<30352DB5A5C0CCC5CDB0F8C7D02D4A355F F525BBEC8C7FCB1D95D2E687770>

Size: px
Start display at page:

Download "<30352DB5A5C0CCC5CDB0F8C7D02D4A355F F525BBEC8C7FCB1D95D2E687770>"

Transcription

1 KIPS Tr. Software and Data Eng. Vol.2, No.12 pp.855~864 pissn: 판단트리분류를위한 SQL 기초기능의구현에관한연구 A Study on the Implementation of SQL Primitives for Decision Tree Classification An Hyoung Geun Koh Jae Jin ABSTRACT Decision tree classification is one of the important problems in data mining fields and data minings have been important tasks in the fields of large database technologies. Therefore the coupling efforts of data mining systems and database systems have led the developments of database primitives supporting data mining functions such as decision tree classification. These primitives consist of the special database operations which support the SQL implementation of decision tree classification algorithms. These primitives have become the consisting modules of database systems for the implementations of the specific algorithms. There are two aspects in the developments of database primitives which support the data mining functions. The first is the identification of database common primitives which support data mining functions by analysis. The other is the provision of the extended mechanism for the implementations of these primitives as an interface of database systems. In data mining, some primitives want be stored in DBMS is one of the difficult problems. In this paper, to solve of the problem, we describe the database primitives which construct and apply the optimized decision tree classifiers. Then we identify the useful operations for various classification algorithms and discuss the implementations of these primitives on the commercial DBMS. We implement these primitives on the commercial DBMS and present experimental results demonstrating the performance comparisons. Keywords : Data Mining, Primitive, Decision Tree, Classification 판단트리분류를위한 SQL 기초기능의구현에관한연구 안형근 고재진 요 약 판단트리분류는데이터마이닝의중요한문제의하나이고, 데이터마이닝은대형데이터베이스기술의중요한과제가되고있다. 그러므로데이터베이스와데이터마이닝시스템의결합노력은판단트리분류와같은데이터마이닝기능을지원하는데이터베이스기초기능의개발로이어지고있다. 이런기초기능은분류알고리즘의 SQL 구현을지원하는특수한데이터베이스연산들로구현되며, 특정알고리즘을구현하여데이터베이스시스템의구성모듈로사용하고있다. 데이터마이닝기능을제공하는데이터베이스기초기능의개발에는두가지관점이있다. 하나는데이터마이닝기능을분석해서그런기능들을제공하는데이터베이스공통기초기능을확인하는것, 다른하나는데이터베이스시스템의인터페이스의한부분으로이런기초기능의구현을위한확장된메커니즘을제공하는것이다. 데이터마이닝에서어떤기초기능들을 DBMS에저장할것인가는어려운문제중에하나이다. 따라서본논문에서는이러한문제를해결하기위하여, 최적화된판단트리분류기를만들고데이터베이스기초기능에대해서기술한다. 판단트리분류알고리즘의유용한연산들을확인하고, 상업적 DBMS에서이러한기초기능의구현에대해서기술하고, 성능비교를위한실험결과를제시한다. 키워드 : 데이터마이닝, 기초기능, 판단트리, 분류 1. 서론 1) 1. 서론 이논문은 2010 년울산대학교연구비에의하여연구되었음. 정회원 : 울산대학교 LINC 사업단연구교수 정회원 : 울산대학교전기공학부교수논문접수 : 2013 년 5 월 28 일수정일 :1 차 2013 년 8 월 19 일, 2 차 2013 년 9 월 23 일심사완료 : 2013 년 10 월 8 일 * Corresponding Author : Koh Jae Jin(jjkoh@ulsan.ac.kr) 판단트리분류는데이터마이닝의중요한문제의하나이고, 데이터마이닝은대형데이터베이스기술에서중요한위치를차지하고있다. 데이터마이닝하기위한데이터는대부분데이터베이스시스템 ( 이하 DBMS) 에저장되고, 이 DBMS는데이터접근 (access), 필터링 (filtering), 인덱싱

2 856 정보처리학회논문지 / 소프트웨어및데이터공학제 2 권제 12 호 ( ) (indexing) 하는구현기능들을갖고있다. 데이터마이닝의 SQL 활용기법은대용량데이터처리, 병렬화, 필터링, 집계기능등과같은 DBMS 기술을주로활용하고데이터자체뿐만아니라질의어처리결과를마이닝하는것이특징이다 [1,11]. 그러나, 처리성능이낮아조인, 그룹핑, 집계같은 SQL 연산만으로데이터마이닝기능을수행하기에는충분하지않은문제점이있어 SQL 연산의최적화를위한인덱싱기법을사용하기도하고, 또한, 효율적인구현을위해서데이터마이닝기능들이 DBMS에서연산이나접근패턴및접근경로등의지식을활용하기도한다. 이러한상황에서데이터마이닝의어떤기능들이 DBMS로저장될것인지가가장어려운문제로되고있다 [12]. 기존연구들은주로판단트리분류를이용하여데이터마이닝기능들을확인하고 DBMS의구현기능들을이용하였으며, DBMS에서는데이터마이닝기능들을지원할몇가지기술들을서술하고있다 [2, 3]. 첫째는연관규칙에대한새로운언어구성을 SQL에추가하는것, 둘째는데이터마이닝을위한 OLE DB 같은특수한 API를사용하거나사용자정의타입과메소드를사용해서데이터마이닝기능을내부적으로구현, 셋째는 DBMS가데이터마이닝에유용한특수한연산자나기초기능을제공하는것등이있다. 이모든방법들이데이터마이닝기능들에유용하지만본논문에서는상기내용에서기술한문제점해결을위하여특수한연산자나기초기능의세번째기술관점에서연구가진행되었다 [11]. 따라서, 본논문에서는판단트리분류를위한기초기능에대해서서술하고, AVC 그룹이나 CC 테이블컴퓨팅등을상업적 DBMS의 SQL 연산자로구현한다. 이과정에서최적화된판단트리구축을위한노드통계질의어들의평가는부분대응질의어를가속화하는인덱스기법들을대상으로하였다. 또한, 새로운데이터에대한유도분류모델을적용하는연산자인 prediction join( 예측조인 ) 을구현하고, 데이터마이닝을위한 SQL 기초기능에기반한추가적연산인분류측도계산등을기술한다. 본논문에서는채무불이행자를예상하기위한주제를제시하고, 과정들의이해를돕기위하여 Table 1의훈련집합 (Training Set) 과 Table 2의시험집합 (Test Set) 을예시데이터를사용한다 [4]. 채무불이행자 (defaults) 를예상하기위하여주택의소 Table 1. Training Set id hh mrg inclev defaults 1 y unm 125,000(m) n 2 n mrg 100,000(m) n 3 n unm 70,000(l) n 4 y mrg 120,000(m) n 5 n div 95,000(m) y 6 n mrg 60,000(l) n 7 y div 220,000(h) n 8 n unm 85,000(l) y 9 n mrg 75,000(l) n 10 n unm 90,000(m) y Table 2. Test Set id hh mrg inclev defaults 11 n unm 55,000(l) 12 y mrg 80,000(l) 13 y div 110,000(m) 14 n unm 95,000(m) 15 n div 67,000(l) 유여부 (hh) 의 yes(y), no(n), 결혼상태 (mrg) 의미혼 (unm), 기혼 (mrg), 이혼 (div), 연수입 (inclev) 의경우 9만불미만이면하위 (l), 9만불이상 15만불이하이면중위 (m), 15만불이상이면상위 (h) 로하여서, 수치데이터를카테고리데이터 (category data) 로변환한속성들로구성하였다. 1장서론에이어본논문은다음과같이전개된다. 2장에서판단트리분류개념과기초기능에대해서서술하고, 3 장에서판단트리기초기능의 PL/SQL 구현, 4장에서는질의성능을비교평가를하고, 5장에서결론을내린다. 2. 판단트리분류개념과기초기능 2.1 판단트리분류개념분류 (Classification) 는데이터마이닝의중요한문제의하나로서수년간연구되어왔으며, 베이시안 (Bayesian) 분류, 신경망 (neural network), 회귀트리 (regression tree), 판단트리 (decision tree) 등과같이몇개의모델이제시되었다. 그중에서판단트리분류가단순하면서이해하기쉬워가장선호하는모델이며, 판단트리를구축하는알고리즘으로는 ID3, C4.5, SPRINT, SLIQ, PUBLIC 등이있다. 대부분의판단트리알고리즘은 greedy 접근방법을사용하며 [5, 6, 12], 본알고리즘은트리성장단계 (tree-growing phase) 에서근노드의전체데이터세트를가지고시작한다. 해당데이터세트는분류기준에의해서부분집합으로나누어지며, 이런과정은각부분집합이같은클래스 (class) 에속하는멤버 (member) 들만가지거나충분히작은부분집합으로될때까지각부분집합에대해서반복적으로수행된다. 트리가지치기단계 (Tree pruning phase) 에서구축된트리는과적합 (over-fitting) 을방지하거나, 트리의정확성을높이기위해서부분적으로잘려지게된다. 트리가지치기에대한중요한접근방법의하나는 MDL(Minimum Description Length) 원칙에기반한다 [7]. 트리성장단계에서분류기준은노드파티션의샘플들을개별클래스들로가장잘분류하는속성을선택함으로써결정되며, 이속성이노드의판단속성이된다. 분류속성이 A라면판단기준은다음과같다. A가수치속성이면 A θ v(v dom(a), θ는비교연산자 ) 이고, A가카테고리속성이라면, A V(V dom(a)) 이다. 가장좋은분류점을선택하기위해서최적화된측도로 ID3과 C4.5는분류된파티션들의 information entropy를최소화하는분류점을선택하고, SLIQ와 SPRINT는분류된파티션들의 gini index를최

