슬라이드 1
|
|
- 시은 여
- 6 years ago
- Views:
Transcription
1 빅데이터기술개요 2016/8/20 ~ 9/3 윤형기 (hky@openwith.net)
2 D2 2
3 Hadoop MR v1 과 v2 3
4 Hadoop1 MR Daemons 4
5 필요성 Feature Multi-tenancy Cluster Utilization Scalability 기능 YARN allows multiple access engines to use Hadoop as the common standard for batch, interactive and real-time engines that can simultaneously access the same data set. Multi-tenant data processing improves an enterprise s return on its Hadoop investments. Dynamic allocation of cluster resources를통해 MR 작업향상 Scheduling 기능개선으로확장성강화 (thousands of nodes managing PB s of data). 5
6 Hadoop 1 Limitations Scalability NameNode 가취약점 Re-startability 낮은 Resource Utilization MR 에한정 Lack of wire-compatible protocols Max cluster size 4,000 nodes Max. concurrent tasks 40,000 Coarse sync in Job tracker Failure kills all queued and running jobs Restart is very tricky due to complex state Hard partition of resources into map and reduce slots Doesn t support other programs Iterative applications implementations are 10x slower Client and cluster must be of same version Applications and workflows cannot migrate to different clusters 6
7 Hadoop 2 Design concept job Tracker 의기능을 2 개 function 으로분리 cluster resource management Application life-cycle management MR becomes user library, or one of the application residing in Hadoop 7
8 MRv2 진행경과 8
9 MRv1 vs. MRv2 9
10 작업방식 개요 JobTracker/TaskTracker 의기능을세분화 a global ResourceManager a per-application ApplicationMaster a per-node slave NodeManager a per-application Container running on a NodeManager ResourceManager 와 NodeManager 가새로도입 ResourceManager ResourceManager 가 application 간의자원요청을관리 (arbitrates resources among applications) ResourceManager 의 scheduler 를통해 resource allocation to applications ApplicationMaster = a framework-specific entity 로서필요한 resource container 를 scheduler 로부터할당받음 ResourceManager 와협의한후 NodeManager(s) 를통해 component tasks 를수행 Also, tracks status & monitors progress NodeManager = per-machine slave, is responsible for launching the applications containers, monitoring their resource usage (cpu, memory, disk, network) and reporting the same to the ResourceManager. 10
11 Hadoop 프로그래밍
12 Hadoop Hadoop 1.0 HDFS MR Hadoop 2.0 = Hadoop v1.0 + HDFS HA support of HDFS NameNode through/with ZooKeeper for failure detection & active NameNode election HDFS Federation HDFS snapshot Heterogeneous Storage hierarchy support In-memory data cashing YARN
13 Hadoop 2.0 YARN = central resource scheduler = ResourceManager + NodeManager + container (= a unit of resource allocation) JobTracker 에서분화» Cluster management & Job scheduling RM» Job coordination Application Master (; This shifting of allocation coordination responsibilities reduces the burden on the RM)» + new JobHistoryServer
14 Hadoop 1.0
15 Hadoop 2.0 과 YARN 출처 :
16
17 YARN
18
19 출처 :
20 YARN 의특징 (1) JobTracker 를 RM 과 ApplicationMaster 로분리 YARN cluster 마다 AM 이존재하고 cluster 내의각서버마다 NM 가존재 (2) 효율적인자원관리 각서버마다의 NM 들이 task 를실행하고필요한자원을과니하므로 Hadoop 1.0 에서와같은 Mapper, Reducer 의 slot 수와같은개념자체가없어졌다. H2.0 에서는 Mapper, Reducer 가모두 container 안에서동작하고 container 자체도전체 cluster 의 resource 상황과요청된 job 의 resource 요구에따라결정된다. (3) 확장성범위확대 기존 4,000 대 node, 40,000 개 task 의한계 - 이러한한계가극복됨 (4) 다양한분산처리환경지원 SPARK, HAMA, GIRAPH 등. 그밖에도 SAP, IBM, EMC 등이자사의솔루션과연동을추진
21 YARN 의구성요소 (1) RM ; cluster 마다존재하며 cluster 전반의자원관리와 task 들의 scheduling 담당. a. Scheduler b. Application Manager c. Resource Tracker (2) Node Manager ; 해당 container 의 resource 사용량을모니터링하고관련정보를 Resource Manager 에게알린다. a. Application Master = 하나의프로그램에대한 master 역할 b. Container ; 모든작업 (job) 은여러개의 task 로세분화며각 task 는하나의 container 안에서실행.
