PowerPoint Template
|
|
- 동긴 강
- 7 years ago
- Views:
Transcription
1 빅데이터와분석알고리즘 정보화사회실천연합
2 목 차 01 Big Data 1.1 Big Data 1.2 Big Data Technology 1.3 Big Data 현황 1.4 Apache Project 02 Data 2.1 Data의특성 2.2 통계분석기법 2.3 마이닝분석기법 03 Algorithm 3.1 알고리즘의특성 3.2 알고리즘의분산처리 3.3 분석자료의범위선정 04 Data mining 4.1 Data Mining 4.2 Classification rules 4.3 Clustering Rules 4.4 Association Rules 4.5 Link Analysis Page 2
3 1.1 Big Data 1. Big Data Big Data Page 3
4 1.1 Big Data 1. Big Data Big Data 정보량 (Volume) 정보 변화속도 (Velocity) 빅데이터 (Big Data) 사람 가치 (Value) 새로운 가치 Value from New Data Set 효율적 가치 ROI Innovation 다양한 가치 Hidden Value 기술 다양성 (Variety) Page 4
5 1.1 Big Data 1. Big Data Big Data Technology Map Grid Graph Machine Learning Statistics Analysis Data Mining Text Mining Info Graphics Visualization Lexicon Network? Cloud Distributed Parallel Computing In- Memory BigData Technology Collect information Search Search engine NoSQL SQL Parser NLP Pre-Procesing Normalisation Page 5
6 1.1 Big Data 1. Big Data Big Data Process Flow 수집전처리 / 저장분석가시화 Web, SNS, system Log, Sensor Data, 음성, 이미지, 영상문서 / 논문내용등 검색엔진 RSS Reader Crawling Open API Sensor Aquisition RFID Reader 분산 / 병렬전처리 NLP 문서 Fillter Parsing 분산 / 병렬저장비정형 Data 정형 Data 군집분석 분산 / 병렬데이터분석 메타정보 Streaming, no SQL, SQL 분류 / 예측분석 연관성분석 분산병렬처리프레임워크 사회관계분석 분석결과 Page 6
7 1.1 Big Data 1. Big Data Big Data 를위한역할과요구기술 도메인전문가데이터분석가 S/W 엔지니어 System 엔지니어 추천로직기획, 광고플랫폼 Financial & Stock Market Health Care BioInfomatics Power Management 데이터수집 마이닝알고리즘 & ML 구현 데이터처리엔진구현 데이터저장소최적화 분산알고리즘구현 통계 & 데이터탐색 데이터마이닝 & 기계학습 데이터분석 리포팅 데이터시각화 운영체계최적화 컴퓨팅 H/W, N/W 최적화 Visualization Infograph IR & RecSys OLAP Tools SAS,SPSS,R SQL RDBMS ETL Script Language Pig, Hive MapReduce Log Aggregator NoSQL Hadoop Linux X86 Network Data Scientist 엔지니어 Page 7
8 1.2 Big Data 의발전방향 Big Data 의발전방향 Real-time Analytics Advanced & Predictive Analytics Advanced Data Visualization 출처 : TDWI Research 4thQ 2011 on Big Data Analytics Page 8
9 1.3 Big Data 현황 1. Big Data 분석정보규모 지역별분석정보규모 출처 : KDnuggets Home» Polls» Algorithms for Data Mining (Nov 2011) Page 9
10 1.3 Big Data 현황 1. Big Data Big Data 의활용 Page 10
11 1.3 Big Data 현황 1. Big Data Algorithm Page 11
12 1.4 Apache Project 1. Big Data Apache Project 데이터마이닝 (Mahout) 분산 Coordinator (ZooKeeper) WorkFlow 관리 (Oozzie) 컬럼화된 NoSQL 저장 (Hbase) 언어처리 (Pig) 데이터처리 (SQL) (Hive) 분산프로그래밍프레임워크 (MapReduce) 메타데이터관리 (HCatalog) ( 데이블 & 스키마관리 ) Serialization (Avro) 분산파일시스템 (HDFS) 비정형데이터수집 (chukwa, Flume, Scribe) 정형데이터수집 (Sqoop, hiho) Page 12
13 1.4.1 Apache Hadoop 1.4 Apache Project Apache Frameworks and more Data storage (HDFS) Runs on commodity hardware (usually Linux) Horizontally scalable Processing (MapReduce) Parallelized (scalable) processing Fault Tolerant Other Tools / Frameworks Monitoring & Alerting Tools & Libraries Data Access Data Access HBase, Hive, Pig, Mahout Tools MapReduce API Hadoop Core - HDFS Hue, Sqoop Monitoring Greenplum, Cloudera Page 13
14 1.4.1 Apache Hadoop 1.4 Apache Project Hadoop distribution? HDFS Storage Redundant (3 copies) For large files large blocks 64 or 128 MB / block Can scale to 1000s of nodes MapReduce API Batch (Job) processing Distributed and Localized to clusters (Map) Auto-Parallelizable for huge amounts of data Fault-tolerant (auto retries) Adds high availability and more Other Libraries Pig Hive HBase Others Page 14
15 1.4.1 Apache Hadoop 1.4 Apache Project Cluster HDFS (Physical) Storage One Name Node Contains web site to view cluster information V2 Hadoop uses multiple Name Nodes for HA Many Data Nodes 3 copies of each node by default Name Node Secondary Name Node Work with data in HDFS Data Node 1 Data Node 2 Data Node 3 Using common Linux shell commands Block size is 64 or 128 MB Page 15
16 1.4.1 Apache Hadoop 1.4 Apache Project MapReduce Job Logical View Image from - Page 16
17 1.4.1 Apache Hadoop 1.4 Apache Project Setting up Hadoop Development Hadoop Binaries Data Storage MapReduce Other Libraries & Tools Local install Local Linux Windows File System HDFS Pseudodistributed (singlenode) Local Vendor Tools Cloudera s Demo VM Need Virtualization software, i.e. VMware, etc Cloud AWS Azure Others Cloud Libraries Cloud AWS Microsoft (Beta) Others Page 17
18 1.4.1 Apache Hadoop 1.4 Apache Project Common Data Sources Text Files i.e. log files Semi-structured Unstructured Statistical information piles of numbers, often scientific sources Geospatial information i.e. cell phone activity Clickstream advertising, website traversals Page 18
19 1.4.1 Apache Hadoop 1.4 Apache Project Hadoop Distributed File System Hadoop Distributed File System (HDFS ) is the primary storage system used by Hadoop applications. HDFS creates multiple replicas of data blocks and distributes them on compute nodes throughout a cluster to enable reliable, extremely rapid computations. Single Namespace for entire cluster Data Coherency Write-once-read-many access model Client can only append to existing files Files are broken up into blocks Typically 128 MB block size Each block replicated on multiple DataNodes Intelligent Client Client can find location of blocks Client accesses data directly from DataNode Page 19
20 1.4.1 Apache Hadoop 1.4 Apache Project Building Blocks of Hadoop A fully configured cluster, running Hadoop means running a set of daemons, or resident programs, on the different servers in your network. These daemons have specific roles; some exist only on one server, some exist across multiple servers. Hadoop Server Roles Clients The daemons include NameNode Secondary NameNode DataNode JobTracker TaskTracker Distributed Data Analytics Map Reduce Job Tracker Data Node & Task Tracker Data Node & Task Tracker Data Node & Task Tracker Data Node & Task Tracker Name Node Distributed Data Storage HDFS Secondary Name Node Data Node & Task Tracker Data Node & Task Tracker slaves masters Page 20
21 1.4.1 Apache Hadoop 1.4 Apache Project NameNode The most vital of the Hadoop daemons the NameNode.Hadoop employs a master/slave architecture for both distributed storage and distributed computation. The distributed storage system is called the Hadoop File System, or HDFS. The NameNode is the master of HDFS that directs the slave DataNode daemons to perform the low-level I/O tasks. The NameNode is the bookkeeper of HDFS; it keeps track of how your files are broken down into file blocks, which nodes store those blocks, and the overall health of the distributed filesystem. The function of the NameNode is memory and I/O intensive. As such, the server hosting the NameNode typically doesn t store any user data or perform any computations for a MapReduce program to lower the workload on the machine Page 21
22 1.4.1 Apache Hadoop 1.4 Apache Project Secondary NameNode The Secondary NameNode (SNN) is an assistant daemon for monitoring the state of the cluster HDFS. Like the NameNode, each cluster has one SNN, and it typically resides on its own machine as well. No other DataNode or TaskTracker daemons run on the same server. The SNN differs from the NameNode in that this process doesn t receive or record any real-time changes to HDFS. Instead, it communicates with the NameNode to take snapshots of the HDFS metadata at intervals defined by the cluster configuration. As mentioned earlier, the NameNode is a single point of failure for a Hadoop cluster, and the SNN snapshots help minimize the downtime and loss of data Page 22
23 1.4.1 Apache Hadoop 1.4 Apache Project DataNode DataNode Each slave machine in your cluster will host a DataNode daemon to perform the grunt work of the distributed filesystem reading and writing HDFS blocks to actual files on the local filesystem. When you want to read or write a HDFS file, the file is broken into blocks and the NameNode will tell your client which DataNode each block resides in. Your client communicates directly with the DataNode daemons to process the local files corresponding to the blocks. Furthermore, a DataNode may communicate with other DataNodes to replicate its data blocks for redundancy. Page 23
