, 는 의감마분포를가진 다. 따라서식 (3.8) 에서정의된 는 의감마분포를따른다. 그림 3-3의 (a) 는 σ=8, 일때, V 의분포를 나타낸그림이다. 임계치 는 으로 99% 가포함되도록결정할경우, 그림 3-3(c) 는평탄하다고선택된영역을나타낸그림이다. 그림 3-2. 에따라선택되는영역과 K의분포 (a)-(b):, (c)-(d): Fig Selected pixels for denoising and distribution by (a)-(b) :, (c)-(d) :. Ⅳ. 실험및결과 이장에서는제안하는알고리즘을기존의제안된알고리즘과비교하여다양한노이즈레벨에대하여 (506)
8 8 자기유사성을이용한가우시안노이즈제거알고리즘전영은외 PSNR과분산을실험, 비교하자한다. 복원된영상의화질을평가하기위하여 PSNR을사용하였다. PSNR은식 (4.1) 로정의된다. 여기에서 는원영상, 는복원된영상, R, C 은각각영상의세로, 가로크기이다. 복원한영상이원영상과비슷한픽셀값을가질수록더높은 PSNR 수치를얻을수있다. (4.1) (a) (b) 추정자 (estimator) 로써의성능은그것의분산이얼마나작은가에의해결정된다. (4.2) 즉, 0에서 255의값을가질수있는각픽셀값 은실제값이고, 는 의추정값으로써, 각 값에대해, 와 의차이가작을수록즉분산이작을수록좋은추정자 이다. 은모든 ( 즉 0에서 255까지 ) 에대한평균으로써평균적으로얼마나참값인 에접근하는지를알수있다. 의크기를갖는 6개의 25dB와 30dB의노이지영상을대상으로시그마필터와 AWA, LLMMSE, 그리고제안된알고리즘을실험하였다. 모든알고리즘에서블록기반의노이즈추정방식을이용하여노이즈제거시파라미터로설정에반영하였다. 시그마필터의임계치는 으로하였고, 제안된알고리즘에서는유 사도의임계치 는 으로, 평탄한영역의임계 치 는, 가우시안가중치의파라 미터 σ w 은 σ n 를사용했다. 은유사도비교의블록의크기로써기본적으로 블록 ( ) 단위로유사도를비교하나, 에서찾은픽셀이 10개미만인경우, 즉 단위로는비슷한구조를거의찾을수없는세밀한영역에서는 블록으로유사도를측정하였다. 비교되는모든알고리즘이한픽셀을복원하기위해, 최대 개의픽셀을사용하도록실험되었다. 기존의알고리즘은중심픽셀을기준으로 의윈도우를사용하고, 제안하는알고리즘은유 (c) 그림 dB Lori 영상일부 (a) 노이지영상 (b) Sigma, (c) LLMMSE (d) Proposed Fig dB Lori Image. (a) Noisy Image (b) Sigma, (c) LLMMSE (d) Proposed Noisy Sigma AWA LLMMSE Proposed barbara camera goldhill lena lori peppers 평균 (d) 표 dB 노이지영상에서 PSNR 비교 Table 4-1. PSNR of 30dB Noisy Image. 표 dB 노이지영상에서 variance 비교 Table 4-2. Variance of 30dB Noisy Image. Sigma AWA LLMMSE Proposed barbara camera goldhill lena lori peppers 평균 사도임계치 이하의유사도가큰순서대로 개의픽셀을선택하여복원하도록구현하여추정자의분산을비교하도록하였다. 평탄한영역일경우에는 의윈도우를사용하였다. 그림 4-1은 30db의노이지로리영상에대하여 121개의픽셀을사용했을때, 각각시그마, AWA, LLMMSE 필터와제안하는알고리즘에대한결과이다. 시그마필터는블러는적으나, (507)
9 2007 년 9 월전자공학회논문지제 44 권 SP 편제 5 호 9 표 dB 노이지영상에서 PSNR Table 4-3. PSNR of 25dB Noisy Image. Noisy Sigma AWA LLMMSE Proposed barbara camera goldhill lena lori peppers 평균 표 dB 노이지영상에서 variance 비교 Table 4-4. Variance of 25dB Noisy Image. Sigma AWA LLMMSE Proposed barbara camera goldhill lena lori peppers 평균 그림 dB 잡음섞인 peppers 영상에대한각 알고리즘의 PSNR 비교 Fig PSNR comparison of each algorithm for 26dB 50dB noisy image peppers. 부자연스러운효과즉머리, 목과얼굴사이에서급격한픽셀값의변화가생겼다. 복원과정에서주변영역에의해머리카락의어두운쪽으로복원되거나, 아니면얼굴의밝은쪽으로복원되기때문이다. LLMMSE의실험결과는에지영역에서의블러를막기위해주변픽셀에가중치를적게줌으로써, 블러는적지만그로인하여노이즈가거의제거되지않는것을확인할수있다. 이처럼기존의알고리즘은주변의픽셀들의의하여영향을받기때문에노이즈를제거하기위해서는블러가되거나, 부자연스러운현상이나타나게된다. 표 4-1과표 4-2는 30dB의노이지영상에서, 표 4-3 과표4-4는 20db의노이지영상에서각알고리즘으로 복원한결과를나타내었다. 표 4-1과표 4-3은 PNSR의성능을비교하였으며, 표 4-2과표 4-4는추정자로써의분산을비교하였다. "camera" 영상을제외한나머지영상에서제안된알고리즘이다른알고리즘보다 PSNR 측면에서 0.5dB 에서 1dB 정도성능이좋게나타났고, 추정자로써성능을평가하는지표인분산도가장낮게나왔다. 최종적으로전체적인잡음제거효과를비교하기위하여 26 50dB 가되도록잡음을섞은 peppers" 영상에대한각알고리즘에대한성능을그림 4-2에서비교하였다. 결론적으로제안된알고리즘은잡음이심한경우에더욱더좋은성능을보여주었다. Ⅴ. 결론 본논문에서는대부분의영상이자기유사성이라고표현되는특별한성질을가지고있다는프렉탈이론을기반으로한가우시안잡음제거알고리즘을제안하였다. 