22
23 YARN 활용 :
24 MR 프로그래밍
25 Data Types
26 [ 실습 ] Streaming pipes Hound of Baskerville input.txt mapper1.py $./mapper1.py < input.txt $./mapper2.py < input.txt $./mapper2.py < input.txt sort $./mapper2.py < input.txt sort./reducer2.py $./mapper3.py < input.txt sort./reducer2.py $./mapper3.py < input.txt sort./reducer3.py sort -r $./mapper3.py < input.txt sort./reducer3.py sort r head n 3
27 [ 실습 ] MapReduce 기초 MR and computational flows
28 [ 실습 ] MR for WordCount
29 [ 실습 ] MR for WordCount + Combiner 추가
30 import public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasmoretokens()) { word.set(itr.nexttoken()); context.write(word, one);
31 public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); result.set(sum); context.write(key, result);
32 public static void main(string[] args) throws Exception { Configuration conf = new Configuration(); String[] otherargs = new GenericOptionsParser(conf, args).getremainingargs(); if (otherargs.length!= 2) { System.err.println("Usage: wordcount <in> <out>"); System.exit(2); Job job = Job.getInstance(conf, "word count"); job.setjarbyclass(wordcount.class); job.setmapperclass(tokenizermapper.class); /**** To enable Combiner, uncomment! ****/ //job.setcombinerclass(intsumreducer.class); job.setreducerclass(intsumreducer.class); job.setoutputkeyclass(text.class); job.setoutputvalueclass(intwritable.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true)? 0 : 1);
33 [ 실습 ] MR 활용 Analytics Web log 의평균, 최대, 최소파일크기를파악하는 Hadoop MR 프로그램 데이터 : weblog dataset from ftp://ita.ee.lbl.gov/traces/nasa_access_log_jul95.gz
34 public class MsgSizeAggregateMapReduce extends Configured implements Tool { public static void main(string[] args) throws Exception { int res = ToolRunner.run(new Configuration(), new MsgSizeAggregateMapReduce(), args); public int run(string[] args) throws Exception { if (args.length!= 2) { System.err.println("Usage: <input_path> <output_path>"); System.exit(-1); /* input parameters */ String inputpath = args[0]; String outputpath = args[1]; Job job = Job.getInstance(getConf(), "WebLogMessageSizeAggregator"); job.setjarbyclass(msgsizeaggregatemapreduce.class); job.setmapperclass(amapper.class); job.setreducerclass(areducer.class); job.setnumreducetasks(1); job.setoutputkeyclass(text.class); job.setoutputvalueclass(intwritable.class); FileInputFormat.setInputPaths(job, new Path(inputPath)); FileOutputFormat.setOutputPath(job, new Path(outputPath)); int exitstatus = job.waitforcompletion(true)? 0 : 1; return exitstatus; Srinath Perera (hemapani@apache.org) Thilina Gunarathne (thilina@apache.org) */
35 public static class AMapper extends Mapper<Object, Text, Text, IntWritable> { public static final Pattern httplogpattern = Pattern.compile("([^\\s]+) - - \\[(.+)\\] \"([^\\s]+) (/[^\\s]*) HTTP/[^\\s]+\" [^\\s]+ ([0-9]+)"); public void map(object key, Text value, Context context) throws IOException, InterruptedException { Matcher matcher = httplogpattern.matcher(value.tostring()); if (matcher.matches()) { int size = Integer.parseInt(matcher.group(5)); context.write(new Text("msgSize"), new IntWritable(size));