24 1.4.1 Apache Hadoop 1.4 Apache Project Trackers JobTracker The JobTracker daemon is the liaison between your application and Hadoop. Once you submit your code to your cluster, the JobTracker determines the execution plan by determining which files to process, assigns nodes to different tasks, and monitors all tasks as they re running. Should a task fail, the JobTracker will automatically relaunch the task, possibly on a different node, up to a predefined limit of retries. There is only one JobTracker daemon per Hadoop cluster. It s typically run on a server as a master node of the cluster. TaskTracker As with the storage daemons, the computing daemons also follow a master/slave architecture: the JobTracker is the master overseeing the overall execution of a MapReduce job and the TaskTrackers manage the execution of individual tasks on each slave node. Each TaskTracker is responsible for executing the individual tasks that the JobTracker assigns. Although there is a single TaskTracker per slave node, each TaskTracker can spawn multiple JVMs to handle many map or reduce tasks in parallel. One responsibility of the TaskTracker is to constantly communicate with the JobTracker. If the JobTracker fails to receive a heartbeat from a TaskTracker within a specified amount of time, it will assume the TaskTracker has crashed and will resubmit the corresponding tasks to other nodes in the cluster. Page 24
25 1.4.1 Apache Hadoop 1.4 Apache Project MapReduce Thinking MapReduce programs are designed to compute large volumes of data in a parallel fashion. This requires dividing the workload across a large number of machines. MapReduce programs transform lists of input data elements into lists of output data elements. A MapReduce program will do this twice, using two different list processing idioms: map, and reduce. A MapReduce program processes data by manipulating (key/value) pairs in the general form map: (K1,V1) list(k2,v2) reduce: (K2,list(V2)) list(k3,v3) Page 25
26 1.4.1 Apache Hadoop 1.4 Apache Project Input Input files : This is where the data for a MapReduce task is initially stored. While this does not need to be the case, the input files typically reside in HDFS. The format of these files is arbitrary; while line-based log files can be used, we could also use a binary format, multi-line input records, or something else entirely. It is typical for these input files to be very large -- tens of gigabytes or more. InputFormat : How these input files are split up and read is defined by the InputFormat. An InputFormat is a class that provides the following functionality: Selects the files or other objects that should be used for input Defines the InputSplits that break a file into tasks Provides a factory for RecordReader objects that read the file Several InputFormats are provided with Hadoop. An abstract type is called FileInputFormat; all InputFormats that operate on files inherit functionality and properties from this class. When starting a Hadoop job, FileInputFormat is provided with a path containing files to read. The FileInputFormat will read all files in this directory. It then divides these files into one or more InputSplits each. You can choose which InputFormat to apply to your input files for a job by calling the setinputformat() method of the JobConf object that defines the job. A table of standard InputFormats is given below. InputFormat Description Key Value TextInputFormat Default format; reads lines of text files The byte offset of the line The line contents KeyValueInputFormat Parses lines into key, val pairs Everything up to the first tab character The remainder of the line SequenceFileInputFormat A Hadoop-specific high-performance binary format user-defined user-defined Page 26
27 1.4.1 Apache Hadoop 1.4 Apache Project Input Splits: Input Contd. An InputSplit describes a unit of work that comprises a single map task in a MapReduce program. A MapReduce program applied to a data set, collectively referred to as a Job, is made up of several (possibly several hundred) tasks. Map tasks may involve reading a whole file; they often involve reading only part of a file. By default, the FileInputFormat and its descendants break a file up into 64 MB chunks (the same size as blocks in HDFS). You can control this value by setting the mapred.min.split.size parameter in hadoopsite.xml, or by overriding the parameter in thejobconf object used to submit a particular MapReduce job By processing a file in chunks, we allow several map tasks to operate on a single file in parallel. If the file is very large, this can improve performance significantly through parallelism. Even more importantly, since the various blocks that make up the file may be spread across several different nodes in the cluster, it allows tasks to be scheduled on each of these different nodes; the individual blocks are thus all processed locally, instead of needing to be transferred from one node to another. Of course, while log files can be processed in this piece-wise fashion, some file formats are not amenable to chunked processing. By writing a custom InputFormat, you can control how the file is broken up (or is not broken up) into splits. The InputFormat defines the list of tasks that make up the mapping phase; each task corresponds to a single input split. The tasks are then assigned to the nodes in the system based on where the input file chunks are physically resident. An individual node may have several dozen tasks assigned to it. The node will begin working on the tasks, attempting to perform as many in parallel as it can. The on-node parallelism is controlled by the mapred.tasktracker.map.tasks.maximum parameter. RecordReader: The InputSplit has defined a slice of work, but does not describe how to access it. TheRecordReader class actually loads the data from its source and converts it into (key, value) pairs suitable for reading by the Mapper. The RecordReader instance is defined by the InputFormat. The default InputFormat, TextInputFormat, provides a LineRecordReader, which treats each line of the input file as a new value. The key associated with each line is its byte offset in the file. The RecordReader is invoke repeatedly on the input until the entire InputSplit has been consumed. Each invocation of the RecordReader leads to another call to the map() method of the Mapper. Page 27
28 1.4.1 Apache Hadoop 1.4 Apache Project Mapper The Mapper performs the interesting user-defined work of the first phase of the MapReduce program. Given a key and a value, the map() method emits (key, value) pair(s) which are forwarded to the Reducers. A new instance of Mapper is instantiated in a separate Java process for each map task (InputSplit) that makes up part of the total job input. The individual mappers are intentionally not provided with a mechanism to communicate with one another in any way. This allows the reliability of each map task to be governed solely by the reliability of the local machine. The map() method receives two parameters in addition to the key and the value: The Context object has a method named write() which will forward a (key, value) pair to the reduce phase of the job. The Mapper interface is responsible for the data processing step. Its single method is to process an individual (key/value) pair: public void map(k1 key,v1 value, Context context) throws IOException Page 28
29 1.4.1 Apache Hadoop 1.4 Apache Project In Between Phases Partition & Shuffle: After the first map tasks have completed, the nodes may still be performing several more map tasks each. But they also begin exchanging the intermediate outputs from the map tasks to where they are required by the reducers. This process of moving map outputs to the reducers is known as shuffling. A different subset of the intermediate key space is assigned to each reduce node; these subsets (known as "partitions") are the inputs to the reduce tasks. Each map task may emit (key, value) pairs to any partition; all values for the same key are always reduced together regardless of which mapper is its origin. Therefore, the map nodes must all agree on where to send the different pieces of the intermediate data. The Partitioner class determines which partition a given (key, value) pair will go to. The default partitioner computes a hash value for the key and assigns the partition based on this result. Sort: Each reduce task is responsible for reducing the values associated with several intermediate keys. The set of intermediate keys on a single node is automatically sorted by Hadoop before they are presented to the Reducer. Page 29