대부분의기존알고리즘들은잡음제거를위하여주위픽셀들을이용하지만이것은잡음을제거하는동시에에지주위에서몽롱화 (blurring) 라는또다른문제를유발시킨다. 이러한기존방법들에대한문제점을해결하기위하여본논문에서는영상을두가지로분류한다. 평탄영역의경우주위픽셀을이용하고, 비평탄영역에서는 bmse 관점에서유사도가높은블록을탐색하여그블록의중심화소값들을잡음제거를위하여이용하였다. 이렇게함으로서영상의저주파영역과고주파영역에서효과적인잡음제거가이루어질수있었다. 결론적으로제안된알고리즘의성능은 PSNR 측면에서약 1 3dB 정도우수한성능을보여주었고, 추정자 (estimator) 관점에서도가장낮은분산값을보여주었다. 참고문헌 [1] Gonzalez, Woods, Digital Iimage Processing, Prentice Hall, [2] M. J. McDonnel, Box-Filtering Techniques, Computer Graphics and Image Processing pp , [3] J. W. Tukey, Nonlinear (Nonsuperposable) Methods for Smoothing Data, in Conf. Rec., EASCON, pp.763, (508)
10 10 자기유사성을이용한가우시안노이즈제거알고리즘전영은외 [4] J. S. Lee, Digital Image Smoothing and the Sigma Filter, Computer Graphics and Image Processing, pp , [5] Carlos A. Pomalaza-raez, Clare D. McGillem, An Adaptative, Nonlinear Edge-Preserving Filter, IEEE Transactions on Acoustics, Apeech, and Signal Processing, Vol. ASSP-32, No.3, June [6] Mehmet K. Ozkan, M. Ibrahim Sezan, A. Murat Tekalp, Adaptive Motion-Compensated filtering of Noisy Image sequences IEEE Transactions on Circuits and Systems for Video Technology, Vol.3, No.4, August [7] C. Tomasi, R. Manduchi Bilateral Filtering for Gray and Color Images, IEEE International Conference on Computer Vision, Corfu, Bombay, India September [8] S. I. Olsen Estimation of Noise in Images : An Evaluation, Graphical Models and Image Process., Vol. 55. No. 4, pp , July [9] S. I. Olsen Estimation of Noise in Images : An Evaluation, Graphical Models and Image Process., Vol. 55. pp , July [10] J. B. Bednar and T. L. Watt, Alpha-Trimmed Means and Their Relationship to Median Filters, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-32, pp , Feb [11] Ning Lu, Fractal Imaging, Academic press, pp , [12] Steven M. Key Fundamentals of statistical signal processing, Prentice Hall, pp. 31, [13] A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Clis, New Jersey, 저자소개 전영은 ( 정회원 ) 2005 년연세대학교전기전자공학과학사졸업 2007 년연세대학교전기전자공학과석사졸업 년 ~ 현재삼성전자정보통신총괄무선사업부연구원 < 주관심분야 : 웨이블릿, 비디오, 영상신호처리 > 엄민영 ( 정회원 ) 2001 년연세대학교전파공학과학사졸업 년연세대학교전기전자공학과석사졸업 년 ~ 현재연세대학교전기전자공학과박사과정 < 주관심분야 : 웨이블릿, 비디오, 영상신호처리 > 최윤식 ( 정회원 ) 1979 년연세대학교전기공학과학사졸업 년 Case Western Reserve Univ. 시스템공학과졸업 년 Pennsylvania State Univ. 전기공학과석사졸업 년 Purdue Univ. 전기공학부박사졸업 1990 년 ~1993 년 ( 주 ) 현대전자산업전자연구소책임연구원 1993 년 ~ 현재연세대학교전기전자공학부정교수 < 주관심분야 : 비디오, 영상신호처리, HDTV> (509)
(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228
(JBE Vol. 1, No. 1, January 016) (Regular Paper) 1 1, 016 1 (JBE Vol. 1, No. 1, January 016) http://dx.doi.org/10.5909/jbe.016.1.1.60 ISSN 87-9137 (Online) ISSN 16-7953 (Print) a), a) An Efficient Method
More information(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.