36 public static class AReducer extends Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { double tot = 0; int count = 0; int min = Integer.MAX_VALUE; int max = 0; Iterator<IntWritable> iterator = values.iterator(); while (iterator.hasnext()) { int value = iterator.next().get(); tot = tot + value; count++; if (value < min) { min = value; if (value > max) { max = value; context.write(new Text("Mean"), new IntWritable((int) tot / count)); context.write(new Text("Max"), new IntWritable(max)); context.write(new Text("Min"), new IntWritable(min));
37 YARN 의문제점 Complexity Protocol are at very low level, very verbose Long running job 에적합치않음 Application doesn't survive Master crash No built-in communication between container and master Hard to debug 37
38 Hadoop 의장단점과대응 Haddop 의장점 commodity h/w scale-out fault-tolerance flexibility by MR Hadoop 의단점 MR! Missing! - schema 와 optimizer, index, view,... 기존 tool 과의호환성결여 해결책 : Hive SQL to MR Compiler + Execution 엔진 Pluggable storage layer (SerDes) 미해결숙제 : Hive ANSI SQL, UDF,... MR Latency overhead 계속작업중...! 38
슬라이드 1
Hadoop 기반 규모확장성있는패킷분석도구 충남대학교데이터네트워크연구실이연희 yhlee06@cnu.ac.kr Intro 목차 인터넷트래픽측정 Apache Hadoop Hadoop 기반트래픽분석시스템 Hadoop을이용한트래픽분석예제 - 2- Intro 트래픽이란 - 3- Intro Data Explosion - 4- Global Trend: Data Explosion
More informationHDFS 맵리듀스
맵리듀스 하둡실행 HDFS 맵리듀스 HDFS 작동방식 FileInputFormat subclass 를이용 Hadoop 은자동으로 HDFS 내의파일경로로부터데이터를입력 블록지역성을최대한활용하는방식 작업을클러스터에배분한다. JAVA 기반 HDFS1 hello.txt 라는이름의파일을생성 메시지를기록한 기록된파일읽어 화면에출력 해당파일이이미존재하는경우삭제한후작업 1:
More information슬라이드 1
Hadoop Tutorial - 설치및실행 2008. 7. 17 한재선 (NexR 대표이사 ) jshan0000@gmail.com http://www.web2hub.com H.P: 016-405-5469 Brief History Hadoop 소개 2005년 Doug Cutting(Lucene & Nutch 개발자 ) 에의해시작 Nutch 오픈소스검색엔진의분산확장이슈에서출발
More informationPowerPoint 프레젠테이션
In-memory 클러스터컴퓨팅프레임워크 Hadoop MapReduce 대비 Machine Learning 등반복작업에특화 2009년, UC Berkeley AMPLab에서 Mesos 어플리케이션으로시작 2010년 Spark 논문발표, 2012년 RDD 논문발표 2013년에 Apache 프로젝트로전환후, 2014년 Apache op-level Project
More information김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More information슬라이드 1
빅데이터기술개요 2016/8/20 ~ 9/3 윤형기 (hky@openwith.net) 일정 1 일차 2 일차 3 일차 4 일차 5 일차 6 일차 7 일차 8 일차 오전 배경과개요 MR 프로그래밍 MR 프로그래밍 Pig & Hive Flume & Sqoop R 사용법 기계학습 (1) 클라우드활용 오후 환경구축과기본실습 N/A Pig & Hive Flume &
More informationPCServerMgmt7
Web Windows NT/2000 Server DP&NM Lab 1 Contents 2 Windows NT Service Provider Management Application Web UI 3 . PC,, Client/Server Network 4 (1),,, PC Mainframe PC Backbone Server TCP/IP DCS PLC Network
More information6주차.key
6, Process concept A program in execution Program code PCB (process control block) Program counter, registers, etc. Stack Heap Data section => global variable Process in memory Process state New Running
More informationPowerPoint 프레젠테이션
Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING
More information12-file.key
11 (String).. java.lang.stringbuffer. s String s = "abcd"; s = s + "e"; a b c d e a b c d e ,., "910359,, " "910359" " " " " (token) (token),, (delimiter). java.util.stringtokenizer String s = "910359,,
More informationPowerPoint 프레젠테이션
@ Lesson 2... ( ). ( ). @ vs. logic data method variable behavior attribute method field Flow (Type), ( ) member @ () : C program Method A ( ) Method B ( ) Method C () program : Java, C++, C# data @ Program
More informationthesis
CORBA TMN Surveillance System DPNM Lab, GSIT, POSTECH Email: mnd@postech.ac.kr Contents Motivation & Goal Related Work CORBA TMN Surveillance System Implementation Conclusion & Future Work 2 Motivation
More informationsolution map_....