30 1.4.1 Apache Hadoop 1.4 Apache Project Reducer A Reducer instance is created for each reduce task. This is an instance of user-provided code that performs the second important phase of job-specific work. For each key in the partition assigned to a Reducer, the Reducer's reduce() method is called once. This receives a key as well as an iterator over all the values associated with the key. The values associated with a key are returned by the iterator in an undefined order. The Reducer also receives the Context object; that is used to write the output in the same manner as in the map() method. void reduce(k2 key, Iterable <V2> values, Context context) throws IOException Page 30
31 1.4.1 Apache Hadoop 1.4 Apache Project Combiner Combiner: The pipeline showed earlier omits a processing step which can be used for optimizing bandwidth usage by your MapReduce job. Called the Combiner, this pass runs after the Mapper and before the Reducer. Usage of the Combiner is optional. If this pass is suitable for your job, instances of the Combiner class are run on every node that has run map tasks. The Combiner will receive as input all data emitted by the Mapper instances on a given node. The output from the Combiner is then sent to the Reducers, instead of the output from the Mappers. The Combiner is a "mini-reduce" process which operates only on data generated by one machine. Example Word count is a prime example for where a Combiner is useful. The Word Count program emits a (word, 1) pair for every instance of every word it sees. So if the same document contains the word "cat" 3 times, the pair ("cat", 1) is emitted three times; all of these are then sent to the Reducer. By using a Combiner, these can be condensed into a single ("cat", 3) pair to be sent to the Reducer. Now each node only sends a single value to the reducer for each word -- drastically reducing the total bandwidth required for the shuffle process, and speeding up the job. The best part of all is that we do not need to write any additional code to take advantage of this! If a reduce function is both commutative and associative, then it can be used as a Combiner as well. You can enable combining in the word count program by adding the following line to the driver: conf.setcombinerclass(reduce.class); The Combiner should be an instance of the Reducer interface. If your Reducer itself cannot be used directly as a Combiner because of commutativity or associativity, you might still be able to write a third class to use as a Combiner for your job Page 31
32 1.4.1 Apache Hadoop 1.4 Apache Project Output OutputFormat : The (key, value) pairs provided to this OutputCollector are then written to output files. The way they are written is governed by the OutputFormat. The OutputFormat functions much like the InputFormat class described earlier. The instances of OutputFormat provided by Hadoop write to files on the local disk or in HDFS; they all inherit from a common FileOutputFormat. Each Reducer writes a separate file in a common output directory. These files will typically be named part-nnnnn, where nnnnn is the partition id associated with the reduce task. The output directory is set by the FileOutputFormat.setOutputPath() method. You can control which particular OutputFormat is used by calling the setoutputformat() method of the JobConf object that defines your MapReduce job. A table of provided OutputFormats is given below. OutputFormat: TextOutputFormat SequenceFileOutputFormat NullOutputFormat Description Default; writes lines in "key \t value" form Writes binary files suitable for reading into subsequent MapReduce jobs Disregards its inputs Hadoop provides some OutputFormat instances to write to files. The basic (default) instance is TextOutputFormat, which writes (key, value) pairs on individual lines of a text file. This can be easily re-read by a later MapReduce task using the KeyValueInputFormat class, and is also human-readable. A better intermediate format for use between MapReduce jobs is the SequenceFileOutputFormat which rapidly serializes arbitrary data types to the file; the corresponding SequenceFileInputFormat will deserialize the file into the same types and presents the data to the next Mapper in the same manner as it was emitted by the previous Reducer. The NullOutputFormat generates no output files and disregards any (key, value) pairs passed to it by the OutputCollector. This is useful if you are explicitly writing your own output files in the reduce() method, and do not want additional empty output files generated by the Hadoop framework. RecordWriter: Much like how the InputFormat actually reads individual records through the RecordReader implementation, the OutputFormat class is a factory for RecordWriter objects; these are used to write the individual records to the files as directed by the OutputFormat. The output files written by the Reducers are then left in HDFS for your use, either by another MapReduce job, a separate program, for for human inspection. Page 32
33 1.4.1 Apache Hadoop 1.4 Apache Project Hadoop Mapreduce Hadoop Mapreduce processes & data flow Page 33
34 1.4.1 Apache Hadoop 1.4 Apache Project Job Execution Hadoop MapRed is based on a pull model where multiple TaskTrackers poll the JobTracker for tasks (either map task or reduce task). The job execution starts when the client program uploading three files: job.xml (the job config including map, combine, reduce function and input/output data path, etc.), job.split (specifies how many splits and range based on dividing files into ~16 64 MB size), job.jar (the actual Mapper and Reducer implementation classes) to the HDFS location (specified by the mapred.system.dir property in the hadoop-default.conf file). Then the client program notifies the JobTracker about the Job submission. The JobTracker returns a Job id to the client program and starts allocating map tasks to the idle TaskTrackers when they poll for tasks. Each TaskTracker has a defined number of "task slots" based on the capacity of the machine. There are heartbeat protocol allows the JobTracker to know how many free slots from each TaskTracker. The JobTracker will determine appropriate jobs for the TaskTrackers based on how busy thay are, their network proximity to the data sources (preferring same node, then same rack, then same network switch). The assigned TaskTrackers will fork a MapTask (separate JVM process) to execute the map phase processing. The MapTask extracts the input data from the splits by using the RecordReader and InputFormat and it invokes the user provided map function which emits a number of key/value pair in the memory buffer. Page 34
35 1.4.1 Apache Hadoop 1.4 Apache Project Job Execution contd. When the buffer is full, the output collector will spill the memory buffer into disk. For optimizing the network bandwidth, an optional combine function can be invoked to partially reduce values of each key. Afterwards, the partition function is invoked on each key to calculate its reducer node index. The memory buffer is eventually flushed into 2 files, the first index file contains an offset pointer of each partition. The second data file contains all records sorted by partition and then by key. When the map task has finished executing all input records, it start the commit process, it first flush the in-memory buffer (even it is not full) to the index + data file pair. Then a merge sort for all index + data file pairs will be performed to create a single index + data file pair. The index + data file pair will then be splitted into are R local directories, one for each partition. After all the MapTask completes (all splits are done), the TaskTracker will notify the JobTracker which keeps track of the overall progress of job. JobTracker also provide a web interface for viewing the job status. When the JobTracker notices that some map tasks are completed, it will start allocating reduce tasks to subsequent polling TaskTrackers (there are R TaskTrackers will be allocated for reduce task). These allocated TaskTrackers remotely download the region files (according to the assigned reducer index) from the completed map phase nodes and concatenate (merge sort) them into a single file. Whenever more map tasks are completed afterwards, JobTracker will notify these allocated TaskTrackers to download more region files (merge with previous file). In this manner, downloading region files are interleaved with the map task progress. The reduce phase is not started at this moment yet. Eventually all the map tasks are completed. The JobTracker then notifies all the allocated TaskTrackers to proceed to the reduce phase. Each allocated TaskTracker will fork a ReduceTask (separate JVM) to read the downloaded file (which is already sorted by key) and invoke the reduce function, which collects the key/aggregatedvalue into the final output file (one per reducer node). Note that each reduce task (and map task as well) is single-threaded. And this thread will invoke the reduce(key, values) function in assending (or descending) order of the keys assigned to this reduce task. This provides an interesting property that all entries written by the reduce() function is sorted in increasing order. The output of each reducer is written to a temp output file in HDFS. When the reducer finishes processing all keys, the temp output file will be renamed atomically to its final output filename. Page 35