: 565 (Special Paper) 7 4, 0 7 (JBE Vol. 7, No. 4, July 0) http://dx.doi.org/0.5909/jbe.0.7.4.565 a), b), a) Depth Map Denoising Based on the Common Distance Transform Sung-Yeol Kim a), Manbae Kim b),
More information(JBE Vol. 20, No. 6, November 2015) (Regular Paper) 20 6, (JBE Vol. 20, No. 6, November 2015) ISSN
(JBE Vol. 20, No. 6, November 2015) (Regular Paper) 20 6, 2015 11 (JBE Vol. 20, No. 6, November 2015) http://dx.doi.org/10.5909/jbe.2015.20.6.880 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Frame
More information09권오설_ok.hwp
(JBE Vol. 19, No. 5, September 2014) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September 2014) http://dx.doi.org/10.5909/jbe.2014.19.5.656 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) Reduction
More informationGray level 변환 및 Arithmetic 연산을 사용한 영상 개선
Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a
More information지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월
지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support
More informationHigh Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo
High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a low-resolution Time-Of- Flight (TOF) depth camera and
More informationȲÀμº Ãâ·Â
Enhanced Film-Grain-Noise Removal Filter for High Fidelity Video Coding In this paper, we propose a novel technique for film grain noise removal, which can be adopted in high fidelity video coding in order
More information,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3
Depth layer partition 2D 3D a), a) 3D conversion of 2D video using depth layer partition Sudong Kim a) and Jisang Yoo a) depth layer partition 2D 3D. 2D (depth map). (edge directional histogram). depth
More information<33302DC1A4BAB8C5EBBDC5C0CFB9DDB9D7B1B3C0B02D4133303528B1E8B3B2C8A3292E687770>
Journal of the Korea Institute of Information and Communication Engineering 한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 19, No. 1 : 230~236 Jan. 2015 Salt & Pepper 잡음 환경에서 방향성 마스크를 이용한 메디안 필터에 관한
More informationÀ±½Â¿í Ãâ·Â
Representation, Encoding and Intermediate View Interpolation Methods for Multi-view Video Using Layered Depth Images The multi-view video is a collection of multiple videos, capturing the same scene at
More information45-51 ¹Ú¼ø¸¸
A Study on the Automation of Classification of Volume Reconstruction for CT Images S.M. Park 1, I.S. Hong 2, D.S. Kim 1, D.Y. Kim 1 1 Dept. of Biomedical Engineering, Yonsei University, 2 Dept. of Radiology,
More informationSequences with Low Correlation
레일리페이딩채널에서의 DPC 부호의성능분석 * 김준성, * 신민호, * 송홍엽 00 년 7 월 1 일 * 연세대학교전기전자공학과부호및정보이론연구실 발표순서 서론 복호화방법 R-BP 알고리즘 UMP-BP 알고리즘 Normalied-BP 알고리즘 무상관레일리페이딩채널에서의표준화인수 모의실험결과및고찰 결론 Codig ad Iformatio Theory ab /15
More information1. 서 론
두 장의 영상을 이용한 저조도 환경에서의 실용적 계산 사진 기법과 Mosaic 에의 응용 Practical Computational Photography with A Pair of Images under Low Illumination and Its Application to Mosaic 안택현 O, 홍기상 포항공과대학교 정보통신학과 O, 포항공과대학교 전자전기공학과
More informationstatistics
수치를이용한자료요약 statistics hmkang@hallym.ac.kr 한림대학교 통계학 강희모 ( 한림대학교 ) 수치를이용한자료요약 1 / 26 수치를 통한 자료의 요약 요약 방대한 자료를 몇 개의 의미있는 수치로 요약 자료의 분포상태를 알 수 있는 통계기법 사용 중심위치의 측도(measure of center) : 어떤 값을 중심으로 분포되어 있는지
More information., 3D HDTV. 3D HDTV,, 2 (TTA) [] 3D HDTV,,, /. (RAPA) 3DTV [2] 3DTV, 3DTV, DB(, / ), 3DTV. ATSC (Advanced Television Systems Committee) 8-VSB (8-Vesti
ATSC a), a) A Carrier Frequency Synchronization Scheme for modified ATSC Systems Young Gon Jeon a) and Joon Tae Kim a) 3D HDTV (3-Dimensional High Definition Television). 3D HDTV HDTV ATSC (Advanced Television
More information8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2
VSB a), a) An Alternative Carrier Phase Independent Symbol Timing Offset Estimation Methods for VSB Receivers Sung Soo Shin a) and Joon Tae Kim a) VSB. VSB.,,., VSB,. Abstract In this paper, we propose
More informationDBPIA-NURIMEDIA
222 스펙트럼변이를이용한 Soft Decision 기반의음성향상기법최재훈외 논문 2010-47SP-5-26 스펙트럼변이를이용한 Soft Decision 기반의음성향상기법 ( Robust Speech Enhancement Based on Soft Decision Employing Spectral Deviation ) 최재훈 *, 장준혁 **, 김남수 ***
More informationch3.hwp
미디어정보처리 (c) -4 한남대 정보통신멀티미디어학부 MCCLab. - -...... (linear filtering). Z k = n i = Σn m Σ j = m M ij I ji 컨볼루션 영역창 I I I I 3 I 4 I 5 I 6 I 7 I 8 x 컨볼루션 마스크 M M M M 3 M 4 M 5 M 6 M 7 M 8 I 입력 영상 Z 4 = 8 k
More informationa), b), c), b) Distributed Video Coding Based on Selective Block Encoding Using Feedback of Motion Information Jin-soo Kim a), Jae-Gon Kim b), Kwang-d
a), b), c), b) Distributed Video Coding Based on Selective Block Encoding Using Feedback of Motion nformation Jinsoo Kim a), JaeGon Kim b), Kwangdeok Seo c), and Myeongjin Lee b) (DVC: Distributed Video
More information2 : (Jaeyoung Kim et al.: A Statistical Approach for Improving the Embedding Capacity of Block Matching based Image Steganography) (Regular Paper) 22
(Regular Paper) 22 5, 2017 9 (JBE Vol. 22, No. 5, September 2017) https://doi.org/10.5909/jbe.2017.22.5.643 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a), b) A Statistical Approach for Improving
More information<5B313132385D32303039B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>
디지털 영상에서의 자막추출을 이용한 자막 특성 분석에 관한 연구 이세열 * 요약 본 연구는 방송 프로그램 제작에 있어서 중요한 역할을 담당하고 있는 영상 자막의 특성과 영상 커 뮤니케이션 기능적인 관점에서 나타나고 있는 현상을 살펴본다. 다양한 방송 프로그램에서 활용되고 있는 디지털 영상 자막의 기능은 단순하게 간략한 정보를 전달하는 기능적인 역할을 수행하였다.