3 판단트리분류를위한 SQL 기초기능의구현에관한연구 857 소화하는분류점을선택한다. n개의레코드들을갖는데이터세트 S에대해서 information entropy(e(s)) 는 E(S) = - p i log p i (p i : class i의상대빈도수 ) 이다. 그리고데이터세트 S를부분집합 S1과 S2로나누는분류에대해서 entropy E(S1, S2) = (n1/n)e(s1) + (n2/n)e(s2)( 여기서, n1 은 S1의레코드수, n2는 S2의레코드수이다.), 데이터세트 S에대한 gini index Gini(S) = 1 - p 2 i (p i : class, i : 상대빈도수 ) 이다. 데이터세트 S의 S1과 S2로의나눔에대한분류 gini index S는다음과같이 Gini-split(S) = (n1/n)gini(s1) + (n2/n)gini(s2) 로정의한다. 한노드에서판단속성은그노드의자식노드에서는고려되지않는다. 판단트리를위한알고리즘의 treegrowing procedure는다음과같다. procedure treegrowing(dataset S) if all records in S belong to the same class return 2.2 판단트리분류기초기능 DBMS에서단일스캔으로통계테이블을만드는것은분류기초기능을위한좋은후보가된다. 분류기준을선택하는데사용하는측도들이다르기때문에필요한통계치를계산하는기초기능이다양한알고리즘들을지원할수있다. 한노드의파티션에속하는데이터들을선택하는질의어는대부분 partial-match 질의어이며조건들은다음과같다. cond 1 and cond 2 and and cond m, 여기서 cond i 는 A j θ v(θ는비교연산자, A j V, m n, n은속성의개수 ) 형태의프레디키트 (predicate) 이며, 예로 C 4 클래스에대한 partial-match 질의어는 A 1 =2 and A 3 =1로표현할수있다. 대형데이터세트의효율적인평가를위해서는알맞은접근경로를제공하는속성들의집합으로구성된인덱스가필요하다. 따라서특수한인덱스구조에기초한 partial-match 질의어를구현함으로써한노드의파티션을얻는필터링연산이분류를위한기초기능의후보가될수있고, 이를통해통계기초기능의결과를얻을수있다. foreach attribute A i Evaluate splits on attribute A i use best split found to partition S into S1 and S2 treegrowing(s1) treegrowing(s2) 판단트리구축에있어서많은시간을소비하는부분은분류점선택이다. 구축된활동노드는논리곱 (and) 분류조건을만족하는데이터의부분집합 ( 파티션, partition) 과그노드의부모노드들이구성되어야하고, 각노드의속성은분류가능한평가가이루어져야한다. 판단트리에서직접적인데이터접근은앞서서술된측도에기초한가장좋은분류점선택이필요한것은아니며, 속성과클래스의결합이일어나는파티션의레코드개수에대한통계치는필요하다. 이러한통계치정보는속성이름 (attribute name), 속성값 (attribute value), 클래스라벨 (class-label), 횟수 (count) 로구성되는단순테이블로부터얻을수있다. 구조는 CC 테이블및 AVC group(attribute-value-class) 형태로기술되며, 표현은아래와같이 SQL 질의어를통해서만들수있다 [8, 9]. select 'att1' as attname, att1 as attvalue, cl as class, count( * ) from S group by att1, cl select 'att2' as attname, att2 as attvalue, cl as class, count( * ) from S group by att2, cl. Fig. 1. Decision Tree example 판단트리에서 MDL 가지치기는트리를상향식 (bottomup) 으로탐색하면서수행되며, 만약에노드 N에기초한최소비용부트리의비용이노드 N에서직접적으로레코드들을엔코딩 (encoding) 하는비용보다같거나크면, 노드 N의자식들을가지치기한다. 부트리의비용은재귀적으로계산된다. 가지치기단계에서가장비용이많이드는연산은각노드에서레코드들의클래스들을엔코딩 (encoding) 하는비용이며, 각파티션의개별클래스들에속하는레코드들의개수에대한정보가필요하다. 분류후기술되는것은새로운데이터에대해유도된마이닝모델을적용하는예측 (prediction) 이며, 이런적용을 prediction join 연산이라한다. 새로운소스데이터 (source data) 의속성값들은유도된마이닝모델로부터제시된사례 (cases) 들과매칭 (matching) 이된다. 잎노드에대한클래스라벨배정은훈련데이터로부터얻어진통계적기대값에기초한다. 그러므로주어진사례들에대한예측된클래스는훈련데이터로부터유도된확률과같은추가적인통계치에의해서표현되어진다. 대부분의경우예측은단일값이아니고클래스들과확률을포함한다. Prediction join의구현은모델표현에크게의존한다. 예를들면, 판단트리는연관된조건-클래스와노드-간선으로표현되거나예측된클래스라벨과더불어노드에있는분류점또는속성값들의개별조합을구체화함으로써표현될

4 858 정보처리학회논문지 / 소프트웨어및데이터공학제 2 권제 12 호 ( ) 수있다. 특정한모델표현이주어진다면 prediction join 연산자는중요한분류기초기능이될수있다. 판단트리분류를위한기초기능에는다음과같은것들이있다. (1) 데이터마이닝의전처리단계의데이터준비를하는기초기능 [10] : 만약관련이없거나중복되거나또는잡음성의데이터이거나신뢰할수없는데이터가있다면데이터마이닝은어렵게된다. 데이터전처리에는데이터필터링, 데이터정규화, 변환, 추출과선택등이포함된다. (2) AVC group and CC table generation primitives( 노드통계표작성기초기능 ) : 분류기에공통되는 CC table 등을작성한다. 판단트리알고리즘에서각노드는그노드의데이터에관련된개수통계를얻어서, 모든가능한분할들을평가해서가장좋은분할을선택한다. 각속성에대해서그속성값과클래스값의각조합에대해서발생하는튜플들의개수가필요하다. 분할판단기준은개수통계테이블로부터계산할수있으며, 4 개의칼럼 ( 속성이름, 속성값, 클래스, 개수 ) 을갖는테이블이다. 이테이블을 CC 테이블 [8] 이라하고, 한번만들어지면더이상데이터자체를참조할필요가없다. (3) partial-match query의구현에의한노드의 partition을얻기위한 filtering operation primitives. (4) gini index, information entropy 같은분류척도를계산하는기초기능 : 노드통계테이블에기초해서구현될수있다. (5) prediction join operator 기초기능. 3. 판단트리기초기능의 PL/SQL 구현 본절에서는판단트리분류기초기능에대해서서술하고, partial-match 질의어를지원하는필터링기초기능에대해서서술한다. 판단트리 T에서노드를 N i (0 i n) 라면, N 0 는근노드이다. 각노드 N i 에대해서 A i θ v 또는 A i V 이고, 프레디키트 P Ni 에연관되는분류조건과각노드에따른클래스라벨 C Ni 를배정한다. 클래스라벨은해당노드의파티션에있는가장빈번한클래스를선택함으로써결정되며, 시퀀스 N 0 N 1 N k (k n) 을 decision path라지정한다. 판단트리 T에서, i 1에대해서 N i 는 N i-1 의직접적인자식노드이다. 노드 N r 에대한 decision path는 and 연결조건으로선택되어지며, cond Nr =P N1 and P N2 and and P Nr 을의미한다. 각속성은프레디키트에서최대한번만나타난다. 따라서필터기초기능의목적을다음과같이기술한다. select 연산자 : 필터기초기능 입력 : 데이터세트 S, 노드 Nr에대한 decision path 의분류조건 cond Nr 출력 : 파티션 Sr S, Sr = б cond Nr (S) 기본적으로필터기초기능을구현하는여러가지접근방법으로 KDB 트리와같은다차원해싱 (MDH, Multi Dimensional Hashing), 그리드파일, 비트맵인덱스등이있으며, 그중본논문에서는기본인덱스또는비트맵인덱스로구현한다. Table 2의예시테이블에서속성 mrg( 결혼상태 ) 평가에따른 hh( 주택소유여부 ), inclev( 연수입 ) 에대한노드통계를산출하기위한판단트리 (Fig. 2) 와 N 2 에대한파티션 (Table 3) 및노드통계 (Table 4) 를살펴보면다음과같다. attribute name Fig. 2. Decision Tree for Node statistics Table 3. Partition for Node N2 hh inclev defaults(class) y m n n l n n l y n m y Table 4. Node statistics for Node N2 attribute value class label count hh y n 1 hh n n 1 hh n y 2 inclev m n 1 inclev l n 1 inclev l y 1 inclev m y 1 판단트리의노드와연관된파티션을필터링하는것은분류속성과분류조건을결정하는첫단계이다. 속성값과클래스라벨의각조합에대한튜플들의개수를요약하는테이블로부터 information entropy와 gini index를계산할수있다. 분류속성에의해이미사용하지않은데이터세트의모든속성들이조사된다. Fig. 2와같이부분적으로성장한트리와노드 N 2 에서스키마 R(A 1, A 2,, A n, 클래스 ) 에대해서속성 A 2,, A n 고려된다. Table 3과같이노드 N 2 에서데이터세트의나머지파티션이주어졌다고한다면, 결과테이블은 Table 4와같은정보를갖는다. Sp S에서 S p 는데이터세트 S의한파티션이라하고, 클래스 Sp를 S p 에나타나는클래스라벨의집합이라한다. A={A 1, A 2,, A m } 을속성들의집합, V=U i dom(a i ) 를값들의집합이라하고, 하나