SOLUTION BROCHURE RELIABLE STORAGE SOLUTIONS ETERNUS FOR RELIABILITY AND AVAILABILITY PROTECT YOUR DATA AND SUPPORT BUSINESS FLEXIBILITY WITH FUJITSU STORAGE SOLUTIONS kr.fujitsu.com INDEX 1. Storage System
More informationexample code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for
2003 Development of the Software Generation Method using Model Driven Software Engineering Tool,,,,, Hoon-Seon Chang, Jae-Cheon Jung, Jae-Hack Kim Hee-Hwan Han, Do-Yeon Kim, Young-Woo Chang Wang Sik, Moon
More informationrmi_박준용_final.PDF
(RMI) - JSTORM http://wwwjstormpekr (RMI)- Document title: Document file name: Revision number: Issued by: Document Information (RMI)- rmi finaldoc Issue Date: Status:
More informationSomething that can be seen, touched or otherwise sensed
Something that can be seen, touched or otherwise sensed Things about an object Weight Height Material Things an object does Pen writes Book stores words Water have Fresh water Rivers Oceans have
More informationOracle9i Real Application Clusters
Senior Sales Consultant Oracle Corporation Oracle9i Real Application Clusters Agenda? ? (interconnect) (clusterware) Oracle9i Real Application Clusters computing is a breakthrough technology. The ability
More informationNoSQL
MongoDB Daum Communications NoSQL Using Java Java VM, GC Low Scalability Using C Write speed Auto Sharding High Scalability Using Erlang Read/Update MapReduce R/U MR Cassandra Good Very Good MongoDB Good
More informationOracle Database 10g: Self-Managing Database DB TSC
Oracle Database 10g: Self-Managing Database DB TSC Agenda Overview System Resource Application & SQL Storage Space Backup & Recovery ½ Cost ? 6% 12 % 6% 6% 55% : IOUG 2001 DBA Survey ? 6% & 12 % 6% 6%
More informationch09
9 Chapter CHAPTER GOALS B I G J A V A 436 CHAPTER CONTENTS 9.1 436 Syntax 9.1 441 Syntax 9.2 442 Common Error 9.1 442 9.2 443 Syntax 9.3 445 Advanced Topic 9.1 445 9.3 446 9.4 448 Syntax 9.4 454 Advanced
More informationMS-SQL SERVER 대비 기능
Business! ORACLE MS - SQL ORACLE MS - SQL Clustering A-Z A-F G-L M-R S-Z T-Z Microsoft EE : Works for benchmarks only CREATE VIEW Customers AS SELECT * FROM Server1.TableOwner.Customers_33 UNION ALL SELECT
More informationvm-웨어-01장
Chapter 16 21 (Agenda). (Green),., 2010. IT IT. IT 2007 3.1% 2030 11.1%, IT 2007 1.1.% 2030 4.7%, 2020 4 IT. 1 IT, IT. (Virtualization),. 2009 /IT 2010 10 2. 6 2008. 1970 MIT IBM (Mainframe), x86 1. (http
More informationBackup Exec
(sjin.kim@veritas.com) www.veritas veritas.co..co.kr ? 24 X 7 X 365 Global Data Access.. 100% Storage Used Terabytes 9 8 7 6 5 4 3 2 1 0 2000 2001 2002 2003 IDC (TB) 93%. 199693,000 TB 2000831,000 TB.
More informationIntra_DW_Ch4.PDF
The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology
More informationRUCK2015_Gruter_public
Apache Tajo 와 R 을연동한빅데이터분석 고영경 / 그루터 ykko@gruter.com 목차 : R Tajo Tajo RJDBC Tajo Tajo UDF( ) TajoR Demo Q&A R 과빅데이터분석 ' R 1) R 2) 3) R (bigmemory, snowfall,..) 4) R (NoSQL, MapReduce, Hive / RHIPE, RHive,..)
More information05-class.key
5 : 2 (method) (public) (private) (interface) 5.1 (Method), (public method) (private method) (constructor), 3 4 5.2 (client). (receiver)., System.out.println("Hello"); (client object) (receiver object)
More information<4D6963726F736F667420506F776572506F696E74202D20B8F9B0EDB5F0BAF15F32B1E220BDC9C8ADB0FAC1A4>
HDFS, MapReduce 작성자 김성진(황금의미르) HDFS, MapReduce 문서번호 : HDFS, MapReduce 버전 : 1.0 목차 1. HDFS ----------------- 2 2. MapReduce ----------------- 11 3. 기타 1 2기 심화과정 스터디그룹 1. HDFS 1.1 HDFS는 무엇인가요? 1. HDFS(Hadoop
More informationThe Self-Managing Database : Automatic Health Monitoring and Alerting