More information1. 3DTV Fig. 1. Tentative terrestrial 3DTV broadcasting system. 3D 3DTV. 3DTV ATSC (Advanced Television Sys- tems Committee), 18Mbps [1]. 2D TV (High
3DTV a), a) Dual Codec Based Joint Bit Rate Control Scheme for Terrestrial Stereoscopic 3DTV Broadcast Yongjun Chang a) and Munchurl Kim a) 3 3 (3DTV). ATSC 18Mbps. 3D, 2DTV,. 3DTV. - (quadratic rate-quantization
More information한국통계학회논문집 2009, 16권, 4호, 영상에서 윈도우 배치에 따른 통계적 에지검출 비교 임동훈 1,a a 경상대학교 정보통계학과 요약 본 논문에서는 영상의 에지검출을 하는데 사용되는 여러 가지 윈도우 배치(window configurations)하
한국통계학회논문집 2009, 16권, 4호, 615 625 영상에서 윈도우 배치에 따른 통계적 에지검출 비교 임동훈 1,a a 경상대학교 정보통계학과 요약 본 논문에서는 영상의 에지검출을 하는데 사용되는 여러 가지 윈도우 배치(window configurations)하에 서 통계학의 이표본 위치문제(two-sample location problem)에서 대표적인
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Jun.; 29(6), 457463. http://dx.doi.org/10.5515/kjkiees.2018.29.6.457 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) Sigma-Delta
More informationMicrosoft PowerPoint - 26.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2011년봄학기 강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More information05김선걸_ok.hwp
(JBE Vol. 18, No. 4, July 2013) (Special Paper) 18 4, 2013 7 (JBE Vol. 18, No. 4, July 2013) http://dx.doi.org/10.5909/jbe.2013.18.4.550 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Visible Image
More information(001~006)개념RPM3-2(부속)
www.imth.tv - (~9)개념RPM-(본문).. : PM RPM - 대푯값 페이지 다민 PI LPI 알피엠 대푯값과산포도 유형 ⑴ 대푯값 자료 전체의 중심적인 경향이나 특징을 하나의 수로 나타낸 값 ⑵ 평균 (평균)= Ⅰ 통계 (변량)의 총합 (변량의 개수) 개념플러스 대푯값에는 평균, 중앙값, 최 빈값 등이 있다. ⑶ 중앙값 자료를 작은 값부터 크기순으로
More information[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp
RUF * (A Simple and Efficient Antialiasing Method with the RUF buffer) (, Byung-Uck Kim) (Yonsei Univ. Depth of Computer Science) (, Woo-Chan Park) (Yonsei Univ. Depth of Computer Science) (, Sung-Bong
More information63-69±è´ë¿µ
Study on the Shadow Effect of 3D Visualization for Medical Images ased on the Texture Mapping D.Y. Kim, D.S. Kim, D.K. Shin, D.Y. Kim 1 Dept. of iomedical Engineering, Yonsei University = bstract = The
More information°í¼®ÁÖ Ãâ·Â
Performance Optimization of SCTP in Wireless Internet Environments The existing works on Stream Control Transmission Protocol (SCTP) was focused on the fixed network environment. However, the number of
More information02이재원_ok.hwp
1 : (Regular Paper) 19 4, 2014 7 (JBE Vol. 19, No. 4, July 2014) http://dx.doi.org/10.5909/jbe.2014.19.4.453 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), b) Bi-Histogram Equalization based on Differential
More information14.531~539(08-037).fm
G Journal of the Korea Concrete Institute Vol. 20, No. 4, pp. 531~539, August, 2008 š x y w m š gj p { sƒ z 1) * 1) w w Evaluation of Flexural Strength for Normal and High Strength Concrete with Hooked
More informationMicrosoft PowerPoint Relations.pptx
이산수학 () 관계와그특성 (Relations and Its Properties) 2010년봄학기강원대학교컴퓨터과학전공문양세 Binary Relations ( 이진관계 ) Let A, B be any two sets. A binary relation R from A to B, written R:A B, is a subset of A B. (A 에서 B 로의이진관계
More informationexp
exp exp exp exp exp exp exp exp exp exp exp log 第 卷 第 號 39 4 2011 4 투영법을 이용한 터빈 블레이드의 크리프 특성 분석 329 성을 평가하였다 이를 위해 결정계수값인 값 을 비교하였으며 크리프 시험 결과를 곡선 접합 한 결과와 비선형 최소자승법으로 예측한 결과 사 이 결정계수간 정도의 오차가 발생하였고
More informationMicrosoft PowerPoint - 27.pptx
이산수학 () n-항관계 (n-ary Relations) 2011년봄학기 강원대학교컴퓨터과학전공문양세 n-ary Relations (n-항관계 ) An n-ary relation R on sets A 1,,A n, written R:A 1,,A n, is a subset R A 1 A n. (A 1,,A n 에대한 n- 항관계 R 은 A 1 A n 의부분집합이다.)
More information1 경영학을 위한 수학 Final Exam 2015/12/12(토) 13:00-15:00 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오. 1. (각 6점) 다음 적분을 구하시오 Z 1 4 Z 1 (x + 1) dx (a) 1 (x 1)4 dx 1 Solut
경영학을 위한 수학 Fial Eam 5//(토) :-5: 풀이과정을 모두 명시하시오. 정리를 사용할 경우 명시하시오.. (각 6점) 다음 적분을 구하시오 4 ( ) (a) ( )4 8 8 (b) d이 성립한다. d C C log log (c) 이다. 양변에 적분을 취하면 log C (d) 라 하자. 그러면 d 4이다. 9 9 4 / si (e) cos si
More informationexample code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for
2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon
More informationSoftware Requirrment Analysis를 위한 정보 검색 기술의 응용
EPG 정보 검색을 위한 예제 기반 자연어 대화 시스템 김석환 * 이청재 정상근 이근배 포항공과대학교 컴퓨터공학과 지능소프트웨어연구실 {megaup, lcj80, hugman, gblee}@postech.ac.kr An Example-Based Natural Language System for EPG Information Access Seokhwan Kim
More information실험 5
실험. OP Amp 의기초회로 Inverting Amplifier OP amp 를이용한아래와같은 inverting amplifier 회로를고려해본다. ( 그림 ) Inverting amplifier 위의회로에서 OP amp의 입력단자는 + 입력단자와동일한그라운드전압, 즉 0V를유지한다. 또한 OP amp 입력단자로흘러들어가는전류는 0 이므로, 저항에흐르는전류는다음과같다.