5 판단트리분류를위한 SQL 기초기능의구현에관한연구 859 의레코드 r S p 에대해서 r(a i ) 를레코드 r의속성 A i 의값이라한다면, 노드통계계산기초기능은다음과같다. 개의개체를갖는다면, 데이터세트 S에대한 information entropy(i) 는다음과같다. 입력 : 파티션 S p 속성들의집합 A = {A 1, A 2,, A m } 클래스라벨을나타내는속성 ' 클래스Sp 출력 : 릴레이션 S통계 A ⅹ V ⅹ 클래스Sp ⅹ N( 횟수 ) ( 속성이름, 속성값, 클래스라벨, 횟수 ) S통계는다음사항과 equivalent( 동등 ) 하다. 속성이름 A and 속성값 V and 클래스 클 래스 Sp and 횟수 = { r r S p and ( 클래스라벨 ) = 클래스 } r(a i )= 속성값 and r 앞의테이블을만드는방법으로 SQL 질의어를사용하며, 예시로근노드에서노드통계테이블을만드는 SQL 질의어는다음과같은것이다. insert into ndsttab / * ndsttab : 근노드노드통계테이블, trtab : 훈련레코드테이블 * / (select hh, hh, defaults, count(*) from trtab group by hh, defaults) / * hh : 주택소유여부속성 * / (select mrg, mrg, defaults, count( * ) from trtab group by mrg, defaults) / * mrg : 결혼상태속성 * / (select inclev inclev, defaults, count( * ) from trtab group by inclev, defaults); / * inclev : 소득수준, default : 채무불이행클래스라벨 * / 다음은해당노드의통계를계산하는알고리즘이다. procedure nodestatscomp(query q, attribute set A, class label attribute cl) array count = initialize execute query q foreach tuple t = (a 1, a 2,, a m, cl) foreach attribute A 1,, A n A count[a i ][a i ][cl] += 1 foreach attribute A i foreach value v dom(ai) foreach class label c dom(cl) if count[a i ][v][cl]>0 produce tuple (A i, v, clb, count[a i ][v][cl]) I(p, n) = -((p/(p+n)) * log(2, (p/(p+n)))) (n/(p+n)) * log(2, (n/(p+n)))) A = a i 의조건에의해서근노드의데이터세트 S를 S 1, S 2,, S n 분할세트로나누고, 각분할세트 S i 에서속성 A 는속성값 a i 를갖는다. 분할세트 S i 가클래스 P에속하는 p i 와클래스 N에속하는 n i 를갖는다면, 분할집합 S i 에대한부트리에필요한정보는 I(p i, n i ) 가된다. 근노드에서분류속성으로 A를택했을때기대정보는다음과같은균형평균기대정보 E(A) = ((p i +n i )/(p+n)) * I(p i, n i ) 이며, 근노드에서속성 A를분류속성으로분할했을때얻어지는획득정보 gain(a) = I(p, n) E(A) 와같다. 이와같은계산결과가장큰획득정보를얻을수있는속성으로분류하는것이좋은기준이될수있다. ID3[6] 는모든후보속성에대해서 gain( 속성 ) 을계산을해서최대인것을분류속성으로정한다. 이런과정을각부트리의근노드에서도수행을해서판단트리를만든다. 판단트리가개체를분류하기위해서사용될때예상되는클래스의반환은근노드에서시작하여 y 또는 n 결과클래스개수 3개와 7개를반환하는것으로생각할수있다. Table 1의결과클래스의기대정보는다음과같다. I(y, n) = -(3/(3+7)) * log(2,3/(3+7)) (7/(3+7)) * log(2,7/(3+7)) = 0.88 어떤속성 A에의해서근노드에서분류했을때, 각부트리에서 y 또는 n 메시지를나타내는데필요한기대정보는 I(y i, n i ) 이고, 분류했을때근노드에서의기대정보 E(A) 는가중치평균으로각속성에적용하여계산하면다음과같다. E(mrg) = 0.4 * (-(0/(0+4) * log(2,0)) - 1 * log(2,1)) * (-0.5 * log(2,0.5) * log(2,0.5)) * (-0.5 * log(2,0.5) * log(2,0.5)) = 0.6 E(hh) = 0.3 * (-1 * log(2,1)) * (-(3/7) * log (2,(3/7)) - (4/7) * log(2,(4/7))) = 0.69 E(inclev) = 0.5 * (-(2/5) * log(2,(2/5)) - (3/5) * log (2,(3/5))) + 0.4(-(1/4) * log(2,(1/4)) - (3/4) * log (2,(3/4))) * (-1 * log(2,1)) = 0.8 따라서속성 A에의해서분류했을때얻어지는획득정보 gain(a) 을각속성에적용하여계산하면다음과같다. 다음은분류속성을결정하기위한측도로활용되는기대정보 information entropy 계산식을기술한다. 데이터세트 S가클래스 P에속하는 p개의개체와클래스 N에속하는 n gain(mrg)=i(y,n) E(mrg)= = 0.28 gain(hh) = I(y,n) E(hh) = = 0.19 gain(inclev) = I(y,n) E(inclev) = = 0.08

6 860 정보처리학회논문지 / 소프트웨어및데이터공학제 2 권제 12 호 ( ) 위결과, 근노드에서각속성에대한정보획득을계산했을때 mrg 속성이가장정보획득이컸다. 따라서근노드에서분류속성으로 mrg를선택하고분류했을때, 세개의부트리가생성된다. mrg=mrg 인프레디키트에의해서분류된부트리는클래스라벨이전부 n 이기때문에더이상분류가불필요하다. mrg=unm 인프레디키트에의해서분류된부트리에서의각종기대정보는다음과같다. I(y,n)= -0.5 * log(2,0.5)-0.5 * log(2,0.5)=1.0 E(hh)= (1/4) * (-log(2,1))+(3/4) * (-(2/3) * log(2,(2/3))- (1/3) * log(2,(1/3)))=0.69 E(inclev)=0.5 * (-0.5 * log(2,0.5)-0.5 * log(2,0.5))+0.5 * (-0.5 * log(2,0.5)-0.5 * log(2,0.5))=1 미혼 (unm) 노드에서각속성별정보획득을계산하면아래와같은결과를얻을수있다. gain(hh)=0.31, gain(inclev)=0.0 이결과, 미혼노드에서는 hh 속성의값이크기때문에선택하고분류한다. 다음은이혼 (div) 노드에서기대정보를계산한다. I(y,n) = -0.5 * log(2,0.5)-0.5 * log(2,0.5)=1 E(hh) = 0.5 * (-log(2,1))+0.5 * (-log(2,1))=1 E(inclev) = 0.5 * (-log(2,1))+0.5 * (-log(2,1))=1 이혼노드에서속성 hh와 inclev에의한정보획득은동일하며 (hh를분류속성으로임의로정하였음 ), 이렇게만들어진판단트리는 Fig. 3과같이나타낼수있다. 판단트리가만들어진후유도된모델은클래스속성이없는새로운데이터레코드의클래스를예측할수있고이러한연산을 prediction join이라한다. 이연산은각노드의연관된분류조건이평가되는트리의경로를따라서모델이해석되어지며다음과같이정의할수있다. (prediction-join) 입력 : 판단트리 T : 노드 N 0, N n 으로구성 소스릴레이션 R(A 1,, A m ) Fig. 3. Decision Tree Model 출력 : prediction 릴레이션 Rp(A 1,, A m, 클래스속성 ) node path N 0,, N k, t R, t p Rp : k m k maximal i i = 1,, k : t(a i )=t p (A i ) cond Np (t p )=true and t p (cl)=cl Ni prediction join의구현은모델표현에의존하기때문에적당한자료구조가필요하며, 트리를 RDBMS에저장하기위해서 flat table 구조를이용한다. 그런예로 Fig. 3의판단트리를테이블로표현하면 Table 5와같다. Table 5. Decision Tree Table of Fig. 3 parents node attribute attribute value class label probabi lity N n 0.70 N 1 N 0 A 2 mrg n 1.0 N 2 N 0 A 2 unm y 0.5 N 3 N 0 A 2 div y 0.5 N 4 N 2 A 1 y n 1.0 N 5 N 2 A 1 n y 0.67 N 6 N 3 A 1 y n 1.0 N 7 N 3 A 1 n y 1.0 판단트리테이블의각튜플은각노드에해당되며, N 1 노드에해당하는튜플은다음과같은 pl/sql 코드에의해서생성된다. declare v_ncnt number; v_ycnt number; clslb varchar2(5); v_prob number; select count( * ) into v_ncnt 이터테이블 * / / * psmset : 훈련데 from (select * from psmset where mrg='mrg') g where defaults='n'; v_ycnt :=0; if v_ncnt >= v_ycnt then else clslb:='n'; select v_ncnt / (v_ncnt + v_ycnt) into v_prob from dual; clslb:='y'; select v_ycnt / (v_ncnt + v_ycnt) into v_prob from dual; end if; 테이블 * / / * ndttab : 판단트리 insert into ndttab(node, parent, att, atval, cls, prob) values(1, 0, 'mrg', 'mrg', clslb,v_prob); end;

7 판단트리분류를위한 SQL 기초기능의구현에관한연구 861 판단트리의테이블표현의각튜플은부모노드로부터현재노드까지를경로로하는트리의각간선 (edge) 으로나타낸다. 간선은조건과연관되어있으며, 속성이름은속성필드에저장되고, 분류를위한도메인은속성값필드의값들에의해서표현된다. 클래스라벨필드는그클래스에속할확률과더불어간선의노드에연관된파티션에가장많이나타나는클래스의라벨을갖는다. prediction join의의사코드는다음과같다. 위의질의어의원형은다음과같다. select * from model where (atname = 'A 1 ' and A 1 =a 1 )or (atname = 'A 2 ' and A 2 =a 2 )or (atname = 'A m ' and A m =a m ) procedure predictionjoin(source table S, model table M) foreach tuple t S =(a 1,, a m ) S execute query q(t S ) fetch tuple t M =(n, p, c, prob) node := n classlabel := c finished := false do do fetch tuple t M =(n, p, c, prob) if tuple = not found create result tuple (a1,, a m, c) finished := true while p node node := n classlabel = c while not finished 소스릴레이션의각튜플 t S =(a 1,, a m ) 에대해서튜플의속성값에의해서만족되는조건을갖는노드들이선택된다. 다음은 Table 2의시험데이터집합의 11번튜플에대해서판단트리테이블로대응하여, 그결과를임시판단트리에넣은후임시판단트리테이블을노드번호순으로정렬하는 pl/sql 코드이다. set serveroutput on delete from tdttab; / * tdttab은임시판단트리테이블 * / insert into tdttab select * from ndttab / * ndttab은훈련데이터에대한판단트리테이블 * / where (att='hh' and atval='n') or (att='mrg' and atval='unm') or (att='inclev' and atval='l'); delete from stdttab; / * stdttab은임시판단트리테이블을노드번호순으로정렬 * / insert into stdttab select * from tdttab order by node asc; end; 이후보노드들은노드-id( 노드번호 ) 순으로정렬되며근노드로부터시작해서현재노드-id가부모-id인다음노드를얻는다. 이런경우클래스라벨과확률이활동소스튜플 ( 시험데이터튜플 ) 에배정된다. 이런절차를수행하는시험데이터세트의 11번튜플을처리하는 pl/sql 코드는다음과같다. declare frnode number; / * current node * / nxnode number; / * next node * / tcls varchar2(5); / * class label * / tprob number; / * probability * / procedure calcsetcls(strowid in varchar2) / * calculate and set the class label and probability * / is select node into frnode from stdttab / * sorted temparay decision table * / where parent = 0; loop select node into nxnode from stdttab where parent=frnode; if nxnode!= 0 then frnode := nxnode; end if; end loop; exception when NO_DATA_FOUND then select cls into tcls from stdttab where node = frnode; select prob into tprob from stdttab where node = frnode; update pstset / * update the test set tuple * / set defaults=tcls where id=strowid; update pstset set prob=tprob where id=strowid; end calcsetcls;