36 1.4.1 Apache Hadoop 1.4 Apache Project MapReduce Example - WordCount Image from: Page 36
37 1.4.2 Mahout Algorithms 1.4 Apache Project Classification Logistic Regression (SGD) Bayesian Support Vector Machines (SVM) (open) Perceptron and Winnow (open) Neural Network (open) Random Forests (integrated) Restricted Boltzmann Machines (open) Online Passive Aggressive (integrated) Boosting (awaiting patch commit) Hidden Markov Models (HMM) Training is done in Map-Reduce Page 37
38 1.4.2 Mahout Algorithms 1.4 Apache Project Clustering Canopy Clustering (integrated) K-Means Clustering (integrated) Fuzzy K-Means (integrated) Expectation Maximization (EM) Mean Shift Clustering (integrated) Hierarchical Clustering Dirichlet Process Clustering (integrated) Latent Dirichlet Allocation (integrated) Spectral Clustering (integrated) Minhash Clustering (integrated) Top Down Clustering (integrated) Page 38
39 1.4.2 Mahout Algorithms 1.4 Apache Project Pattern Mining Parallel FP Growth Algorithm Also known as Frequent Itemset mining use Map-Reduce Regression Locally Weighted Linear Regression (open) Dimension reduction Principal Components Analysis (PCA) (open) Independent Component Analysis (open) Gaussian Discriminative Analysis (GDA) (open) Page 39
40 2.1 Data 의특성 2 Data 자료의형식 정형데이터 고정된필드로정의된정보 - 데이터베이스, 스프레드시트등 반정형데이터 일정한구조를갖고있는정보로서메타정보, 스키마등을포함하는정보 - XML, HTML 등 비정형데이터 고정된필드로정의되어있지않은정보 - 문서파일, 게시글, 뉴스기사, SNS 글, 이미지, 동영상, 음성정보등 자료의종류 양적자료 ( 숫자형 ) (Quantitative Data) 숫자로표현 1) 이산형자료 (Discrete Data) : 셀수있는자료 2) 연속형자료 (Continuous Data) : 셀수없는자료 질적자료 ( 문자형 ) (Qualitative Data) 특성이범주형으로만구분되고수치적으로는측정이되지않는자료 Page 40
41 2.1 Data 의특성 2 Data 자료의구분 구분 정의 질적 ( 범주형 ) 자료 양적자료 명목척도서열 ( 순위 ) 척도등간척도비율척도 어떤대상의내용이나특성을구분하기위한기호 순서의의미가포함되어있는척도, 숫자의크기로상대적비교가가능 순위와더불어, 측정치간의차이에대해서도의미가있는척도 구간척도의특성외에 ' 절대원점 ' 의개념이포함, 일반적으로통계기법에적용되는척도 범주 O O O O 순위 X O O O 등간격 X X O O 절대영점 X X X O 비교방법 확인, 분류 순위비교 간격비교 크기비교 산술적계산 = = = + - = + - * / 평균의측정최빈값중앙값산술평균 기하평균모든통계 예 성별 ( 남자 = '1', 여자 = '2 ) 계절, 상품유형, 결혼여부, 선수의등번호, 지역등 선호도 ( 좋다 = 1, 보통 = 2, 싫다 = 3 ) 석차, 학력등 지능지수 (IQ), 온도, 사회지표등 TV 시청률, 투표율, 무게, 연령, 생산원가, 신장, 출석률등 Page 41
42 2.2 통계분석기법 2 Data 변수 ( 척도 ) 별통계분석기법 등비 종속변수 명목 명. 서 독립변수 등비 명. 서 독립변수 등비 항목수? 1개 2이상 관계 관계 설명예측 판별 설명예측 목적 그룹화 차원수 3 이상 2 개 로지스틱회귀분석 T-test ANOVA 상관분석회귀분석 범주형자료분석 판별분석 군집분석 Page 42
43 2.2 마이닝분석기법 2 Data 데이터유형별분석기법 구분연속형종속변수이산형종속변수종속변수가없는경우 연속형독립변수 (Continuous Independent Variable) 이산형독립변수 (Discrete Independent Variable) 범주형독립변수 (Categorical Independent Variable) 예측 (Forecasting) 분류 (Classification) 예측 (Forecasting) 분류 (Classification) 분류 (Classification) 예측 (Forecasting) 분류 (Classification) 예측 (Forecasting) 분류 (Classification) 분류 (Classification) 군집화 (Clustering) 군집화 (Clustering) 연관성 (Association) 연속성 (Sequencing) 관계성 (Link Analysis) 예측 (Forecasting) 대용량데이터집합내의패턴을기반으로미래를예측 ( 예 : 수요예측 ) 분류 (Classification) 일정한집단에대한특정정의를통해분류및구분을추론 ( 예 : 이탈한고객 ) 군집화 (Clustering) 구체적인특성을공유하는자료들을분류. 미리정의된특성에대한정보를가지지않는다는점에서분류와다름 ( 예 : 유사행동집단의구분 ) 연관성 (Association) 동시에발생한사건간의상호연관성을탐색 ( 예 : 장바구니의상품들의관계규명 ) 연속성 (Sequencing) 연관규칙에시간 (time) 의개념을첨가하여시계열 (time series) 에따른패턴들의상호연관성을탐색 ( 예 : 금융상품사용에대한반복방문 ) 관계성 (Link Analysis) 대용량의정보값들간의관계를규명 ( 예 : SNS 에서관계분석 ) Page 43
44 3.1 알고리즘의특성 3 Algorithm 알고리즘성능특성 표기법형설명 O(1) 상수형자료의량이증가하더라도같은시간을보장한다. O(log n) 로그형 n 이증가함에따라서 log n 만큼시간이증가. O(n) 선형 n 증가시, 시간도비례해서증가. 동일한처리를하는경우. O(n log n) 선형로그형 n 이 2 배로늘어나면시간은 2 배보다약간증가. O(n^2) 평방형이중루프 O(n^3) 입방형삼중루프 O(2^n) 지수형입력자료에따라시간이급격히증가 O(n!) 펙토리얼형 big-oh 표기법에의한알고리즘의수행시간비교 O(1) < O(log n) < O(n) < O(n log n) < O(n²) < O(n³) < O(2ⁿ) < O(n!) 수학적정의 두개의함수 f(n) 과 g(n) 이주어졌을때모든 n >= n₁ 에대하여 f(n) <= c g(n) 을만족하는상수 c 와 n₁ 이존재하면 f(n) = O(g(n)) 정의를이용하여위 T(n) 을증명하면다음과같다.( 여기서 n₁ 과 c 는여러경우수가나올수있다 ) n₁= 2, c = 3 일때, n >= 2 에대하여 n² + n + 1 <= 3n² 을만족. Page 44
45 3.1 알고리즘의특성 3 Algorithm 실행시간및메모리증가유형 (ncr) (N 2 ) (N log N) 메모리크기 (N) Apriori Algorithm ( 예 ) 항목수 조합수 조합의결과값 1,000 2 (log N) 499,500 1, ,417,124, , ,368,173,298,991,500 데이터크기또는항목값의크기 n 1, ,115,080,524,699,400,000 1, ,409,560,461,970,000,000,000 (K) Page 45
46 3.1 알고리즘의특성 3 Algorithm 알고리즘성능비교사례 Page 46
47 3.2 알고리즘의분산처리 3 Algorithm Hadoop Mapreduce Hadoop Mapreduce processes & data flow Page 47
48 3.2 알고리즘의분산처리 3 Algorithm MapReduce Example - WordCount Image from: Page 48
49 3.2 알고리즘의분산처리 3 Algorithm 사례 : Variance 구하기 ( 단일처리 ) σ 2 = x μ 2 n = x2 2μx+μ 2 n = x2 n 2μ x n + μ2 = x2 n n nμ2 2μμ + = x2 n n μ2 σ 2 을결과값으로분산처리를하면취합시 σ 2 의값이왜곡됨 σ 2 = x2 n μ2 = x2 n x n σ2 을구하기위한인자값만분산처리로수행 2 분산처리에서구한인자값을취합시아래식에대입하여연산 x 2 n μ x*x= x*x= 1, x*x= x*x= 2, x*x= 1, x*x= x*x= 2, x*x= 2,116 A C 분산 sum= n= 8 sumsq= 11,082 sumsq/n (sum/n)=u u*u =A-C 분산값 = u= , , Page 49
50 3.2 알고리즘의분산처리 3 Algorithm 사례 : Variance 구하기 ( 분산처리 ) 분할자료 A sum= 분산값 = 분할자료 A x*x= x*x= 1, x*x= x*x= 2,025 sum= n= 4 sumsq= 4,403 분할자료 B sum= 분산값 = task A " 분산값 "= task B " 분산값 "= sum(task A + task B)= 취합값 (sum / 2) = 분할자료 B x*x= 1, x*x= x*x= 2, x*x= 2,116 sum= n= 4 sumsq= 6,679 sum= n= 8 sumsq= 11,082 A C 분산 sumsq/n (sum/n)=u u*u =A-C 1, , Page 50
51 3.3 분석자료의범위선정 3 Algorithm 분석시데이터의구간 Time Y-2 Y-1 Y+0 Y+1 Y+2 전수자료분석 Y+0 상반기 Y+0 하반기 Y+1 상반기 전수자료분석 Y+0 상반기 Y+0 하반기 Y+1 상반기 기분석중간결과정보 기분석중간결과정보 기분석중간결과정보 1Y 자료분석 Y+0 상반기 Y+0 하반기 Y+1 상반기 분석대상정보량의증가는실행시간및 Memory 용량과밀접한관계를가짐. Page 51
52 4.1 Data Mining 4 Data Mining 알고리즘발전과정 Top 10 Data Mining Algorithms 1.C4.5 2.k-Means 3.SVM(Support Vector Machines) 4.Apriori 5.EM(Expectation Maximization) 6.PageRank 7.AdaBoost 8.kNN 9.Naive Bayes 10.CART 출처 : IEEE ICDM December 2006 Page 52
53 4.1 Data Mining 4 Data Mining 목적에따른 DataMining 접근방법 목적분석유형설명모델종류 예측 Predictive Modeling 분류규칙 Classification 과거의데이터로부터정보의특성을찾아내어분류모형을만들어새로운정보의결과값을예측하는기법 목표마케팅및고객신용평가모형등에활용 회귀분석, 의사결정나무신경망분석, 유전자알고리즘 데이터군집 Clustering 데이터의유사특성을분석하여몇개의그룹으로분할하는기법 ( 분류와유사하나분석대상데이터에결과값이없음 ) 판촉활동이나이벤트대상선정에활용 Clustering 설명 Descriptive Modeling 유사성 연관규칙 Association 순차규칙 Sequence 데이터에존재하는항목간의관계를찾아내는기법 제품이나서비스의교차판매 (Closs Selling), 매장진열, 사기적발 (Fraud Detection) 등에활용 연관규칙에시간개념이적용된기법 목표마케팅 (Target Marketing), 개인화서비스등에활용 패턴분석 순차패턴분석 연결분석 Link Analysis 데이터의값들간의관계를파악하는기법 사회관계망분석, 감성분석등에활용 Social Network Analysis Relational Content Analysis Page 53
54 4.2 Classification rules 4 Data Mining 분류규칙 (classification rules) Decision trees : 각변수에따라수직적분류 ID3 (Iterative Dichotomiser 3) : 명목형예측변수이지분리 C4.5 (successor of ID3) : 명목형예측변수다지분리 CART (Classification And Regression Tree) : 지니지수 (Gini index: 범주형목표변수에적용 ) 또는분산의감소량 (variance reduction: 연속형목표변수에적용 ) 등을이용하여분리 CHAID (CHi-squared Automatic Interaction Detector) Neural networks : 각변수에가중치를사용, 분류율을최대 ( 오류율최소 ) 로하는것을기반 multi-layer perceptron Genetic algorithms Linear classifiers Logistic regression : 독립변수로명목척도 ( 성별, 인종등 ) 사용 Naive Bayes classifier : 베이즈정리 (Bayes' theorem) 를기반의단순한확률분류 ( 스펨메일 ) Support vector machines : 분류율은최대, 분류를구분하는기준 ( 여백 ) 을최대화 Kernel estimation k-nearest neighbor(knn) : 기계학습의방법중에가장간단한방법중하나 Bayesian networks Page 54
55 4.2.1 Decision-tree 4.2 Classification rules Decision-tree Classification C 4.5 알고리즘의엔트로피지수 (Entropy index) 는다항분포에서우도비검정통계량을사용하는것으로, 이지수가가장작은예측변수와그때의최적분리에의해마디를생성 Numeric Categorical Tid Age Car Type Class 0 23 Family High 1 17 Sports High 2 43 Sports High 3 68 Family Low 4 32 Truck Low 5 20 Family High 55 Page 55
56 4.2.2 Neural Network Classification Neural Network Page 56
57 4.2.3 Kernel Estimation 4.2 Classification rules Kernel Estimation Page 57
58 4.3 Clustering Rules 4 Data Mining 군집화규칙 (clustering rules) Connectivity based methods Hierarchical clustering : Linkage clustering CURE(Clustering Using REpresentatives) : 비구형모형 Chameleon : 동적인모델을이용한군집 CURE와 DBSCAN보다좋은성능으로임의적인형태의군집, 다차원시 O(n²) 모델 Centroid-based methods k-means( 평균값 ), k-medoids( 중앙값 ), k-modes( 최빈값 ) Distribution-based methods EM(Expectation maximization) Density-based methods OPTICS by using an R-tree index : 군집구조식별을위한순서화 DBSCAN(Density-Based Spatial Clustering of Applications with Noise) : 밀도기반 DENCLUE(DENsity-based CLUstEring) : 밀도분포함수이용 Grid-based methods STING(STatistical INformation Grid) : 통계정보격자이용 WaveCluster : 웨이블릿변환을이용 CLIQUE(Clustering In QUEst) : 고차원공간군집화 Page 58