More information05(533-537) CPLV12-04.hwp
모바일 OS 환경의 사용자 반응성 향상 기법 533 모바일 OS 환경의 사용자 반응성 향상 기법 (Enhancing Interactivity in Mobile Operating Systems) 배선욱 김정한 (Sunwook Bae) 엄영익 (Young Ik Eom) (Junghan Kim) 요 약 사용자 반응성은 컴퓨팅 시스템에서 가장 중요 한 요소 중에 하나이고,
More informationDBPIA-NURIMEDIA
118 Smoothed Global Soft Decision 에근거한음성향상기법조규행외 논문 2007-44SP-6-14 Smoothed Global Soft Decision 에근거한음성향상기법 ( Speech Enhancement based on Smoothed Global Soft Decision ) 조규행 *, 박윤식 *, 장준혁 ** * (Q-Haing
More information08원재호( )
30 2 20124 pp. 173~180 Non-Metric Digital Camera Lens Calibration Using Ground Control Points 1) 2) 3) Abstract The most recent, 80 mega pixels digital camera appeared through the development of digital
More information28 저전력복합스위칭기반의 0.16mm 2 12b 30MS/s 0.18um CMOS SAR ADC 신희욱외 Ⅰ. 서론 Ⅱ. 제안하는 SAR ADC 구조및회로설계 1. 제안하는 SAR ADC의전체구조
Journal of The Institute of Electronics and Information Engineers Vol.53, NO.7, July 2016 http://dx.doi.org/10.5573/ieie.2016.53.7.027 ISSN 2287-5026(Print) / ISSN 2288-159X(Online) 논문 2016-53-7-4 c Abstract
More information차분 이미지 히스토그램을 이용한 이중 레벨 블록단위 가역 데이터 은닉 기법 1. 서론 멀티미디어 기술과 인터넷 환경의 발달로 인해 현대 사회에서 디지털 콘텐츠의 이용이 지속적 으로 증가하고 있다. 이러한 경향과 더불어 디지털 콘텐츠에 대한 소유권 및 저작권을 보호하기
보안공학연구논문지 (Journal of Security Engineering), 제 10권 제 2호 2013년 4월 차분 이미지 히스토그램을 이용한 이중 레벨 블록단위 가역 데이터 은닉 기법 조성환 1), 윤은준 2), 유기영 3) Twice Level Block-based Reversible Data Hiding Scheme using Difference
More information19_9_767.hwp
(Regular Paper) 19 6, 2014 11 (JBE Vol. 19, No. 6, November 2014) http://dx.doi.org/10.5909/jbe.2014.19.6.866 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) RGB-Depth - a), a), b), a) Real-Virtual Fusion
More information표지
2 : Retinex (Regular Paper) 17 5, 2012 9 (JBE Vol. 17, No. 5, September 2012) http://dx.doi.org/10.5909/jbe.2012.17.5.851 ISSN 1226-7953(Print) Retinex a), b), c) Color Improvement of Retinex Image Using
More information1 : HEVC Rough Mode Decision (Ji Hun Jang et al.: Down Sampling for Fast Rough Mode Decision for a Hardware-based HEVC Intra-frame encoder) (Special P
1 : HEVC Rough Mode Decision (Ji Hun Jang et al.: Down Sampling for Fast Rough Mode Decision for a Hardware-based HEVC Intra-frame encoder) (Special Paper) 21 3, 2016 5 (JBE Vol. 21, No. 3, May 2016) http://dx.doi.org/10.5909/jbe.2016.21.3.341
More information±è¼ºÃ¶ Ãâ·Â-1
Localization Algorithms Using Wireless Communication Systems For efficient Localization Based Services, development of accurate localization algorithm has to be preceded. In this paper, research trend
More informationDBPIA-NURIMEDIA
논문 10-35-03-03 한국통신학회논문지 '10-03 Vol. 35 No. 3 원활한 채널 변경을 지원하는 효율적인 IPTV 채널 관리 알고리즘 준회원 주 현 철*, 정회원 송 황 준* Effective IPTV Channel Control Algorithm Supporting Smooth Channel Zapping HyunChul Joo* Associate
More informationDBPIA-NURIMEDIA
2014 년 1 월전자공학회논문지제 51 권제 1 호 Journal of The Institute of Electronics and Information Engineers Vol. 51, NO. 1, January 2014 http://dx.doi.org/10.5573/ieie.2014.51.1.152 논문 2014-51-1-19 주파수도메인의변곡점을이용한디지털카메라의
More information<31325FB1E8B0E6BCBA2E687770>
88 / 한국전산유체공학회지 제15권, 제1호, pp.88-94, 2010. 3 관내 유동 해석을 위한 웹기반 자바 프로그램 개발 김 경 성, 1 박 종 천 *2 DEVELOPMENT OF WEB-BASED JAVA PROGRAM FOR NUMERICAL ANALYSIS OF PIPE FLOW K.S. Kim 1 and J.C. Park *2 In general,
More information2002년 2학기 자료구조
자료구조 (Data Structures) Chapter 1 Basic Concepts Overview : Data (1) Data vs Information (2) Data Linear list( 선형리스트 ) - Sequential list : - Linked list : Nonlinear list( 비선형리스트 ) - Tree : - Graph : (3)
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 8, Aug [3]. ±90,.,,,, 5,,., 0.01, 0.016, 99 %... 선형간섭
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2016 Aug.; 27(8), 693700. http://dx.doi.org/10.5515/kjkiees.2016.27.8.693 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) Design
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2016 Jun.; 276), 504511. http://dx.doi.org/10.5515/kjkiees.2016.27.6.504 ISSN 1226-3133 Print)ISSN 2288-226X Online) Near-Field
More information3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료
3 장기술통계 : 수치척도 Part B 분포형태, 상대적위치, 극단값 탐색적자료분석 두변수간의관련성측정 가중평균과그룹화자료 분포형태, 상대적위치, 극단값 분포형태 z-값 체비셰프의원리 경험법칙 극단값찾기 분포형태 : 왜도 (skewness) 분포형태를측정하는중요한척도중하나를 왜도 라고한다. 자료집합의왜도를구하는계산식은조금복잡하다. 통계프로그램을사용하여왜도를쉽게계산할수있다.