8 862 정보처리학회논문지 / 소프트웨어및데이터공학제 2 권제 12 호 ( ) calcsetcls('11'); / * 11 tuple of the test set table * / end; Table 2의시험집합을판단트리의테이블에적용한결과는 Table 6과같다. Table 6. Decision Tree Table of Table 2. Test set id hh mrg inclev defaults prob 11 n unm l y y mrg l n y div m n n unm m y n div l y 성능평가 본논문의기초기능에대한성능을비교평가하기위해서 sun workstation 시스템에 solaris OS를구축하고, 대부분데이터베이스환경에서실험이가능하나본논문에서는이들제품들중에서 Oracle 9i 버전의 pl/sql 프로그래밍언어를사용하여실험을진행하였다. 합성된실험데이터세트는 10개의속성을갖는테이블로구성하고적용된튜플의개수는 10만개, 11만개, 12만개등세가지로분류하였다. 각속성은 1에서 5까지의개별값들을갖는다. 본실험으로첫번째, 노드통계테이블을만드는질의어에대한몇가지인덱스전략에대한성능실험이며, 두번째, partial-match 질의에대한전체테이블스캔, 비트맵인덱스, MDH 기반기본기능등을비교평가하였다. 다음은성능평가실험에이용하기위한훈련집합, 노드통계테이블, 기본인덱스, 비트맵인덱스등을만드는 pl/sql 코드들이다. 훈련집합생성 pl/sql 코드 delete from trset; sttime := systimestamp; for i in loop insert into trset(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,cs) / * this is the training set * / select trunc(dbms_random.value(1,6)), ~ 중략 ~ from dual; end loop; end; trunc(dbms_random.value(0,2)) 노드통계테이블생성 pl/sql 코드 delete from ndsttab; / * ndsttab: node statistics table * / set serveroutput on declare sttime timestamp; entime timestamp; tstring varchar2(200); sttime := systimestamp; insert into ndsttab (select 'a1', a1, cs, count( * ) from trset group by a1, cs) (select 'a2', a2, cs, count( * ) from trset group by a2, cs) ~ 중략 ~ (select 'a10', a10, cs, count( * ) from trset group by a10, cs); entime := systimestamp; dbms_output.put_line(entime - sttime); delete from times; insert into times values(entime, sttime); select extract(hour from (tentime - tsttime)) ':' extract(minute from (tentime - tsttime)) ':' extract(second from (tentime - tsttime)) into tstring from times; dbms_output.put_line(tstring); end; 기본인덱스생성 pl/sql 코드 create table itrset12(a1 varchar2(2), a2 varchar2(2), a3 varchar2(2), a4 varchar2(2), a5 varchar2(2), a6 varchar2(2), a7 varchar2(2), a8 varchar2(2), a9 varchar2(2), a10 varchar2(2), cs varchar2(2)); create index idx0112 on itrset12(a1); create index idx0212 on itrset12(a2); ~ 중략 ~ create index idx1012 on itrset12(a10); 비트맵인덱스생성 pl/sql 코드 create bitmap index idxb0112 on btrset12(a1); create bitmap index idxb0212 on btrset12(a2); ~ 중략 ~ create bitmap index idxb0912 on btrset12(a9); create bitmap index idxb1012 on btrset12(a10); 첫번째, 비교평가로노드통계테이블을만드는질의어에대한각인덱스전략별실험결과는아래 Table 7과같다. Table 7의결과를기반으로성능비교한결과, 인덱스를사용하지않은질의와기본인덱스를사용한질의결과보다비트맵인덱스를사용한질의결과가더우수하다는것을

9 판단트리분류를위한 SQL 기초기능의구현에관한연구 863 Table 7. Specific performance test results for each index strategy (unit : second) tuple number 100, , ,000 count no index primary index bitmap index 알수가. 추가적으로기본인덱스를사용한테이블생성시간보다비트맵인덱스를사용한테이블생성시간이훨씬작았다. 이결과테이블및질의어수행시간면에서기본인덱스를사용하는것보다비트맵인덱스를사용하는것이우수함을학인할수있었다. 두번째실험으로 partial-match 질의어에대한서로다른전략으로전체테이블스캔, 비트맵인덱스, MDH 기반기본기능등올비교를하였으며상기에서제시된다양한수의정의되지않은속성들을가진 10만개튜플의테이블을대상으로하였다. 아래 Fig. 4는전략별 100개의질의를적용한평가결과시간이다. Fig. 4. partial-match query evaluation result partial-match에서모든속성들이쿼리에주어진경우라면완전검색쿼리의상황에서 MDH가 1.2초필요하며, 완전스캔은약 17초, 비트맵의경우 19.5초의시간을필요로한다. 정의되지않는속성들의수가증가할수록경과시간은완전스캔과비트맵인덱스보다많이시간을필요로하지만완전검색쿼리에서 6개의속성개수까지는 MDH 전략이우수하다는점을보였다. 5. 결론 데이터마이닝과데이터베이스시스템의결합은대형데 이터베이스에대한데이터마이닝의효율을향상시킨다. 특히판단트리분류에대한기초기능이 DBMS에의해서제공되는경우에대해서본논문에서서술했고, 기초기능을 pl/sql로구현하는것에대해서기술하였다. 첫째로판단트리분류기능을분석해서공통적인기초기능을확인하였으며, 둘째로기초기능의효율적인구현을위해서데이터베이스시스템의 pl/sql을사용하였다. 기초기능의하나로분류측도를계산하는연산을노드통계테이블에대한 pl/sql 의함수로구현했다. 예시훈련데이터에대한판단트리모델을만들고예시시험데이터에적용해서예상되는클래스와확률을계산하였다. 또한, 성능평가하기위하여첫번째로판단트리에대한노드통계테이블을구현하는질의어를구현해서, 전체테이블탐색, 기본인덱스를이용한탐색, 비트맵인덱스를이용한탐색별로질의어를실행해서평가하였으며, 두번째로 partial-match 질의어에대한서로다른전략으로전체테이블스캔, 비트맵인덱스, MDH 기반기본기능등을비교하였다. 실험결과는이런기초기능의장점을각전략별로제시하였고, 데이터베이스시스템과의통합의필요성을보여주었다. 참고문헌 [1] Surajit Chaudhuri, Data Mining and Database Systems: Where is the Intersection?, Data Engineering Bulletin, 21(1): 4-8, [2] R. Meo, G. Psaila, and S. Ceri. A New SQL-like Operators for Mining Association Rules. VLDB 96, pp , Mumbai, India, Sept., 3-6, R. [3] A. Netz, S. Chaudhuri, J. Bernhardt, and U. M. Fayyad, Integration of Data Mining with Database Technology, Proceedings of 26the International Conference on Very Large Data Bases, September 10-14, [4] Vipin Kumar, etc., Introduction to data mining, Addison-Wesley, May 12, [5] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, Chapman and Hall, [6] M. Xu, J. Wang, and T. Chen, Improved decision tree algorithm: ID3+, Intelligent Computing in Signal Processing and Pattern Recognition, Vol.345, pp , [7] M. Mehta, I. Rissanen, and R. Agrawal, MDL-based Decision Tree Pruning, Proc. of Intl. Conf. on Knowledge Discovery in Databases and Data Mining, Montreal, Canada, [8] S. Chaudhuri, U. M. Fayyad, and J. Bernhardt, Scalable Classification over SQL Databases, ICDE-99, pp , Sydney, Australia, [9] J. Gerhke, R. Ramakrishnan, and V. Ganti, RainForest - A Framework for Fast Decision Tree Construction of Large Datasets, VLDB 98, pp , New York City, New York, USA, 1999.

10 864 정보처리학회논문지 / 소프트웨어및데이터공학제 2 권제 12 호 ( ) [10] S.B. Kotsiantis, D. Kanellopoulos and P.E. Pintelas, Data Preprocessing for supervised learning, International Journal of Computer Science, Vol.1, No.2, [11] M. BenHajHmida and A. Congiusta, Parallel, distributed, and grid-based data mining : algorithms, systems, and applications, Handbook of Research on Computational Grid, IGI Global, pp , May, [12] L. Zhou, Z. Zhang, and M. Xu, Massive data mining based on item sequence set grid space, In Proceedings of the 2nd International Asia Conference on Informatics in Control, Automation and Robotics, pp , March, 고재진 jjkoh@ulsan.ac.kr 1972년서울대학교응용수학과 ( 공학사 ) 1981년서울대학교계산통계학과 ( 이학석사 ) 1990년서울대학교컴퓨터공학과 ( 공학박사 ) 1975년~1979년한국후지쯔 ( 주 ) 기술개발부사원 1979년~2010년울산대학교컴퓨터정보통신공학부교수 2011년~현재울산대학교전기공학부교수관심분야 : DB시스템, 전문가시스템, DB설계, ERP 안형근 hkahn@ulsan.ac.kr 2003년울산대학교정보통신대학원정보통신공학과 ( 공학석사 ) 2008년울산대학교컴퓨터정보통신공학부 ( 공학박사 ) 1997년~2004년현대오토시스템기술지원부 2004년~2006년 ( 주 )CFIC 기업부설연구소연구소장 2008년~2010년울산대학교컴퓨터정보통신공학부객원교수 2012년~현재울산대학교 LINC사업단연구교수관심분야 : 멀티미디어DB, DB설계 / 분석, ERP, BPM, Workflow

Microsoft PowerPoint - 27.pptx

Microsoft PowerPoint - 27.pptx 이산수학 () n-항관계 (n-ary Relations) 2011년봄학기 강원대학교컴퓨터과학전공문양세 n-ary Relations (n-항관계 ) An n-ary relation R on sets A 1,,A n, written R:A 1,,A n, is a subset R A 1 A n. (A 1,,A n 에대한 n- 항관계 R 은 A 1 A n 의부분집합이다.)