59 4.3.1 Connectivity based 4.3 Clustering rules Connectivity based Page 59
60 4.3.2 Centroid based 4.3 Clustering rules Centroid based Page 60
61 4.3.3 Distribution based 4.3 Clustering rules Distribution based Page 61
62 4.3.4 Density based 4.3 Clustering rules Density based Page 62
63 4.4 Association Rules 4 Data Mining 연관규칙 (Association Rules) Apriori Algorithm Apriori Algorithm AprioriTid Algorithm, AprioriHybrid Algorithm Eclat Algorithm (depth-first search algorithm) RElim Algorithm (Recursive Elimination Algorithm) Pattern-Growth Algorithm FP-Growth Algorithm (Frequent Pattern Growth Algorithm) 순차패턴 (sequential patterns) Apriori Algorithm AprioriAll, AprioriSome DynamicSome GSP(Generalized Sequential Patterns) Pattern-Growth Algorithm FreeSpan(Frequent Pattern-Projected Sequential PAtterN mining) PrefixSpan(Prefix-projected Sequential PAterrN mining) Page 63
64 4.4.1 Apriori Algorithm 4.4 Association Rules Apriori Algorithm 항목수 조합수 조합의결과값 1, ,500 1, ,417,124,750 1, ,368,173,298,991,500 1, ,115,080,524,699,400,000 1, ,409,560,461,970,000,000,000 Page 64
65 4.4.2 FP-GROWTH Algorithm 4.4 Association Rules PARALLEL FP-GROWTH : Mahout Figure 2: The overall PFP framework, showing Five stages of computation. Page 65
66 4.4.2 FP-GROWTH Algorithm 4.4 Association Rules PARALLEL FP-GROWTH : Mahout Page 66
67 4.4.2 FP-GROWTH Algorithm 4.4 Association Rules PARALLEL FP-GROWTH : Mahout Page 67
68 4.5 Link Analysis 4 Data Mining 비정형데이터분석 콘텐트분석 (Content Analysis) 디지털환경에서생성되는정형및비정형을포함하여여러수준의콘텐트를비즈니스인텔리전스와비즈니스전략의가치를높이기위한하나의방법 보다향상된의사결정을위한 Trend 및 Pattern을발견하는것 텍스트분석 (Text Analytics) 비정형데이터로부터의미있는정보를추출하기위하여언어적혹은통계적기술자연어처리등방법을통해분석에활용될수있는형태의데이터로변환 실시간분석 (Real-time Analytics) 분석에필요한모든데이터를활용하여사용자가분석을수행하고하는시점에빠르고적시에지식을제공해줄수있는분석기법 결과의정확도및신뢰도보다는사용자에게분석결과를적시에제공하는것에주안점을가짐 웹마이닝 (Web Mining) 소셜마이닝 (Social Mining) 현실마이닝 (Reality Mining) 인터넷상에서수집된정보를데이터마이닝방법으로분석하는기법 소셜미디어의글과사용자간관계를수집하여소비자의성향과패턴등을분석함으로써판매및홍보에이용, 여론변화나사회적흐름을파악 사람들의행동패턴을예측하기위해서사회적행동과관련된정보를수집하여분석하는기법으로현실생활에서발생하는정보를기반으로인간관계나행동추론 Page 68
69 4.5 Link Analysis 4 Data Mining Content Analysis 의활용 Purpose Element Question Use Make inferences about the antecedents of communications Describe & make inferences about the characteristics of communications Make inferences about the consequences of communications Source Who Answer question of disputed authorship Encoding process Channel Message Recipient Decoding process Why How What To whom With what effect Secure political & military intelligence Analyse traits of individuals Infer cultural aspects & change Provide legal & evaluative evidence Analyse techniques of persuasion Analyse style Describe trends in communication content Relate known characteristics of sources to messages they produce Compare communication content to standards Relate known characteristics of audiences to messages produced for them Describe patterns of communication Measure readability Analyse the flow of information Assess responses to communications 출처 : Ole Hoisti, Duke University Page 69
70 4.5 Link Analysis 4 Data Mining 관계분석 (Link Analysis) Social Network Analysis 및 Relational Content Analysis 사회구조를노드 (node) 와이들노드를연결하는링크로구성되는연결망 (network) 으로도식, 이들간의상호작용을계량화해주는분석기법 자연어처리 (Natural Language Processing) 형태소분석 구문분석 Algorithm 그래프이론 (Graph Theory) 행렬 /vector/matrix ANOVA 등 가시화 (Visualization) 적용영역 생물학 : 전염경로의분쇄 ( 감염자, 건강인 = 노드, 감염성접촉 = 링크 ) 비즈니스 : 아마존도서구입안내서비스 ( 구매자 / 책 = 노드, 거래행위 = 링크 ) 도시계획 : 도시계획시도로의설계 ( 도시 = 노드, 길 = 링크 ) 정치 : 테러조직붕괴 ( 테러리스트 = 노드, 접선 = 링크 ) 컴퓨터 : 인터넷 ( 컴퓨터, 사람 = 노드, 통신선 = 링크 ) 사회학 : 한국재벌가혼맥 ( 재벌가가족들 = 노드, 결혼 = 링크 ) 경영학 : 지식경영활성화 ( 개인지식 = 노드, 지식공유 = 노드 ) Page 70
71 4.5.1 Natural Language Processing 4.5 Link Analysis Natural Language Processing 자연어처리란 인간의언어를기계가이해하고생성할수있도록하기위한연구 자연언어처리시스템의구성도 입력문장형태소분석기구문분석기 문법 사전 생성사전 / 생성문법 각종지식기반 (Knowledge-Base) 의미분석기 출력문장 문장생성기 담화 (discourse) 분석기 Page 71
72 4.5.1 Natural Language Processing 4.5 Link Analysis 어절, 단어, 형태소 어절 : 띄어쓰기의단위 두단어로된어절 : 체언 ( 혹은용언및부사 ) + 조사 한단어로된어절 : 체언, 용언, 수식언, 감탄사 형태소 : 뜻을가진가장작은말의단위 자립성의유무에따라 : 자립형태소 : 체언, 수식언, 감탄사 의존형태소 : 조사, 어간, 어미, 접사 의미, 기능에따라 : 실질형태소 : 체언, 용언의어근, 수식언, 감탄사 형식형태소 : 조사, 어미, 접사 단어 : 자립할수있는말이나자립형태소와쉽게분리되는말 홀로자립하는말 : 체언, 수식언, 감탄사 자립형태소와쉽게분리되는말 : 조사 의존형태소끼리어울려서자립하는말 : 용언 Page 72
73 4.5.1 Natural Language Processing 4.5 Link Analysis Grammars and Parsing 문법 (Grammar) : 문장의구조적성질을규칙으로표현한것 구문분석기 (Parser) : 문장의구조를문법을이용하여찾아내는 process 문장의구문구조는 Tree 를이룬다. 즉, 몇개의형태소들이모여서구문요소 (phrase) 를이루고, 그구문요소들간의결합구조를 Tree 형태로써구문구조를이루게된다. S NP VP N NP V ART N John ate the apple Page 73
74 4.5.1 Natural Language Processing 4.5 Link Analysis 형태소분석 대기업의불공정거래로벤처나중소기업이성장하지못하고국가경제에악순환을불러오고있다. ( 관훈토론 2011 년 3 월 22 일 ) NNG 일반명사 NNP 고유명사 NNB 의존명사 NP 대명사 NR 수사 VV 동사 VA 형용사 VX 보조용언 VCP 긍정지정사 VCN 부정지정사 MM 관형사 MAG 일반부사 MAJ 접속부사 IC 감탄사 JKS 주격조사 JKC 보격조사 JKG 관형격조사 JKO 목적격조사 JKB 부사격조사 JKV 호격조사 JKQ 인용격조사 JX 보조사 JC 접속조사 *) 세종계획품사 EP EF EC ETN ETM XPN XSN XSV XSA XR SF SP SS SE 선어말어미 종결어미 연결어미 명사형전성어미 관형형전성어미 체언접두사 명사파생접미사 동사파생접미사 형용사파생접미사 어근 마침표, 물음표, 느낌표 쉼표, 가운뎃점, 콜론, 빗금 따옴표, 괄호표, 줄표 줄임표 SO 붙임표 ( 물결, 숨김, 빠짐 ) SL SH SW NF NV SN NA 외국어 한자 기타기호 ( 논리수학기호, 화폐기호 ) 등 ) 명사추정범주 용언추정범주 숫자 분석불능범주 Page 74
75 4.5.1 Natural Language Processing 4.5 Link Analysis 구문분석 대기업의불공정거래로벤처나중소기업이성장하지못하고국가경제에악순환을불러오고있다. ( 관훈토론 2011 년 3 월 22 일 ) P. q:. U 있다 W: 있 E: 다 _ 불러오고 V: 불러오 E: 고 O 악순환을 N: 악순환 J: 을 B 국가경제에 N: 국가경제 J: 에 _ 못하고 J: 못하 E: 고 _ 성장하지 V: 성장하 E: 지 S 중소기업이 N: 중소기업 J: 이 벤처나 N: 벤처 J: 이나 B 거래로 N: 거래 J: 으로 N 불공정 N: 불공정 G 대기업의 N: 대기업 J: 의 Page 75
76 4.5.2 Graph Theory 4.5 Link Analysis Graph Theory Node 와 Link Node : 사람, 생물, 사물, 개념 Link : 작용 ( 일방, 쌍방 ), 관계 ( 우호적, 비우호적 ), 의사소통, 판매와구매등 행렬대수 ( 벡터 (vector) 와행렬 (matrix) scalar : 하나의값으로이루어진데이터. Ex) Likert 3, 여성, 토익 849 점 vector : 하나의배열로이루어진데이터. Ex) x={x 1, x 2, x 3, } matrix : 여러값들을직사각형모양의 2 차원으로배열한데이터. Ex) m( 행 =row) X n( 열 =column). m=n ( 정방행렬 =diagonal 존재 ) 행렬연산기법 : 행렬간가감승제, 행렬간상관관계연산등 Mode of Matrix 1-mode network: 동일벡터간의상호작용 1~n 까지학습자간이메일교환네트워크 / 콘텐츠간연결네트워크 2-mode network: 이질벡터간의상호작용 학습자와콘텐츠등이질벡터간상호작용 Page 76
77 4.5.2 Graph Theory 4.5 Link Analysis 주요측정값 (measures) 노드 (Node) 연결중심도 (degree centrality) 각 node가갖고있는 link의개수 거리중심도 (closeness centrality) 한 node와다른모든 node간의평균적인최단경로거리 매개중심도 (between ness centrality) 한 node 가다른모든 node들상호간의경로사이에서타인또는하위그룹들간의의사소통을어느정도원활하게연결시켜주는가를정도 기타 power, effects, eigenvector, status 등 링크 (Link) 응집도 (density/centralization) 존재할수있는가능한총 link의숫자대비실현된 link 숫자의비율 결속도 (cohension) 네트워크내모든 node들이접근하기위해필요한링크의총합계, 즉경로거리 (path distance) 측지선최단평균거리 (geodesic distance) 모든 node간의최단경로거리 (cf. 거리중심도 ) 하위집단 (component, clique 등 ) 네트워크내존재하는하위집단규명 구조적유사성 (core-periphery, block model 등 ) 두개의네트워크가서로구조적으로유사한정도 Page 77
78 4.5.2 Graph Theory 4.5 Link Analysis Graph Theory ( 예 ) 매개중심도 (between-ness centrality) 연결중심도 Degree centrality Page 78
79 4.5.2 Graph Theory 4.5 Link Analysis Relational Content Analysis Page 79
80 4.5.2 Graph Theory 4.5 Link Analysis Relational Content Analysis 대기업의불공정거래로벤처나중소기업이성장하지못하고국가경제에악순환을불러오고있다. ( 관훈토론 2011 년 3 월 22 일 ) Page 80
81 Page 81
김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More information이보고서는 2010 년한국언론진흥재단의언론진흥기금을지원받아수행한것입니다. 보고서의내용은한국언론진흥재단의공식견해가아닌연구자의연구결과임을밝힙니다. 목 차 요약문 ⅳ Ⅰ. 서론 1 5 6 7 7 11 13 14 14 16 18 21 29 40-1 - 47 47 48 66 68 69 70 70 71 72 72 73 74-2 - < 표 > 목차 표 1 대한매일신보보급부수
More informationPage 2 of 5 아니다 means to not be, and is therefore the opposite of 이다. While English simply turns words like to be or to exist negative by adding not,
Page 1 of 5 Learn Korean Ep. 4: To be and To exist Of course to be and to exist are different verbs, but they re often confused by beginning students when learning Korean. In English we sometimes use the
More information0125_ 워크샵 발표자료_완성.key
WordPress is a free and open-source content management system (CMS) based on PHP and MySQL. WordPress is installed on a web server, which either is part of an Internet hosting service or is a network host
More informationPage 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh
Page 1 of 6 Learn Korean Ep. 13: Whether (or not) and If Let s go over how to say Whether and If. An example in English would be I don t know whether he ll be there, or I don t know if he ll be there.