More information1 : 360 VR (Da-yoon Nam et al.: Color and Illumination Compensation Algorithm for 360 VR Panorama Image) (Special Paper) 24 1, (JBE Vol. 24, No
1: 360 VR (Da-yoon Nam et al.: Color and Illumination Compensation Algorithm for 360 VR Panorama Image) (Special Paper) 24 1, 2019 1 (JBE Vol. 24, No. 1, January 2019) https://doi.org/10.5909/jbe.2019.24.1.3
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 28(11),
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2017 Nov.; 28(11), 837 842. http://dx.doi.org/10.5515/kjkiees.2017.28.11.837 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) 8PSK-TCM
More information06_ÀÌÀçÈÆ¿Ü0926
182 183 184 / 1) IT 2) 3) IT Video Cassette Recorder VCR Personal Video Recorder PVR VCR 4) 185 5) 6) 7) Cloud Computing 8) 186 VCR P P Torrent 9) avi wmv 10) VCR 187 VCR 11) 12) VCR 13) 14) 188 VTR %
More information연구보고서 2009-05 일반화선형모형 (GLM) 을이용한 자동차보험요율상대도산출방법연구 Ⅰ. 요율상대도산출시일반화선형모형활용방법 1. 일반화선형모형 2 연구보고서 2009-05 2. 일반화선형모형의자동차보험요율산출에적용방법 요약 3 4 연구보고서 2009-05 Ⅱ. 일반화선형모형을이용한실증분석 1. 모형적용기준 < > = 요약 5 2. 통계자료및통계모형
More information정보기술응용학회 발표
, hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management
More informationDBPIA-NURIMEDIA
The e-business Studies Volume 17, Number 6, December, 30, 2016:275~289 Received: 2016/12/02, Accepted: 2016/12/22 Revised: 2016/12/20, Published: 2016/12/30 [ABSTRACT] SNS is used in various fields. Although
More information<313920C0CCB1E2BFF82E687770>
韓 國 電 磁 波 學 會 論 文 誌 第 19 卷 第 8 號 2008 年 8 月 論 文 2008-19-8-19 K 대역 브릭형 능동 송수신 모듈의 설계 및 제작 A Design and Fabrication of the Brick Transmit/Receive Module for K Band 이 기 원 문 주 영 윤 상 원 Ki-Won Lee Ju-Young Moon
More information<3037BCDBBAB4C3B65F73702E687770>
56 Bilateral Filter 를이용한적응적언샤프마스킹김학구외 논문 2012-49-11-7 Bilateral Filter 를이용한적응적언샤프마스킹 (Adaptive Unsharp Masking using Bilateral Filter ) 김학구 *, 이동복 *, 송병철 ** * (Hak Gu Kim, Dong Bok Lee, and Byung Cheol
More informationDBPIA-NURIMEDIA
132 2 차조건사후최대확률기반최소값제어재귀평균기법을이용한음성향상금종모외 논문 2009-46SP-4-17 2 차조건사후최대확률기반 최소값제어재귀평균기법을이용한음성향상 ( Speech Enhancement based on Minima Controlled Recursive Averaging Technique Incorporating Second-order Conditional
More information조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a
조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 25(12),
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2014 Dec.; 25(12), 12751283. http://dx.doi.org/10.5515/kjkiees.2014.25.12.1275 ISSN 1226-3133 (Print)ISSN 2288-226X (Online)
More information300 구보학보 12집. 1),,.,,, TV,,.,,,,,,..,...,....,... (recall). 2) 1) 양웅, 김충현, 김태원, 광고표현 수사법에 따른 이해와 선호 효과: 브랜드 인지도와 의미고정의 영향을 중심으로, 광고학연구 18권 2호, 2007 여름
동화 텍스트를 활용한 패러디 광고 스토리텔링 연구 55) 주 지 영* 차례 1. 서론 2. 인물의 성격 변화에 의한 의미화 전략 3. 시공간 변화에 의한 의미화 전략 4. 서사의 변개에 의한 의미화 전략 5. 창조적인 스토리텔링을 위하여 6. 결론 1. 서론...., * 서울여자대학교 초빙강의교수 300 구보학보 12집. 1),,.,,, TV,,.,,,,,,..,...,....,...