More information

untitled

untitled (shared) (integrated) (stored) (operational) (data) : (DBMS) :, (database) :DBMS File & Database - : - : ( : ) - : - : - :, - DB - - -DBMScatalog meta-data -DBMS -DBMS - -DBMS concurrency control E-R,

More information

adfasdfasfdasfasfadf

adfasdfasfdasfasfadf C 4.5 Source code Pt.3 ISL / 강한솔 2019-04-10 Index Tree structure Build.h Tree.h St-thresh.h 2 Tree structure *Concpets : Node, Branch, Leaf, Subtree, Attribute, Attribute Value, Class Play, Don't Play.

More information

쉽게 풀어쓴 C 프로그래밊

쉽게 풀어쓴 C 프로그래밊 Power Java 제 27 장데이터베이스 프로그래밍 이번장에서학습할내용 자바와데이터베이스 데이터베이스의기초 SQL JDBC 를이용한프로그래밍 변경가능한결과집합 자바를통하여데이터베이스를사용하는방법을학습합니다. 자바와데이터베이스 JDBC(Java Database Connectivity) 는자바 API 의하나로서데이터베이스에연결하여서데이터베이스안의데이터에대하여검색하고데이터를변경할수있게한다.

More information

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for 2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

Spring Boot/JDBC JdbcTemplate/CRUD 예제

Spring Boot/JDBC JdbcTemplate/CRUD 예제 Spring Boot/JDBC JdbcTemplate/CRUD 예제 오라클자바커뮤니티 (ojc.asia, ojcedu.com) Spring Boot, Gradle 과오픈소스인 MariaDB 를이용해서 EMP 테이블을만들고 JdbcTemplate, SimpleJdbcTemplate 을이용하여 CRUD 기능을구현해보자. 마리아 DB 설치는다음 URL 에서확인하자.

More information

10.ppt

10.ppt : SQL. SQL Plus. JDBC. SQL >> SQL create table : CREATE TABLE ( ( ), ( ),.. ) SQL >> SQL create table : id username dept birth email id username dept birth email CREATE TABLE member ( id NUMBER NOT NULL

More information

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월 지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support

More information

09권오설_ok.hwp

09권오설_ok.hwp (JBE Vol. 19, No. 5, September 2014) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September 2014) http://dx.doi.org/10.5909/jbe.2014.19.5.656 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) Reduction

More information

DBMS & SQL Server Installation Database Laboratory

DBMS & SQL Server Installation Database Laboratory DBMS & 조교 _ 최윤영 } 데이터베이스연구실 (1314 호 ) } 문의사항은 cyy@hallym.ac.kr } 과제제출은 dbcyy1@gmail.com } 수업공지사항및자료는모두홈페이지에서확인 } dblab.hallym.ac.kr } 홈페이지 ID: 학번 } 홈페이지 PW:s123 2 차례 } } 설치전점검사항 } 설치단계별설명 3 Hallym Univ.

More information

DW 개요.PDF

DW 개요.PDF Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.

More information

WINDOW FUNCTION 의이해와활용방법 엑셈컨설팅본부 / DB 컨설팅팀정동기 개요 Window Function 이란행과행간의관계를쉽게정의할수있도록만든함수이다. 윈도우함수를활용하면복잡한 SQL 들을하나의 SQL 문장으로변경할수있으며반복적으로 ACCESS 하는비효율역

WINDOW FUNCTION 의이해와활용방법 엑셈컨설팅본부 / DB 컨설팅팀정동기 개요 Window Function 이란행과행간의관계를쉽게정의할수있도록만든함수이다. 윈도우함수를활용하면복잡한 SQL 들을하나의 SQL 문장으로변경할수있으며반복적으로 ACCESS 하는비효율역 WINDOW FUNCTION 의이해와활용방법 엑셈컨설팅본부 / DB 컨설팅팀정동기 개요 Window Function 이란행과행간의관계를쉽게정의할수있도록만든함수이다. 윈도우함수를활용하면복잡한 SQL 들을하나의 SQL 문장으로변경할수있으며반복적으로 ACCESS 하는비효율역시쉽게해결할수있다. 이번화이트페이퍼에서는 Window Function 중순위 RANK, ROW_NUMBER,

More information

정보기술응용학회 발표

정보기술응용학회 발표 , hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management

More information

MySQL-.. 1

MySQL-.. 1 MySQL- 기초 1 Jinseog Kim Dongguk University jinseog.kim@gmail.com 2017-08-25 Jinseog Kim Dongguk University jinseog.kim@gmail.com MySQL-기초 1 2017-08-25 1 / 18 SQL의 기초 SQL은 아래의 용도로 구성됨 데이터정의 언어(Data definition

More information

Overview Decision Tree Director of TEAMLAB Sungchul Choi

Overview Decision Tree Director of TEAMLAB Sungchul Choi Overview Decision Tree Director of TEAMLAB Sungchul Choi 머신러닝의학습방법들 - Gradient descent based learning - Probability theory based learning - Information theory based learning - Distance similarity based

More information

13주-14주proc.PDF

13주-14주proc.PDF 12 : Pro*C/C++ 1 2 Embeded SQL 3 PRO *C 31 C/C++ PRO *C NOT! NOT AND && AND OR OR EQUAL == = SQL,,, Embeded SQL SQL 32 Pro*C C SQL Pro*C C, C Pro*C, C C 321, C char : char[n] : n int, short, long : float

More information

InsertColumnNonNullableError(#colName) 에해당하는메시지출력 존재하지않는컬럼에값을삽입하려고할경우, InsertColumnExistenceError(#colName) 에해당하는메시지출력 실행결과가 primary key 제약에위배된다면, Ins

InsertColumnNonNullableError(#colName) 에해당하는메시지출력 존재하지않는컬럼에값을삽입하려고할경우, InsertColumnExistenceError(#colName) 에해당하는메시지출력 실행결과가 primary key 제약에위배된다면, Ins Project 1-3: Implementing DML Due: 2015/11/11 (Wed), 11:59 PM 이번프로젝트의목표는프로젝트 1-1 및프로젝트 1-2에서구현한프로그램에기능을추가하여간단한 DML을처리할수있도록하는것이다. 구현한프로그램은 3개의 DML 구문 (insert, delete, select) 을처리할수있어야한다. 테이블데이터는파일에저장되어프로그램이종료되어도사라지지않아야한다.

More information

ecorp-프로젝트제안서작성실무(양식3)

ecorp-프로젝트제안서작성실무(양식3) (BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing

More information

Problem New Case RETRIEVE Learned Case Retrieved Cases New Case RETAIN Tested/ Repaired Case Case-Base REVISE Solved Case REUSE Aamodt, A. and Plaza, E. (1994). Case-based reasoning; Foundational

More information

MS-SQL SERVER 대비 기능

MS-SQL SERVER 대비 기능 Business! ORACLE MS - SQL ORACLE MS - SQL Clustering A-Z A-F G-L M-R S-Z T-Z Microsoft EE : Works for benchmarks only CREATE VIEW Customers AS SELECT * FROM Server1.TableOwner.Customers_33 UNION ALL SELECT

More information

문서 템플릿

문서 템플릿 HDSI 툴분석 [sql injection 기술명세서 ] Sql injection 기술명세서 Ver. 0.01 이문서는 sql injection 기술명세가범위입니다. Copyrights Copyright 2009 by CanvasTeam@SpeeDroot( 장경칩 ) All Rights Reserved. 장경칩의사전승인없이본내용의전부또는일부에대한복사, 전재,

More information

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770> 한국지능시스템학회 논문지 2010, Vol. 20, No. 3, pp. 375-379 유전자 알고리즘을 이용한 강인한 Support vector machine 설계 Design of Robust Support Vector Machine Using Genetic Algorithm 이희성 홍성준 이병윤 김은태 * Heesung Lee, Sungjun Hong,

More information

Microsoft PowerPoint - 알고리즘_5주차_1차시.pptx

Microsoft PowerPoint - 알고리즘_5주차_1차시.pptx Basic Idea of External Sorting run 1 run 2 run 3 run 4 run 5 run 6 750 records 750 records 750 records 750 records 750 records 750 records run 1 run 2 run 3 1500 records 1500 records 1500 records run 1

More information

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a low-resolution Time-Of- Flight (TOF) depth camera and

More information

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770> 327 Journal of The Korea Institute of Information Security & Cryptology ISSN 1598-3986(Print) VOL.24, NO.2, Apr. 2014 ISSN 2288-2715(Online) http://dx.doi.org/10.13089/jkiisc.2014.24.2.327 개인정보 DB 암호화

More information

chap 5: Trees

chap 5: Trees 5. Threaded Binary Tree 기본개념 n 개의노드를갖는이진트리에는 2n 개의링크가존재 2n 개의링크중에 n + 1 개의링크값은 null Null 링크를다른노드에대한포인터로대체 Threads Thread 의이용 ptr left_child = NULL 일경우, ptr left_child 를 ptr 의 inorder predecessor 를가리키도록변경

More information

13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3

13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3 13 Lightweight BPM Engine SW 13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3 BPM? 13 13 Vendor BPM?? EA??? http://en.wikipedia.org/wiki/business_process_management,

More information

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2 (Special Paper) 22 5, 2017 9 (JBE Vol. 22, No. 5, Sepember 2017) https://doi.org/10.5909/jbe.2017.22.5.541 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) (JEM) a), a), a) A Fast Decision Method of Quadtree