More informationexample code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for
2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon
More information김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월
지능정보연구제 17 권제 4 호 2011 년 12 월 (pp.241~254) Support vector machines(svm),, CRM. SVM,,., SVM,,.,,. SVM, SVM. SVM.. * 2009() (NRF-2009-327- B00212). 지능정보연구제 17 권제 4 호 2011 년 12 월 김경재 안현철 지능정보연구제 17 권제 4 호
More informationIntra_DW_Ch4.PDF
The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology
More informationstep 1-1
Written by Dr. In Ku Kim-Marshall STEP BY STEP Korean 1 through 15 Action Verbs Table of Contents Unit 1 The Korean Alphabet, hangeul Unit 2 Korean Sentences with 15 Action Verbs Introduction Review Exercises
More information` Companies need to play various roles as the network of supply chain gradually expands. Companies are required to form a supply chain with outsourcing or partnerships since a company can not
More informationPowerPoint 프레젠테이션
Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING
More information지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월
지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support
More informationCD-RW_Advanced.PDF
HP CD-Writer Program User Guide - - Ver. 2.0 HP CD-RW Adaptec Easy CD Creator Copier, Direct CD. HP CD-RW,. Easy CD Creator 3.5C, Direct CD 3.0., HP. HP CD-RW TEAM ( 02-3270-0803 ) < > 1. CD...3 CD...5
More information- 2 -
- 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - - 27 - - 28 - - 29 - - 30 -
More information#Ȳ¿ë¼®
http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research
More information11¹Ú´ö±Ô
A Review on Promotion of Storytelling Local Cultures - 265 - 2-266 - 3-267 - 4-268 - 5-269 - 6 7-270 - 7-271 - 8-272 - 9-273 - 10-274 - 11-275 - 12-276 - 13-277 - 14-278 - 15-279 - 16 7-280 - 17-281 -
More informationPCServerMgmt7
Web Windows NT/2000 Server DP&NM Lab 1 Contents 2 Windows NT Service Provider Management Application Web UI 3 . PC,, Client/Server Network 4 (1),,, PC Mainframe PC Backbone Server TCP/IP DCS PLC Network
More information빅데이터_DAY key
Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020
More informationOracle Apps Day_SEM
Senior Consultant Application Sales Consulting Oracle Korea - 1. S = (P + R) x E S= P= R= E= Source : Strategy Execution, By Daniel M. Beall 2001 1. Strategy Formulation Sound Flawed Missed Opportunity
More informationAPOGEE Insight_KR_Base_3P11
Technical Specification Sheet Document No. 149-332P25 September, 2010 Insight 3.11 Base Workstation 그림 1. Insight Base 메인메뉴 Insight Base Insight Insight Base, Insight Base Insight Base Insight Windows
More information04-다시_고속철도61~80p
Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and
More informationMicrosoft PowerPoint - 알고리즘_5주차_1차시.pptx
Basic Idea of External Sorting run 1 run 2 run 3 run 4 run 5 run 6 750 records 750 records 750 records 750 records 750 records 750 records run 1 run 2 run 3 1500 records 1500 records 1500 records run 1
More informationuntitled
Logic and Computer Design Fundamentals Chapter 4 Combinational Functions and Circuits Functions of a single variable Can be used on inputs to functional blocks to implement other than block s intended
More information휠세미나3 ver0.4
andromeda@sparcs:/$ ls -al dev/sda* brw-rw---- 1 root disk 8, 0 2014-06-09 18:43 dev/sda brw-rw---- 1 root disk 8, 1 2014-06-09 18:43 dev/sda1 brw-rw---- 1 root disk 8, 2 2014-06-09 18:43 dev/sda2 andromeda@sparcs:/$
More informationOutput file
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 An Application for Calculation and Visualization of Narrative Relevance of Films Using Keyword Tags Choi Jin-Won (KAIST) Film making
More informationecorp-프로젝트제안서작성실무(양식3)
(BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing
More informationProblem New Case RETRIEVE Learned Case Retrieved Cases New Case RETAIN Tested/ Repaired Case Case-Base REVISE Solved Case REUSE Aamodt, A. and Plaza, E. (1994). Case-based reasoning; Foundational
More information6주차.key
6, Process concept A program in execution Program code PCB (process control block) Program counter, registers, etc. Stack Heap Data section => global variable Process in memory Process state New Running
More informationOpen Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤
Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 (byounggon.kim@opence.org) 빅데이터분석및서비스플랫폼 모바일 Browser 인포메이션카탈로그 Search 인포메이션유형 보안등급 생성주기 형식
More information- iii - - i - - ii - - iii - 국문요약 종합병원남자간호사가지각하는조직공정성 사회정체성과 조직시민행동과의관계 - iv - - v - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - α α α α - 15 - α α α α α α
More information<31325FB1E8B0E6BCBA2E687770>
88 / 한국전산유체공학회지 제15권, 제1호, pp.88-94, 2010. 3 관내 유동 해석을 위한 웹기반 자바 프로그램 개발 김 경 성, 1 박 종 천 *2 DEVELOPMENT OF WEB-BASED JAVA PROGRAM FOR NUMERICAL ANALYSIS OF PIPE FLOW K.S. Kim 1 and J.C. Park *2 In general,
More information강의10
Computer Programming gdb and awk 12 th Lecture 김현철컴퓨터공학부서울대학교 순서 C Compiler and Linker 보충 Static vs Shared Libraries ( 계속 ) gdb awk Q&A Shared vs Static Libraries ( 계속 ) Advantage of Using Libraries Reduced
More informationSocial Network
Social Network Service, Social Network Service Social Network Social Network Service from Digital Marketing Internet Media : SNS Market report A social network service is a social software specially focused
More information본문01
Ⅱ 논술 지도의 방법과 실제 2. 읽기에서 논술까지 의 개발 배경 읽기에서 논술까지 자료집 개발의 본래 목적은 초 중 고교 학교 평가에서 서술형 평가 비중이 2005 학년도 30%, 2006학년도 40%, 2007학년도 50%로 확대 되고, 2008학년도부터 대학 입시에서 논술 비중이 커지면서 논술 교육은 학교가 책임진다. 는 풍토 조성으로 공교육의 신뢰성과
More information슬라이드 1
Data-driven Industry Reinvention All Things Data Con 2016, Opening speech SKT 종합기술원 최진성원장 Big Data Landscape Expansion Big Data Tech/Biz 진화방향 SK Telecom Big Data Activities Lesson Learned and Other Topics
More information°í¼®ÁÖ Ãâ·Â
Performance Optimization of SCTP in Wireless Internet Environments The existing works on Stream Control Transmission Protocol (SCTP) was focused on the fixed network environment. However, the number of
More informationsolution map_....