More information2 : 3 (Myeongah Cho et al.: Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method) (Special Paper) 23 2
(Special Paper) 232, 2018 3 (JBE Vol. 23, No. 2, March 2018) https://doi.org/10.5909/jbe.2018.23.2.235 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) 3 a), a), a) Three-Dimensional Rotation Angle Preprocessing
More information박선영무선충전-내지
2013 Wireless Charge and NFC Technology Trend and Market Analysis 05 13 19 29 35 45 55 63 67 06 07 08 09 10 11 14 15 16 17 20 21 22 23 24 25 26 27 28 29 30 31 32 33 36 37 38 39 40
More information(JBE Vol. 20, No. 5, September 2015) (Special Paper) 20 5, (JBE Vol. 20, No. 5, September 2015) ISS
(Special Paper) 20 5, 2015 9 (JBE Vol. 20, No. 5, September 2015) http://dx.doi.org/10.5909/jbe.2015.20.5.676 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) 4 Light Field Dictionary Learning a), a) Dictionary
More informationREP - CP - 016, N OVEMBER 사진 요약 25 가지 색상 Surf 를 이용한 사진 요약과 사진 배치 알고리즘 Photo Summarization - Representative Photo Selection based on 25 Color Hi
1 사진 요약 25 가지 색상 Surf 를 이용한 사진 요약과 사진 배치 알고리즘 Photo Summarization - Representative Photo Selection based on 25 Color Histogram and ROI Extraction using SURF 류동성 Ryu Dong-Sung 부산대학교 그래픽스 연구실 dsryu99@pusan.ac.kr
More information< B1E8C1BEC8A32DB9E6C7E2BCBA20B1E2B9DD20BAB8B0A3B9FDB0FA2E687770>
Journal of the Korea Academia-Industrial cooperation Society Vol. 18, No. 10 pp. 110-116, 2017 https://doi.org/10.5762/kais.2017.18.10.110 ISSN 1975-4701 / eissn 2288-4688 방향성기반보간법과비지역평균필터링에의한효과적인 CFA
More information목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i
11-1480523-000748-01 배경지역 ( 백령도 ) 에서의 대기오염물질특성연구 (Ⅲ) 기후대기연구부대기환경연구과,,,,,,, Ⅲ 2010 목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i 목차 Ⅳ ii 목차 iii 목차 iv 목차 μg m3 μg m3 v 목차 vi Ⅰ. 서론 Ⅰ μm μg m3 1 Ⅰ. 서론 μg m3 μg m3 μg m3 μm 2
More information6.24-9년 6월
리눅스 환경에서Solid-State Disk 성능 최적화를 위한 디스크 입출력요구 변환 계층 김태웅 류준길 박찬익 Taewoong Kim Junkil Ryu Chanik Park 포항공과대학교 컴퓨터공학과 {ehoto, lancer, cipark}@postech.ac.kr 요약 SSD(Solid-State Disk)는 여러 개의 낸드 플래시 메모리들로 구성된
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun; 26(6),
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2015 Jun; 26(6), 564571. http://dx.doi.org/10.5515/kjkiees.2015.26.6.564 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) 3-D Multiple-Input
More information07.045~051(D04_신상욱).fm
J. of Advanced Engineering and Technology Vol. 1, No. 1 (2008) pp. 45-51 f m s p» w Á xá zá Ÿ Á w m œw Image Retrieval Based on Gray Scale Histogram Refinement and Horizontal Edge Features Sang-Uk Shin,
More information02이용배(239~253)ok
A study on the characteristic of land use in subcenter of Seoul. - Cases of Yeongdeungpo and Kangnam Ok Kyung Yuh* Yong-Bae Lee**,. 2010,,..,.,,,,.,,.,,.,,,, Abstract : This study analyzed the land use
More informationR t-..
R 과데이터분석 집단의차이비교 t- 검정 양창모 청주교육대학교컴퓨터교육과 2015 년겨울 t- 검정 변수의값이연속적이고정규분포를따른다고할때사용 t.test() 는모평균과모평균의 95% 신뢰구간을추청함과동시에가설검증을수행한다. 모평균의구간추정 - 일표본 t- 검정 이가설검정의귀무가설은 모평균이 0 이다 라는귀무가설이다. > x t.test(x)
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2015 Dec.; 26(12), 1100 1107. http://dx.doi.org/10.5515/kjkiees.2015.26.12.1100 ISSN 1226-3133 (Print) ISSN 2288-226X (Online)
More information특허청구의범위 청구항 1. 입력된음성신호에대하여고속푸리에변환 (FFT) 을수행하여주파수영역의음성신호로변환시키는단계와, 상기주파수영역으로변환된음성신호로부터잡음신호의파워를추정하는단계와, 상기추정된잡음신호의파워에기초하여음성의존재와비존재에대하여, 순수음성과잡음의 DFT 계수가
(19) 대한민국특허청 (KR) (12) 등록특허공보 (B1) (51) Int. Cl. G10L 11/02 (2006.01) G10L 15/14 (2006.01) G10L 11/06 (2006.01) (45) 공고일자 (11) 등록번호 (24) 등록일자 2007 년 05 월 16 일 10-0718846 2007 년 05 월 10 일 (21) 출원번호 10-2006-0118920
More informationOutput file
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 An Application for Calculation and Visualization of Narrative Relevance of Films Using Keyword Tags Choi Jin-Won (KAIST) Film making
More information(JBE Vol. 23, No. 4, July 2018) (Special Paper) 23 4, (JBE Vol. 23, No. 4, July 2018) ISSN
(JBE Vol. 23, No. 4, July 2018) (Special Paper) 23 4, 2018 7 (JBE Vol. 23, No. 4, July 2018) https://doi.org/10.5909/jbe.2018.23.4.484 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Uniform Motion
More information04 Çмú_±â¼ú±â»ç
42 s p x f p (x) f (x) VOL. 46 NO. 12 2013. 12 43 p j (x) r j n c f max f min v max, j j c j (x) j f (x) v j (x) f (x) v(x) f d (x) f (x) f (x) v(x) v(x) r f 44 r f X(x) Y (x) (x, y) (x, y) f (x, y) VOL.