More information

3 S Q L A n t i p a t t e r n s Trees/intro/parent.sql CREATE TABLE Comments ( comment_id SERIAL PRIMARY KEY, parent_id BIGINT UNSIGNED, comment TEXT

3 S Q L A n t i p a t t e r n s Trees/intro/parent.sql CREATE TABLE Comments ( comment_id SERIAL PRIMARY KEY, parent_id BIGINT UNSIGNED, comment TEXT 3 S Q L A n t i p a t t e r n s Trees/intro/parent.sql CREATE TABLE Comments ( comment_id SERIAL PRIMARY KEY, parent_id BIGINT UNSIGNED, comment TEXT NOT NULL, FOREIGN KEY (parent_id) REFERENCES Comments(comment_id)

More information

Microsoft PowerPoint - 3장-MS SQL Server.ppt [호환 모드]

Microsoft PowerPoint - 3장-MS SQL Server.ppt [호환 모드] MS SQL Server 마이크로소프트사가윈도우운영체제를기반으로개발한관계 DBMS 모바일장치에서엔터프라이즈데이터시스템에이르는다양한플랫폼에서운영되는통합데이터관리및분석솔루션 2 MS SQL Server 개요 3.1 MS SQL Server 개요 클라이언트-서버모델을기반으로하는관계 DBMS로서윈도우계열의운영체제에서만동작함 오라클관계 DBMS보다가격이매우저렴한편이고,

More information

04-다시_고속철도61~80p

04-다시_고속철도61~80p Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and

More information

Microsoft PowerPoint - Java7.pptx

Microsoft PowerPoint - Java7.pptx HPC & OT Lab. 1 HPC & OT Lab. 2 실습 7 주차 Jin-Ho, Jang M.S. Hanyang Univ. HPC&OT Lab. jinhoyo@nate.com HPC & OT Lab. 3 Component Structure 객체 (object) 생성개념을이해한다. 외부클래스에대한접근방법을이해한다. 접근제어자 (public & private)

More information

90

90 89 3 차원공간질의를위한효율적인위상학적데이터모델의검증 Validation of Efficient Topological Data Model for 3D Spatial Queries Seokho Lee Jiyeong Lee 요약 키워드 Abstract Keywords 90 91 92 93 94 95 96 -- 3D Brep adjacency_ordering DECLARE

More information

강의 개요

강의 개요 DDL TABLE 을만들자 웹데이터베이스 TABLE 자료가저장되는공간 문자자료의경우 DB 생성시지정한 Character Set 대로저장 Table 생성시 Table 의구조를결정짓는열속성지정 열 (Clumn, Attribute) 은이름과자료형을갖는다. 자료형 : http://dev.mysql.cm/dc/refman/5.1/en/data-types.html TABLE

More information

untitled

untitled PMIS 발전전략 수립사례 A Case Study on the Development Strategy of Project Management Information System 류 원 희 * 이 현 수 ** 김 우 영 *** 유 정 호 **** Yoo, Won-Hee Lee, Hyun-Soo Kim, Wooyoung Yu, Jung-Ho 요 약 건설업무의 효율성

More information

결과보고서

결과보고서 오픈 소스 데이터베이스 시스템을 이용한 플래시 메모리 SSD 기반의 질의 최적화 기법 연구 A Study on Flash-based Query Optimizing in PostgreSQL 황다솜 1) ㆍ안미진 1) ㆍ이혜지 1) ㆍ김지민 2) ㆍ정세희 2) ㆍ이임경 3) ㆍ차시언 3) 성균관대학교 정보통신대학 1) ㆍ시흥매화고등학교 2) ㆍ용화여자고등학교 3)

More information

°í¼®ÁÖ Ãâ·Â

°í¼®ÁÖ Ãâ·Â Performance Optimization of SCTP in Wireless Internet Environments The existing works on Stream Control Transmission Protocol (SCTP) was focused on the fixed network environment. However, the number of

More information

윈도우시스템프로그래밍

윈도우시스템프로그래밍 데이터베이스및설계 MySQL 을위한 MFC 를사용한 ODBC 프로그래밍 2012.05.10. 오병우 컴퓨터공학과금오공과대학교 http://www.apmsetup.com 또는 http://www.mysql.com APM Setup 설치발표자료참조 Department of Computer Engineering 2 DB 에속한테이블보기 show tables; 에러발생

More information

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI:   NCS : * A Study on Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp.157-176 DOI: http://dx.doi.org/10.21024/pnuedi.28.3.201809.157 NCS : * A Study on the NCS Learning Module Problem Analysis and Effective

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 논문 10-35-03-03 한국통신학회논문지 '10-03 Vol. 35 No. 3 원활한 채널 변경을 지원하는 효율적인 IPTV 채널 관리 알고리즘 준회원 주 현 철*, 정회원 송 황 준* Effective IPTV Channel Control Algorithm Supporting Smooth Channel Zapping HyunChul Joo* Associate

More information

45-51 ¹Ú¼ø¸¸

45-51 ¹Ú¼ø¸¸ A Study on the Automation of Classification of Volume Reconstruction for CT Images S.M. Park 1, I.S. Hong 2, D.S. Kim 1, D.Y. Kim 1 1 Dept. of Biomedical Engineering, Yonsei University, 2 Dept. of Radiology,

More information

DIY 챗봇 - LangCon

DIY 챗봇 - LangCon without Chatbot Builder & Deep Learning bage79@gmail.com Chatbot Builder (=Dialogue Manager),. We need different chatbot builders for various chatbot services. Chatbot builders can t call some external

More information

KCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion

KCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion KCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion 요약 본연구에서는, 웹문서로부터특정상품에대한의견문장을분석하는오피니언마이닝 (Opinion

More information

빅데이터분산컴퓨팅-5-수정

빅데이터분산컴퓨팅-5-수정 Apache Hive 빅데이터분산컴퓨팅 박영택 Apache Hive 개요 Apache Hive 는 MapReduce 기반의 High-level abstraction HiveQL은 SQL-like 언어를사용 Hadoop 클러스터에서 MapReduce 잡을생성함 Facebook 에서데이터웨어하우스를위해개발되었음 현재는오픈소스인 Apache 프로젝트 Hive 유저를위한

More information

슬라이드 1

슬라이드 1 Tadpole for DB 1. 도구개요 2. 설치및실행 4. 활용예제 1. 도구개요 도구명 소개 Tadpole for DB Tools (sites.google.com/site/tadpolefordb/) 웹기반의데이터베이스를관리하는도구 Database 스키마및데이터관리 라이선스 LGPL (Lesser General Public License) 특징 주요기능

More information

Intra_DW_Ch4.PDF

Intra_DW_Ch4.PDF The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., - THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Jun.; 29(6), 457463. http://dx.doi.org/10.5515/kjkiees.2018.29.6.457 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) Sigma-Delta

More information

슬라이드 제목 없음

슬라이드 제목 없음 4.2 SQL 개요 SQL 개요 SQL은현재 DBMS 시장에서관계 DBMS가압도적인우위를차지하는데중요한요인의하나 SQL은 IBM 연구소에서 1974년에 System R이라는관계 DBMS 시제품을연구할때관계대수와관계해석을기반으로, 집단함수, 그룹화, 갱신연산등을추가하여개발된언어 1986년에 ANSI( 미국표준기구 ) 에서 SQL 표준을채택함으로써 SQL이널리사용되는데기여

More information

6.24-9년 6월

6.24-9년 6월 리눅스 환경에서Solid-State Disk 성능 최적화를 위한 디스크 입출력요구 변환 계층 김태웅 류준길 박찬익 Taewoong Kim Junkil Ryu Chanik Park 포항공과대학교 컴퓨터공학과 {ehoto, lancer, cipark}@postech.ac.kr 요약 SSD(Solid-State Disk)는 여러 개의 낸드 플래시 메모리들로 구성된

More information

@OneToOne(cascade = = "addr_id") private Addr addr; public Emp(String ename, Addr addr) { this.ename = ename; this.a

@OneToOne(cascade = = addr_id) private Addr addr; public Emp(String ename, Addr addr) { this.ename = ename; this.a 1 대 1 단방향, 주테이블에외래키실습 http://ojcedu.com, http://ojc.asia STS -> Spring Stater Project name : onetoone-1 SQL : JPA, MySQL 선택 http://ojc.asia/bbs/board.php?bo_table=lecspring&wr_id=524 ( 마리아 DB 설치는위 URL

More information

TITLE

TITLE CSED421 Database Systems Lab MySQL Basic Syntax SQL DML & DDL Data Manipulation Language SELECT UPDATE DELETE INSERT INTO Data Definition Language CREATE DATABASE ALTER DATABASE CREATE TABLE ALTER TABLE

More information

JUNIT 실습및발표

JUNIT 실습및발표 JUNIT 실습및발표 JUNIT 접속 www.junit.org DownLoad JUnit JavaDoc API Document 를참조 JUNIT 4.8.1 다운로드 설치파일 (jar 파일 ) 을다운로드 CLASSPATH 를설정 환경변수에서설정 실행할클래스에서 import JUnit 설치하기 테스트실행주석 @Test Test 를실행할 method 앞에붙임 expected

More information

Microsoft PowerPoint Python-DB

Microsoft PowerPoint Python-DB 순천향대학교컴퓨터공학과이상정 순천향대학교컴퓨터공학과 1 학습내용 데이터베이스 SQLite 데이터베이스 파이썬과데이터베이스연결 순천향대학교컴퓨터공학과 2 데이터베이스 (Database) 소개 데이터베이스 DBMS (DataBase Management System) 이라고도함 대용량의데이터를매우효율적으로처리하고저장하는기술 SQLite, 오라클, MySQL 등이있음

More information

09È«¼®¿µ 5~152s

09È«¼®¿µ5~152s Korean Journal of Remote Sensing, Vol.23, No.2, 2007, pp.45~52 Measurement of Backscattering Coefficients of Rice Canopy Using a Ground Polarimetric Scatterometer System Suk-Young Hong*, Jin-Young Hong**,