SOLUTION BROCHURE RELIABLE STORAGE SOLUTIONS ETERNUS FOR RELIABILITY AND AVAILABILITY PROTECT YOUR DATA AND SUPPORT BUSINESS FLEXIBILITY WITH FUJITSU STORAGE SOLUTIONS kr.fujitsu.com INDEX 1. Storage System
More informationMicrosoft PowerPoint - AC3.pptx
Chapter 3 Block Diagrams and Signal Flow Graphs Automatic Control Systems, 9th Edition Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois 1 Introduction In this chapter,
More informationK7VT2_QIG_v3
1......... 2 3..\ 4 5 [R] : Enter Raid setup utility 6 Press[A]keytocreateRAID RAID Type: JBOD RAID 0 RAID 1: 2 7 " RAID 0 Auto Create Manual Create: 2 RAID 0 Block Size: 16K 32K
More information슬라이드 1
/ 유닉스시스템개요 / 파일 / 프로세스 01 File Descriptor file file descriptor file type unix 에서의파일은단지바이트들의나열임 operating system 은파일에어떤포맷도부과하지않음 파일의내용은바이트단위로주소를줄수있음 file descriptor 는 0 이나양수임 file 은 open 이나 creat 로 file
More information서론 34 2
34 2 Journal of the Korean Society of Health Information and Health Statistics Volume 34, Number 2, 2009, pp. 165 176 165 진은희 A Study on Health related Action Rates of Dietary Guidelines and Pattern of
More informationsna-node-ties
Node Centrality in Social Networks Nov. 2015 Youn-Hee Han http://link.koreatech.ac.kr Importance of Nodes ² Question: which nodes are important among a large number of connected nodes? Centrality analysis
More informationMicrosoft PowerPoint - ch03ysk2012.ppt [호환 모드]
전자회로 Ch3 iode Models and Circuits 김영석 충북대학교전자정보대학 2012.3.1 Email: kimys@cbu.ac.kr k Ch3-1 Ch3 iode Models and Circuits 3.1 Ideal iode 3.2 PN Junction as a iode 3.4 Large Signal and Small-Signal Operation
More information<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>
327 Journal of The Korea Institute of Information Security & Cryptology ISSN 1598-3986(Print) VOL.24, NO.2, Apr. 2014 ISSN 2288-2715(Online) http://dx.doi.org/10.13089/jkiisc.2014.24.2.327 개인정보 DB 암호화
More informationFMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2
FMX FMX 20062 () wwwexellencom sales@exellencom () 1 FMX 1 11 5M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX D E (one
More informationHDFS 맵리듀스
맵리듀스 하둡실행 HDFS 맵리듀스 HDFS 작동방식 FileInputFormat subclass 를이용 Hadoop 은자동으로 HDFS 내의파일경로로부터데이터를입력 블록지역성을최대한활용하는방식 작업을클러스터에배분한다. JAVA 기반 HDFS1 hello.txt 라는이름의파일을생성 메시지를기록한 기록된파일읽어 화면에출력 해당파일이이미존재하는경우삭제한후작업 1:
More informationSomething that can be seen, touched or otherwise sensed
Something that can be seen, touched or otherwise sensed Things about an object Weight Height Material Things an object does Pen writes Book stores words Water have Fresh water Rivers Oceans have
More information09권오설_ok.hwp
(JBE Vol. 19, No. 5, September 2014) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September 2014) http://dx.doi.org/10.5909/jbe.2014.19.5.656 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) Reduction
More information6자료집최종(6.8))
Chapter 1 05 Chapter 2 51 Chapter 3 99 Chapter 4 151 Chapter 1 Chapter 6 7 Chapter 8 9 Chapter 10 11 Chapter 12 13 Chapter 14 15 Chapter 16 17 Chapter 18 Chapter 19 Chapter 20 21 Chapter 22 23 Chapter
More informationETL_project_best_practice1.ppt
ETL ETL Data,., Data Warehouse DataData Warehouse ETL tool/system: ETL, ETL Process Data Warehouse Platform Database, Access Method Data Source Data Operational Data Near Real-Time Data Modeling Refresh/Replication
More informationVoice Portal using Oracle 9i AS Wireless
Voice Portal Platform using Oracle9iAS Wireless 20020829 Oracle Technology Day 1 Contents Introduction Voice Portal Voice Web Voice XML Voice Portal Platform using Oracle9iAS Wireless Voice Portal Video
More information#중등독해1-1단원(8~35)학
Life Unit 1 Unit 2 Unit 3 Unit 4 Food Pets Camping Travel Unit 1 Food Before You Read Pre-reading Questions 1. Do you know what you should or shouldn t do at a traditional Chinese dinner? 2. Do you think
More informationuntitled
Push... 2 Push... 4 Push... 5 Push... 13 Push... 15 1 FORCS Co., LTD A Leader of Enterprise e-business Solution Push (Daemon ), Push Push Observer. Push., Observer. Session. Thread Thread. Observer ID.
More informationDE1-SoC Board
실습 1 개발환경 DE1-SoC Board Design Tools - Installation Download & Install Quartus Prime Lite Edition http://www.altera.com/ Quartus Prime (includes Nios II EDS) Nios II Embedded Design Suite (EDS) is automatically
More informationVol.259 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M
2018.01 Vol.259 C O N T E N T S 02 06 28 61 69 99 104 120 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2018.1 3 4 2018.1 1) 2) 6 2018.1 3) 4) 7 5) 6) 7) 8) 8 2018.1 9 10 2018.1 11 2003.08 2005.08
More informationDW 개요.PDF
Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.
More information4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1
: LabVIEW Control Design, Simulation, & System Identification LabVIEW Control Design Toolkit, Simulation Module, System Identification Toolkit 2 (RLC Spring-Mass-Damper) Control Design toolkit LabVIEW
More information<BFA9BAD02DB0A1BBF3B1A4B0ED28C0CCBCF6B9FC2920B3BBC1F62E706466>
001 002 003 004 005 006 008 009 010 011 2010 013 I II III 014 IV V 2010 015 016 017 018 I. 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 III. 041 042 III. 043
More informationVOL.76.2008/2 Technical SmartPlant Materials - Document Management SmartPlant Materials에서 기본적인 Document를 관리하고자 할 때 필요한 세팅, 파일 업로드 방법 그리고 Path Type인 Ph
인터그래프코리아(주)뉴스레터 통권 제76회 비매품 News Letters Information Systems for the plant Lifecycle Proccess Power & Marine Intergraph 2008 Contents Intergraph 2008 SmartPlant Materials Customer Status 인터그래프(주) 파트너사
More information디지털포렌식학회 논문양식
ISSN : 1976-5304 http://www.kdfs.or.kr Virtual Online Game(VOG) 환경에서의 디지털 증거수집 방법 연구 이 흥 복, 정 관 모, 김 선 영 * 대전지방경찰청 Evidence Collection Process According to the Way VOG Configuration Heung-Bok Lee, Kwan-Mo
More information정보기술응용학회 발표
, hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management
More informationORANGE FOR ORACLE V4.0 INSTALLATION GUIDE (Online Upgrade) ORANGE CONFIGURATION ADMIN O
Orange for ORACLE V4.0 Installation Guide ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE...1 1....2 1.1...2 1.2...2 1.2.1...2 1.2.2 (Online Upgrade)...11 1.3 ORANGE CONFIGURATION ADMIN...12 1.3.1 Orange Configuration
More information하나님의 선한 손의 도우심 이세상에서 가장 큰 축복은 하나님이 나와 함께 하시는 것입니다. 그 이 유는 하나님이 모든 축복의 근원이시기 때문입니다. 에스라서에 보면 하나님의 선한 손의 도우심이 함께 했던 사람의 이야기 가 나와 있는데 에스라 7장은 거듭해서 그 비결을
새벽이슬 2 0 1 3 a u g u s t 내가 이스라엘에게 이슬과 같으리니 그가 백합화같이 피 겠고 레바논 백향목같이 뿌리가 박힐것이라. Vol 5 Number 3 호세아 14:5 하나님의 선한 손의 도우심 이세상에서 가장 큰 축복은 하나님이 나와 함께 하시는 것입니다. 그 이 유는 하나님이 모든 축복의 근원이시기 때문입니다. 에스라서에 보면 하나님의 선한
More informationSchoolNet튜토리얼.PDF
Interoperability :,, Reusability: : Manageability : Accessibility :, LMS Durability : (Specifications), AICC (Aviation Industry CBT Committee) : 1988, /, LMS IMS : 1997EduCom NLII,,,,, ARIADNE (Alliance
More information¹Ìµå¹Ì3Â÷Àμâ
MIDME LOGISTICS Trusted Solutions for 02 CEO MESSAGE MIDME LOGISTICS CO., LTD. 01 Ceo Message We, MIDME LOGISTICS CO., LTD. has established to create aduance logistics service. Try to give confidence to
More information歯CRM개괄_허순영.PDF
CRM 2000. 8. KAIST CRM CRM CRM CRM :,, KAIST : 50%-60%, 20% 60%-80%. AMR Research 10.. CRM. 5. Harvard Business review 60%, 13%. Michaelson & Associates KAIST CRM? ( ),,, -,,, CRM needs,,, dynamically
More informationManufacturing6
σ6 Six Sigma, it makes Better & Competitive - - 200138 : KOREA SiGMA MANAGEMENT C G Page 2 Function Method Measurement ( / Input Input : Man / Machine Man Machine Machine Man / Measurement Man Measurement
More informationvm-웨어-앞부속
VMware vsphere 4 This document was created using the official VMware icon and diagram library. Copyright 2009 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright
More information<32382DC3BBB0A2C0E5BED6C0DA2E687770>
논문접수일 : 2014.12.20 심사일 : 2015.01.06 게재확정일 : 2015.01.27 청각 장애자들을 위한 보급형 휴대폰 액세서리 디자인 프로토타입 개발 Development Prototype of Low-end Mobile Phone Accessory Design for Hearing-impaired Person 주저자 : 윤수인 서경대학교 예술대학
More information大学4年生の正社員内定要因に関する実証分析
190 2016 JEL Classification Number J24, I21, J20 Key Words JILPT 2011 1 190 Empirical Evidence on the Determinants of Success in Full-Time Job-Search for Japanese University Students By Hiroko ARAKI and
More informationPRO1_04E [읽기 전용]
Siemens AG 1999 All rights reserved File: PRO1_04E1 Information and S7-300 2 S7-400 3 EPROM / 4 5 6 HW Config 7 8 9 CPU 10 CPU : 11 CPU : 12 CPU : 13 CPU : / 14 CPU : 15 CPU : / 16 HW 17 HW PG 18 SIMATIC
More information<B3EDB9AEC1FD5F3235C1FD2E687770>
경상북도 자연태음악의 소박집합, 장단유형, 전단후장 경상북도 자연태음악의 소박집합, 장단유형, 전단후장 - 전통 동요 및 부녀요를 중심으로 - 이 보 형 1) * 한국의 자연태 음악 특성 가운데 보편적인 특성은 대충 밝혀졌지만 소박집합에 의한 장단주기 박자유형, 장단유형, 같은 층위 전후 구성성분의 시가( 時 價 )형태 등 은 밝혀지지 않았으므로
More informationPowerPoint 프레젠테이션
In-memory 클러스터컴퓨팅프레임워크 Hadoop MapReduce 대비 Machine Learning 등반복작업에특화 2009년, UC Berkeley AMPLab에서 Mesos 어플리케이션으로시작 2010년 Spark 논문발표, 2012년 RDD 논문발표 2013년에 Apache 프로젝트로전환후, 2014년 Apache op-level Project
More informationJournal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: (LiD) - - * Way to
Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp.353-376 DOI: http://dx.doi.org/10.21024/pnuedi.29.1.201903.353 (LiD) -- * Way to Integrate Curriculum-Lesson-Evaluation using Learning-in-Depth
More information44-4대지.07이영희532~
A Spatial Location Analysis of the First Shops of Foodservice Franchise in Seoul Metropolitan City Younghee Lee* 1 1 (R) 0 16 1 15 64 1 Abstract The foodservice franchise is preferred by the founders who
More information1217 WebTrafMon II
(1/28) (2/28) (10 Mbps ) Video, Audio. (3/28) 10 ~ 15 ( : telnet, ftp ),, (4/28) UDP/TCP (5/28) centralized environment packet header information analysis network traffic data, capture presentation network
More information비식별화 기술 활용 안내서-최종수정.indd
빅데이터 활용을 위한 빅데이터 담당자들이 실무에 활용 할 수 있도록 비식별화 기술과 활용방법, 실무 사례 및 예제, 분야별 참고 법령 및 활용 Q&A 등 안내 개인정보 비식별화 기술 활용 안내서 Ver 1.0 작성 및 문의 미래창조과학부 : 양현철 사무관 / 김자영 주무관 한국정보화진흥원 : 김진철 수석 / 김배현 수석 / 신신애 부장 문의 : cckim@nia.or.kr
More information<C5D8BDBAC6AEBEF0BEEEC7D02D3336C1FD2E687770>
텍스트언어학 36, 2014, pp. 149~177 빅데이터 적정 텍스트 추출을 위한 언어학적 접근 - 학교폭력 관련 텍스트를 중심으로- 남길임(경북대) 송현주(계명대) 이수진(경북대) Nam, Kilim, Song, Hyunju, Lee, Soojin 2014. Linguistic approach for Document Classification on Big
More informationPortal_9iAS.ppt [읽기 전용]
Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Oracle9i Application Server e-business Portal Client Database Server e-business Portals B2C, B2B, B2E, WebsiteX B2Me GUI ID B2C
More information歯1.PDF
200176 .,.,.,. 5... 1/2. /. / 2. . 293.33 (54.32%), 65.54(12.13%), / 53.80(9.96%), 25.60(4.74%), 5.22(0.97%). / 3 S (1997)14.59% (1971) 10%, (1977).5%~11.5%, (1986)
More informationOracle9i Real Application Clusters
Senior Sales Consultant Oracle Corporation Oracle9i Real Application Clusters Agenda? ? (interconnect) (clusterware) Oracle9i Real Application Clusters computing is a breakthrough technology. The ability
More informationThe Self-Managing Database : Automatic Health Monitoring and Alerting
The Self-Managing Database : Automatic Health Monitoring and Alerting Agenda Oracle 10g Enterpirse Manager Oracle 10g 3 rd Party PL/SQL API Summary (Self-Managing Database) ? 6% 6% 12% 55% 6% Source: IOUG
More informationDBPIA-NURIMEDIA
The e-business Studies Volume 17, Number 6, December, 30, 2016:275~289 Received: 2016/12/02, Accepted: 2016/12/22 Revised: 2016/12/20, Published: 2016/12/30 [ABSTRACT] SNS is used in various fields. Although
More informationOrcad Capture 9.x
OrCAD Capture Workbook (Ver 10.xx) 0 Capture 1 2 3 Capture for window 4.opj ( OrCAD Project file) Design file Programe link file..dsn (OrCAD Design file) Design file..olb (OrCAD Library file) file..upd
More information2009년 국제법평론회 동계학술대회 일정
한국경제연구원 대외세미나 인터넷전문은행 도입과제와 캐시리스사회 전환 전략 일시 2016년 3월 17일 (목) 14:00 ~17:30 장소 전경련회관 컨퍼런스센터 2층 토파즈룸 주최 한국경제연구원 한국금융ICT융합학회 PROGRAM 시 간 내 용 13:30~14:00 등 록 14:00~14:05 개회사 오정근 (한국금융ICT융합학회 회장) 14:05~14:10
More informationuntitled
Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)
More information2017.09 Vol.255 C O N T E N T S 02 06 26 58 63 78 99 104 116 120 122 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2017.9 3 4 2017.9 6 2017.9 7 8 2017.9 13 0 13 1,007 3 1,004 (100.0) (0.0) (100.0)
More informationDB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx
빅데이터의기술영역과 요구역량 줌인터넷 ( 주 ) 김우승 소개 http://zum.com 줌인터넷(주) 연구소 이력 줌인터넷 SK planet SK Telecom 삼성전자 http://kimws.wordpress.com @kimws 목차 빅데이터살펴보기 빅데이터에서다루는문제들 NoSQL 빅데이터라이프사이클 빅데이터플랫폼 빅데이터를위한역량 빅데이터를위한역할별요구지식
More informationLXR 설치 및 사용법.doc
Installation of LXR (Linux Cross-Reference) for Source Code Reference Code Reference LXR : 2002512( ), : 1/1 1 3 2 LXR 3 21 LXR 3 22 LXR 221 LXR 3 222 LXR 3 3 23 LXR lxrconf 4 24 241 httpdconf 6 242 htaccess
More informationVol.258 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M
2017.12 Vol.258 C O N T E N T S 02 06 35 57 89 94 100 103 105 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2017.12 3 4 2017.12 * 6 2017.12 7 1,989,020 2,110,953 2,087,458 2,210,542 2,370,003 10,767,976
More informationthesis
( Design and Implementation of a Generalized Management Information Repository Service for Network and System Management ) ssp@nile nile.postech.ac..ac.kr DPE Lab. 1997 12 16 GMIRS GMIRS GMIRS prototype
More information강의지침서 작성 양식
정보화사회와 법 강의지침서 1. 교과목 정보 교과목명 학점 이론 시간 실습 학점(등급제, P/NP) 비고 (예:팀티칭) 국문 정보화사회와 법 영문 Information Society and Law 3 3 등급제 구분 대학 및 기관 학부(과) 전공 성명 작성 책임교수 법학전문대학원 법학과 최우용 2. 교과목 개요 구분 교과목 개요 국문 - 정보의 디지털화와 PC,
More informationchapter4
Basic Netw rk 1. ก ก ก 2. 3. ก ก 4. ก 2 1. 2. 3. 4. ก 5. ก 6. ก ก 7. ก 3 ก ก ก ก (Mainframe) ก ก ก ก (Terminal) ก ก ก ก ก ก ก ก 4 ก (Dumb Terminal) ก ก ก ก Mainframe ก CPU ก ก ก ก 5 ก ก ก ก ก ก ก ก ก ก
More informationMicrosoft PowerPoint - 27.pptx
이산수학 () n-항관계 (n-ary Relations) 2011년봄학기 강원대학교컴퓨터과학전공문양세 n-ary Relations (n-항관계 ) An n-ary relation R on sets A 1,,A n, written R:A 1,,A n, is a subset R A 1 A n. (A 1,,A n 에대한 n- 항관계 R 은 A 1 A n 의부분집합이다.)
More informationPRO1_02E [읽기 전용]
Siemens AG 1999 All rights reserved File: PRO1_02E1 Information and 2 STEP 7 3 4 5 6 STEP 7 7 / 8 9 10 S7 11 IS7 12 STEP 7 13 STEP 7 14 15 : 16 : S7 17 : S7 18 : CPU 19 1 OB1 FB21 I10 I11 Q40 Siemens AG
More informationÅ©·¹Àγ»Áö20p
Main www.bandohoist.com Products Wire Rope Hoist Ex-proof Hoist Chain Hoist i-lifter Crane Conveyor F/A System Ci-LIFTER Wire Rope Hoist & Explosion-proof Hoist Mono-Rail Type 1/2ton~20ton Double-Rail
More informationPowerChute Personal Edition v3.1.0 에이전트 사용 설명서
PowerChute Personal Edition v3.1.0 990-3772D-019 4/2019 Schneider Electric IT Corporation Schneider Electric IT Corporation.. Schneider Electric IT Corporation,,,.,. Schneider Electric IT Corporation..
More informationuntitled
SAS Korea / Professional Service Division 2 3 Corporate Performance Management Definition ý... is a system that provides organizations with a method of measuring and aligning the organization strategy
More information목 차
Oracle 9i Admim 1. Oracle RDBMS 1.1 (System Global Area:SGA) 1.1.1 (Shared Pool) 1.1.2 (Database Buffer Cache) 1.1.3 (Redo Log Buffer) 1.1.4 Java Pool Large Pool 1.2 Program Global Area (PGA) 1.3 Oracle
More information30이지은.hwp
VR의 가상광고에 나타난 그래픽영상 연구 -TV 스포츠 방송을 중심으로- A study of the graphic image that is presented in Virtual Advertising of VR(Virtual Reality) - Focused on TV Sports broadcasts - 이지은(Lee, ji eun) 조일산업(주) 디자인 실장
More information