More informationDBPIA-NURIMEDIA
2007 년 11 월전자공학회논문지제 44 권 SP 편제 6 호 111 논문 2007-44SP-6-13 복소라플라시안확률밀도함수에기반한음성향상기법 (Noisy Speech Enhancement Based on Complex Laplacian Probability Density Function ) 박윤식 *, 조규행 *, 장준혁 ** * (Yun-Sik Park,
More information½½¶óÀ̵å Á¦¸ñ ¾øÀ½
하나의그룹 FH/FDMA 시스템에서 겹쳐지는슬롯수에따른성능분석 구정우 jwku@eve.yonsei.ac.kr 2000. 4. 27 Coding & Information Theory Lab. Department of Electrical and Computer Engineering, Yonsei Univ. 차례 (Contents) 1. 도입 (Introduction)
More information제 3강 역함수의 미분과 로피탈의 정리
제 3 강역함수의미분과로피탈의정리 역함수의미분 : 두실수 a b 와폐구갂 [ ab, ] 에서 -이고연속인함수 f 가 ( a, b) 미분가능하다고가정하자. 만일 f '( ) 0 이면역함수 f 은실수 f( ) 에서미분가능하고 ( f )'( f ( )) 이다. f '( ) 에서 증명 : 폐구갂 [ ab, ] 에서 -이고연속인함수 f 는증가함수이거나감소함수이다 (
More informationDBPIA-NURIMEDIA
한국소음진동공학회 2015추계학술대회논문집년 Study of Noise Pattern and Psycho-acoustics Characteristic of Household Refrigerator * * ** ** Kyung-Soo Kong, Dae-Sik Shin, Weui-Bong Jeong, Tae-Hoon Kim and Se-Jin Ahn Key Words
More information08김현휘_ok.hwp
(Regular Paper) 21 3, 2016 5 (JBE Vol. 21, No. 3, May 2016) http://dx.doi.org/10.5909/jbe.2016.21.3.369 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) An Audio Coding Technique Employing the Inter-channel
More information<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>
Journal of the Korea Academia-Industrial cooperation Society Vol. 15, No. 2 pp. 1051-1058, 2014 http://dx.doi.org/10.5762/kais.2014.15.2.1051 멤리스터의 전기적 특성 분석을 위한 PSPICE 회로 해석 김부강 1, 박호종 2, 박용수 3, 송한정 1*
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 27(3),
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2016 Mar.; 27(3), 317325. http://dx.doi.org/10.5515/kjkiees.2016.27.3.317 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) TBD Radar
More information227-233Â÷¼øÁÖ
227 228 Table 1. The Results of PSNR (db) for Various Compression Rate Modality Case 5:1 10:1 20:1 40:1 80:1 MR 9 71.68 2.37 60.54 2.51 52.85 2.53 48.54 2.29 44.09 2.47 CT 9 51.90 1.67 63.70 2.02 57.32
More information에너지경제연구 제13권 제1호
에너지경제연구 Korean Energy Economic Review Volume 13, Number 1, March 2014 : pp. 83~119 거시계량모형을이용한유가변동및 유류세변화의파급효과분석 * 83 84 85 86 [ 그림 1] 모형의해결정과정 87 [ 그림 2] 거시계량모형의흐름도 (flow chart) 88 89 < 표 1> 유류세현황 (2013
More information#유한표지F
www.yuhan.ac.kr www.yuhan.ac.kr 대 학 요 람 2008 422-749 경기도 부천시 소사구 경인로 636(괴안동 185-34) Tel : 02)2610-0600 / 032)347-0600 유 한 대 학 대학요람 2008 2008 대학요람 설립자 유일한 박사의 숭고한 정신과 철학을 실천하는 대학 눈으로 남을 볼 줄 아는 사람은 훌륭한
More information목 차 요약문 I Ⅰ. 연구개요 1 Ⅱ. 특허검색 DB 및시스템조사 5
2014 특허청정책연구결과보고서 발간등록번호 11-1430000-001369-01 ISBN 978-89-6199-792-8-13500 ᅦ 특허검색고도화를위한 검색시스템및검색기법연구 A Study on the Retrieval Systems and Techniques for Enhancing Patent Search 목 차 요약문 I Ⅰ. 연구개요 1 Ⅱ. 특허검색
More informationG Power
G Power 부산대학교통계학과조영석 1. G Power 란? 2. G Power 설치및실행 2.1 G Power 설치 2.2 G Power 실행 3. 검정 (Test) 3.1 가설검정 (Test of hypothesis) 3.2 검정력 (Power) 3.3 효과크기 (Effect size) 3.4 표본수산정 4. 분석 4.1 t- 검정 (t-test) 4.2
More informationTHE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2015 Nov.; 26(11), 985991. http://dx.doi.org/10.5515/kjkiees.2015.26.11.985 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) Analysis
More information(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN
(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, 2017 3 (JBE Vol. 22, No. 2, March 2017) https://doi.org/10.5909/jbe.2017.22.2.234 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a), a) Real-time
More informationProblem New Case RETRIEVE Learned Case Retrieved Cases New Case RETAIN Tested/ Repaired Case Case-Base REVISE Solved Case REUSE Aamodt, A. and Plaza, E. (1994). Case-based reasoning; Foundational
More information05 목차(페이지 1,2).hwp
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2014 Oct.; 25(10), 1069 1076. http://dx.doi.org/10.5515/kjkiees.2014.25.10.1069 ISSN 1226-3133 (Print) ISSN 2288-226X (Online)
More information