More information

Bind Peeking 한계에따른 Adaptive Cursor Sharing 등장 엑셈컨설팅본부 /DB 컨설팅팀김철환 Bind Peeking 의한계 SQL 이최초실행되면 3 단계의과정을거치게되는데 Parsing 단계를거쳐 Execute 하고 Fetch 의과정을통해데이터

Bind Peeking 한계에따른 Adaptive Cursor Sharing 등장 엑셈컨설팅본부 /DB 컨설팅팀김철환 Bind Peeking 의한계 SQL 이최초실행되면 3 단계의과정을거치게되는데 Parsing 단계를거쳐 Execute 하고 Fetch 의과정을통해데이터 Bind Peeking 한계에따른 Adaptive Cursor Sharing 등장 엑셈컨설팅본부 /DB 컨설팅팀김철환 Bind Peeking 의한계 SQL 이최초실행되면 3 단계의과정을거치게되는데 Parsing 단계를거쳐 Execute 하고 Fetch 의과정을통해데이터를사용자에게전송하게되며 Parsing 단계에서실행계획이생성된다. Bind 변수를사용하는 SQL

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2016 Jun.; 276), 504511. http://dx.doi.org/10.5515/kjkiees.2016.27.6.504 ISSN 1226-3133 Print)ISSN 2288-226X Online) Near-Field

More information

목차 BUG offline replicator 에서유효하지않은로그를읽을경우비정상종료할수있다... 3 BUG 각 partition 이서로다른 tablespace 를가지고, column type 이 CLOB 이며, 해당 table 을 truncate

목차 BUG offline replicator 에서유효하지않은로그를읽을경우비정상종료할수있다... 3 BUG 각 partition 이서로다른 tablespace 를가지고, column type 이 CLOB 이며, 해당 table 을 truncate ALTIBASE HDB 6.1.1.5.6 Patch Notes 목차 BUG-39240 offline replicator 에서유효하지않은로그를읽을경우비정상종료할수있다... 3 BUG-41443 각 partition 이서로다른 tablespace 를가지고, column type 이 CLOB 이며, 해당 table 을 truncate 한뒤, hash partition

More information

¼º¿øÁø Ãâ·Â-1

¼º¿øÁø Ãâ·Â-1 Bandwidth Efficiency Analysis for Cooperative Transmission Methods of Downlink Signals using Distributed Antennas In this paper, the performance of cooperative transmission methods for downlink transmission

More information

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a 조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형

More information

Result Cache 동작원리및활용방안 엑셈컨설팅본부 /DB 컨설팅팀김철환 개요 ORACLE DBMS 를사용하는시스템에서 QUERY 성능은무엇보다중요한요소중하나이며그 성능과직접적인관련이있는것이 I/O 이다. 많은건수를 ACCESS 해야만원하는결과값을얻을수있는 QUER

Result Cache 동작원리및활용방안 엑셈컨설팅본부 /DB 컨설팅팀김철환 개요 ORACLE DBMS 를사용하는시스템에서 QUERY 성능은무엇보다중요한요소중하나이며그 성능과직접적인관련이있는것이 I/O 이다. 많은건수를 ACCESS 해야만원하는결과값을얻을수있는 QUER Result Cache 동작원리및활용방안 엑셈컨설팅본부 /DB 컨설팅팀김철환 개요 ORACLE DBMS 를사용하는시스템에서 QUERY 성능은무엇보다중요한요소중하나이며그 성능과직접적인관련이있는것이 I/O 이다. 많은건수를 ACCESS 해야만원하는결과값을얻을수있는 QUERY 을실행하게된다면 BLOCK I/O 가많이발생하게된다. 이런이유로 QUERY 의성능은좋지못할것이다.

More information

Microsoft PowerPoint - ch10 - 이진트리, AVL 트리, 트리 응용 pm0600

Microsoft PowerPoint - ch10 - 이진트리, AVL 트리, 트리 응용 pm0600 균형이진탐색트리 -VL Tree delson, Velskii, Landis에의해 1962년에제안됨 VL trees are balanced n VL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at

More information

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: A Study on Organizi

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI:   A Study on Organizi Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp.441-460 DOI: http://dx.doi.org/10.21024/pnuedi.28.4.201812.441 A Study on Organizing Software Education of Special Education Curriculum

More information

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월 지능정보연구제 17 권제 4 호 2011 년 12 월 (pp.241~254) Support vector machines(svm),, CRM. SVM,,., SVM,,.,,. SVM, SVM. SVM.. * 2009() (NRF-2009-327- B00212). 지능정보연구제 17 권제 4 호 2011 년 12 월 김경재 안현철 지능정보연구제 17 권제 4 호

More information

thesis

thesis ( Design and Implementation of a Generalized Management Information Repository Service for Network and System Management ) ssp@nile nile.postech.ac..ac.kr DPE Lab. 1997 12 16 GMIRS GMIRS GMIRS prototype

More information

<C1A62038B0AD20B0ADC0C7B3EBC6AE2E687770>

<C1A62038B0AD20B0ADC0C7B3EBC6AE2E687770> 제 8강 SQL: 관계데이터베이스언어 강의목표 관계데이타베이스언어로서상용 DBMS에서가장널리사용되는 SQL의동작원리에관하여학습하고, 이를이용하여다양한질의문을작성하는방법을습득한다 기대효과 SQL의데이터정의기능을이해한다 SQL의데이터조작기능중질의기능을이해한다 SQL의데이터조작기능중데이터갱신기능을이해한다 SQL의데이터조작기능중뷰및인덱스관련기능을이해한다 SQL 의개요

More information

2017 년 6 월한국소프트웨어감정평가학회논문지제 13 권제 1 호 Abstract

2017 년 6 월한국소프트웨어감정평가학회논문지제 13 권제 1 호 Abstract 2017 년 6 월한국소프트웨어감정평가학회논문지제 13 권제 1 호 Abstract - 31 - 소스코드유사도측정도구의성능에관한비교연구 1. 서론 1) Revulytics, Top 20 Countries for Software Piracy and Licence Misuse (2017), March 21, 2017. www.revulytics.com/blog/top-20-countries-software

More information

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770> Journal of the Korea Institute of Information and Communication Engineering 한국정보통신학회논문지(J. Korea Inst. Inf. Commun. Eng.) Vol. 19, No. 2 : 258~264 Feb. 2015 ID3 알고리즘 기반의 귀납적 추론을 활용한 모바일 OS의 성공과 실패에 대한

More information

PowerPoint Presentation

PowerPoint Presentation Computer Science Suan Lee - Computer Science - 06 데이터베이스 1 06 데이터베이스 - Computer Science - 06 데이터베이스 2 목차 1. 데이터베이스의개요 2. 데이터모델 3. 관계형데이터베이스 4. SQL 5. 모바일데이터베이스 - Computer Science - 06 데이터베이스 3 데이터베이스의개념

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 CRM Fair 2004 Spring Copyright 2004 DaumSoft All rights reserved. INDEX Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved. Copyright 2004 DaumSoft All rights reserved.

More information

The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowo

The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowo The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowon Lee 2 * 1 Program of Software Convergence, Soongsil

More information

歯sql_tuning2

歯sql_tuning2 SQL Tuning (2) SQL SQL SQL Tuning ROW(1) ROW(2) ROW(n) update ROW(2) at time 1 & Uncommitted update ROW(2) at time 2 SQLDBA> @ UTLLOCKT WAITING_SESSION TYPE MODE_REQUESTED MODE_HELD LOCK_ID1

More information

#Ȳ¿ë¼®

#Ȳ¿ë¼® http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research

More information

목차 BUG DEQUEUE 의 WAIT TIME 이 1 초미만인경우, 설정한시간만큼대기하지않는문제가있습니다... 3 BUG [qp-select-pvo] group by 표현식에있는컬럼을참조하는집합연산이존재하지않으면결괏값오류가발생할수있습니다... 4

목차 BUG DEQUEUE 의 WAIT TIME 이 1 초미만인경우, 설정한시간만큼대기하지않는문제가있습니다... 3 BUG [qp-select-pvo] group by 표현식에있는컬럼을참조하는집합연산이존재하지않으면결괏값오류가발생할수있습니다... 4 ALTIBASE HDB 6.5.1.5.10 Patch Notes 목차 BUG-46183 DEQUEUE 의 WAIT TIME 이 1 초미만인경우, 설정한시간만큼대기하지않는문제가있습니다... 3 BUG-46249 [qp-select-pvo] group by 표현식에있는컬럼을참조하는집합연산이존재하지않으면결괏값오류가발생할수있습니다... 4 BUG-46266 [sm]

More information

다양한 예제로 쉽게 배우는 오라클 SQL 과 PL/SQL

다양한 예제로 쉽게 배우는 오라클 SQL 과 PL/SQL 다양한예제로쉽게배우는 오라클 SQL 과 PL/SQL 서진수저 9 장인덱스를배웁니다 1 1. 인덱스란무엇인가? 2 - ROWID ( 주소 ) 조회하기 SCOTT>SELECT ROWID, empno, ename 2 FROM emp 3 WHERE empno=7902 ; ROWID EMPNO ENAME --------------------------------- ----------

More information

Microsoft PowerPoint - ch09 - 연결형리스트, Stack, Queue와 응용 pm0100

Microsoft PowerPoint - ch09 - 연결형리스트, Stack, Queue와 응용 pm0100 2015-1 프로그래밍언어 9. 연결형리스트, Stack, Queue 2015 년 5 월 4 일 교수김영탁 영남대학교공과대학정보통신공학과 (Tel : +82-53-810-2497; Fax : +82-53-810-4742 http://antl.yu.ac.kr/; E-mail : ytkim@yu.ac.kr) 연결리스트 (Linked List) 연결리스트연산 Stack

More information

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1 : LabVIEW Control Design, Simulation, & System Identification LabVIEW Control Design Toolkit, Simulation Module, System Identification Toolkit 2 (RLC Spring-Mass-Damper) Control Design toolkit LabVIEW

More information

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

Software Requirrment Analysis를 위한 정보 검색 기술의 응용 EPG 정보 검색을 위한 예제 기반 자연어 대화 시스템 김석환 * 이청재 정상근 이근배 포항공과대학교 컴퓨터공학과 지능소프트웨어연구실 {megaup, lcj80, hugman, gblee}@postech.ac.kr An Example-Based Natural Language System for EPG Information Access Seokhwan Kim

More information

Microsoft PowerPoint - 10Àå.ppt

Microsoft PowerPoint - 10Àå.ppt 10 장. DB 서버구축및운영 DBMS 의개념과용어를익힌다. 간단한 SQL 문법을학습한다. MySQL 서버를설치 / 운영한다. 관련용어 데이터 : 자료 테이블 : 데이터를표형식으로표현 레코드 : 테이블의행 필드또는컬럼 : 테이블의열 필드명 : 각필드의이름 데이터타입 : 각필드에입력할값의형식 학번이름주소연락처 관련용어 DB : 테이블의집합 DBMS : DB 들을관리하는소프트웨어

More information

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A S

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI:   * A S Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp.461-487 DOI: http://dx.doi.org/10.21024/pnuedi.28.4.201812.461 * - 2008 2018 - A Study on the Change of Issues with Adolescent Problem

More information

6

6 六 6.1 裡 不 列 1. Converge Webpage Ranking Algorithms 數 數 兩 不 裡 利 PageRank 來 數 2. Fixed dataset 不 料 6.1 3. Personal website identification 率 2 來 兩 數 率 1. 數 力 10 論 力 論 力 1~5 論 力 數 2. 率 4 4 率 76 不 Recall 來

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Spider For MySQL 실전사용기 피망플러스유닛최윤묵 Spider For MySQL Data Sharding By Spider Storage Engine http://spiderformysql.com/ 성능 8 만 / 분 X 4 대 32 만 / 분 많은 DB 중에왜 spider 를? Source: 클라우드컴퓨팅구 선택의기로 Consistency RDBMS

More information

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선 Point Operation Histogram Modification 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 HISTOGRAM HISTOGRAM MODIFICATION DETERMINING THRESHOLD IN THRESHOLDING 2 HISTOGRAM A simple datum that gives the number of pixels that a

More information

Æ÷Àå82š

Æ÷Àå82š Yun, Ilsoo (E-mail : ilsooyun@ajou.ac.kr) Oh, Cheol (E-mail : cheolo@hanyang.ac.k) Ahn, Hyunkyung (E-mail : anhyunkyung@ajou.ac.kr) Kim, Kyunghyun (E-mail : kk6661@ajou.ac.kr) Han, Eum (E-mail : hano3106@ajou.ac.kr)

More information

강의 개요

강의 개요 정규화와 SELECT (II) 웹데이터베이스 학과 학생 과목 학과 지도교수 학과학번성명 수강과목 담당교수 A 김수정 A 0001 고길동 성질이론 김수정 B 허영만 A 0002 둘리 한식의멋 허영만 C 강풀 B 0003 희동이 심리학의이해 강풀 과목 _ 성적 학번 수강과목 성적 0001 성질이론 A 0001 한식의멋 C 0002 성질이론 A 0002 한식의멋

More information

..........(......).hwp

..........(......).hwp START START 질문을 통해 우선순위를 결정 의사결정자가 질문에 답함 모형데이터 입력 목표계획법 자료 목표계획법 모형에 의한 해의 도출과 득실/확률 분석 END 목표계획법 산출결과 결과를 의사 결정자에게 제공 의사결정자가 결과를 검토하여 만족여부를 대답 의사결정자에게 만족하는가? Yes END No 목표계획법 수정 자료 개선을 위한 선택의 여지가 있는지

More information

Frama-C/JESSIS 사용법 소개

Frama-C/JESSIS 사용법 소개 Frama-C 프로그램검증시스템소개 박종현 @ POSTECH PL Frama-C? C 프로그램대상정적분석도구 플러그인구조 JESSIE Wp Aorai Frama-C 커널 2 ROSAEC 2011 동계워크샵 @ 통영 JESSIE? Frama-C 연역검증플러그인 프로그램분석 검증조건추출 증명 Hoare 논리에기초한프로그램검증도구 사용법 $ frama-c jessie

More information

ETL_project_best_practice1.ppt

ETL_project_best_practice1.ppt ETL ETL Data,., Data Warehouse DataData Warehouse ETL tool/system: ETL, ETL Process Data Warehouse Platform Database, Access Method Data Source Data Operational Data Near Real-Time Data Modeling Refresh/Replication

More information

15_3oracle

15_3oracle Principal Consultant Corporate Management Team ( Oracle HRMS ) Agenda 1. Oracle Overview 2. HR Transformation 3. Oracle HRMS Initiatives 4. Oracle HRMS Model 5. Oracle HRMS System 6. Business Benefit 7.

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 MySQL - 명령어 1. 데이터베이스관련명령 2. 데이터베이스테이블관련명령 3. SQL 명령의일괄실행 4. 레코드관련명령 5. 데이터베이스백업및복원명령 1. 데이터베이스관련명령 데이터베이스접속명령 데이터베이스접속명령 mysql -u계정 -p비밀번호데이터베이스명 C: > mysql -ukdhong p1234 kdhong_db 데이터베이스생성명령 데이터베이스생성명령

More information

04김호걸(39~50)ok

04김호걸(39~50)ok Journal of Environmental Impact Assessment, Vol. 22, No. 1(2013) pp.39~50 Prediction of Landslides Occurrence Probability under Climate Change using MaxEnt Model Kim, Hogul* Lee, Dong-Kun** Mo, Yongwon*

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 무선 센서 네트워크 환경에서 링크 품질에 기반한 라우팅에 대한 효과적인 싱크홀 공격 탐지 기법 901 무선 센서 네트워크 환경에서 링크 품질에 기반한 라우팅에 대한 효과적인 싱크홀 공격 탐지 기법 (A Effective Sinkhole Attack Detection Mechanism for LQI based Routing in WSN) 최병구 조응준 (Byung

More information

ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE (Online Upgrade) ORANGE CONFIGURATION ADMIN O

ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE (Online Upgrade) ORANGE CONFIGURATION ADMIN O Orange for ORACLE V4.0 Installation Guide ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE...1 1....2 1.1...2 1.2...2 1.2.1...2 1.2.2 (Online Upgrade)...11 1.3 ORANGE CONFIGURATION ADMIN...12 1.3.1 Orange Configuration

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2015 Nov.; 26(11), 985991. http://dx.doi.org/10.5515/kjkiees.2015.26.11.985 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) Analysis

More information

목차 BUG 문법에맞지않는질의문수행시, 에러메시지에질의문의일부만보여주는문제를수정합니다... 3 BUG ROUND, TRUNC 함수에서 DATE 포맷 IW 를추가지원합니다... 5 BUG ROLLUP/CUBE 절을포함하는질의는 SUBQUE

목차 BUG 문법에맞지않는질의문수행시, 에러메시지에질의문의일부만보여주는문제를수정합니다... 3 BUG ROUND, TRUNC 함수에서 DATE 포맷 IW 를추가지원합니다... 5 BUG ROLLUP/CUBE 절을포함하는질의는 SUBQUE ALTIBASE HDB 6.3.1.10.1 Patch Notes 목차 BUG-45710 문법에맞지않는질의문수행시, 에러메시지에질의문의일부만보여주는문제를수정합니다... 3 BUG-45730 ROUND, TRUNC 함수에서 DATE 포맷 IW 를추가지원합니다... 5 BUG-45760 ROLLUP/CUBE 절을포함하는질의는 SUBQUERY REMOVAL 변환을수행하지않도록수정합니다....

More information

2 2000. 8. 31

2 2000. 8. 31 IT update 00 1 / 2000.8.30 IT update Information Technology 2 2000. 8. 31 C o n t e n t s 2000. 8. 31 3 4 2000. 8. 31 2000. 8. 31 5 6 2000. 8. 31 2000. 8. 31 7 8 2000. 8. 31 2000. 8. 31 9 1 0 2000. 8.

More information

자연언어처리

자연언어처리 제 7 장파싱 파싱의개요 파싱 (Parsing) 입력문장의구조를분석하는과정 문법 (grammar) 언어에서허용되는문장의구조를정의하는체계 파싱기법 (parsing techniques) 문장의구조를문법에따라분석하는과정 차트파싱 (Chart Parsing) 2 문장의구조와트리 문장 : John ate the apple. Tree Representation List

More information

5장 SQL 언어 Part II

5장 SQL 언어 Part II 5 장 SQL 언어 Part II 박창이 서울시립대학교통계학과 박창이 ( 서울시립대학교통계학과 ) 5 장 SQL 언어 Part II 1 / 26 데이터조작문 데이터검색 : SELECT 문데이터추가 : INSERT 문데이터수정 : UPDATE 문데이터삭제 : DELETE 문 박창이 ( 서울시립대학교통계학과 ) 5 장 SQL 언어 Part II 2 / 26 SELECT

More information

슬라이드 제목 없음

슬라이드 제목 없음 MS SQL Server 마이크로소프트사가윈도우운영체제를기반으로개발한관계 DBMS 모바일장치에서엔터프라이즈데이터시스템에이르는다양한플랫폼에서운영되는통합데이터관리및분석솔루션 2 MS SQL Server 개요 3.1 MS SQL Server 개요 클라이언트-서버모델을기반으로하는관계 DBMS 로서윈도우계열의운영체제에서만동작함 오라클관계 DBMS 보다가격이매우저렴한편이고,

More information

<C0CCBCBCBFB52DC1A4B4EBBFF82DBCAEBBE7B3EDB9AE2D313939392D382E687770>

<C0CCBCBCBFB52DC1A4B4EBBFF82DBCAEBBE7B3EDB9AE2D313939392D382E687770> i ii iii iv v vi 1 2 3 4 가상대학 시스템의 국내외 현황 조사 가상대학 플랫폼 개발 이상적인 가상대학시스템의 미래상 제안 5 웹-기반 가상대학 시스템 전통적인 교수 방법 시간/공간 제약을 극복한 학습동기 부여 교수의 일방적인 내용전달 교수와 학생간의 상호작용 동료 학생들 간의 상호작용 가상대학 운영 공지사항,강의록 자료실, 메모 질의응답,

More information