The Self-Managing Database : Automatic Health Monitoring and Alerting Agenda Oracle 10g Enterpirse Manager Oracle 10g 3 rd Party PL/SQL API Summary (Self-Managing Database) ? 6% 6% 12% 55% 6% Source: IOUG
More informationC# Programming Guide - Types
C# Programming Guide - Types 최도경 lifeisforu@wemade.com 이문서는 MSDN 의 Types 를요약하고보충한것입니다. http://msdn.microsoft.com/enus/library/ms173104(v=vs.100).aspx Types, Variables, and Values C# 은 type 에민감한언어이다. 모든
More information07 자바의 다양한 클래스.key
[ 07 ] . java.lang Object, Math, String, StringBuffer Byte, Short, Integer, Long, Float, Double, Boolean, Character. java.util Random, StringTokenizer Calendar, GregorianCalendar, Date. Collection, List,
More informationPowerPoint 프레젠테이션
Hadoop 애플리케이션 테스트하기 클라우다인대표김병곤 fharenheit@gmail.com 2 주제 Hadoop 의기본 MapReduce 의특징과테스트의어려운점 MRUnit 을이용한단위테스트기법 통합테스트를위한 Mini Cluster 성능테스트 3 V Model Requirement Acceptance Test Analysis System Test Design
More informationEJB Transaction & Exception
으로구현하는 Big Data 기술완벽해부 JBoss User Group 김병곤 fharenheit@gmail.com 소개 ( 주 ) 클라우다인대표이사한국자바개발자협의회 (JCO) 회장 JBoss User Group 대표한국스마트개발자협회부회장지경부 /NIPA 소프트웨어마에스트로멘토 IT전문가협회정회원대용량분산컴퓨팅 Technical Architect 오프라인
More information2
2013 Devsisters Corp. 2 3 4 5 6 7 8 >>> import boto >>> import time >>> s3 = boto.connect_s3() # Create a new bucket. Buckets must have a globally unique name >>> bucket = s3.create_bucket('kgc-demo')
More informationPowerPoint Presentation
빅데이터아키텍쳐소개 임상배 (sangbae.lim@oracle.com) Technology Sales Consulting, Oracle Korea Agenda 빅데이터아키텍쳐트랜드 빅데이터활용단계별요소기술 사업방향및활용사례 요약 Q&A 빅데이터아키텍쳐트랜드 빅데이터아키텍쳐트랜드 오픈소스와기간계, 정보계시스템과의융합 현재빅데이터의열풍의근원은하둡 (Hadoop)
More informationecorp-프로젝트제안서작성실무(양식3)
(BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing
More informationMicrosoft PowerPoint - Java7.pptx
HPC & OT Lab. 1 HPC & OT Lab. 2 실습 7 주차 Jin-Ho, Jang M.S. Hanyang Univ. HPC&OT Lab. jinhoyo@nate.com HPC & OT Lab. 3 Component Structure 객체 (object) 생성개념을이해한다. 외부클래스에대한접근방법을이해한다. 접근제어자 (public & private)
More informationmytalk
한국정보보호학회소프트웨어보안연구회 총괄책임자 취약점분석팀 안준선 ( 항공대 ) 도경구 ( 한양대 ) 도구개발팀도경구 ( 한양대 ) 시큐어코딩팀 오세만 ( 동국대 ) 전체적인 그림 IL Rules Flowgraph Generator Flowgraph Analyzer 흐름그래프 생성기 흐름그래프 분석기 O parser 중간언어 O 파서 RDL
More information강의10
Computer Programming gdb and awk 12 th Lecture 김현철컴퓨터공학부서울대학교 순서 C Compiler and Linker 보충 Static vs Shared Libraries ( 계속 ) gdb awk Q&A Shared vs Static Libraries ( 계속 ) Advantage of Using Libraries Reduced
More informationPowerPoint 프레젠테이션
@ Lesson 3 if, if else, if else if, switch case for, while, do while break, continue : System.in, args, JOptionPane for (,, ) @ vs. logic data method variable Data Data Flow (Type), ( ) @ Member field
More informationSK IoT IoT SK IoT onem2m OIC IoT onem2m LG IoT SK IoT KAIST NCSoft Yo Studio tidev kr 5 SK IoT DMB SK IoT A M LG SDS 6 OS API 7 ios API API BaaS Backend as a Service IoT IoT ThingPlug SK IoT SK M2M M2M
More informationInterstage5 SOAP서비스 설정 가이드
Interstage 5 Application Server ( Solaris ) SOAP Service Internet Sample Test SOAP Server Application SOAP Client Application CORBA/SOAP Server Gateway CORBA/SOAP Gateway Client INTERSTAGE SOAP Service
More informationI T C o t e n s P r o v i d e r h t t p : / / w w w. h a n b i t b o o k. c o. k r
I T C o t e n s P r o v i d e r h t t p : / / w w w. h a n b i t b o o k. c o. k r I T C o t e n s P r o v i d e r h t t p : / / w w w. h a n b i t b o o k. c o. k r Jakarta is a Project of the Apache
More informationuntitled
- -, (insert) (delete) - - (insert) (delete) (top ) - - (insert) (rear) (delete) (front) A A B top A B C top push(a) push(b) push(c) A B top pop() top A B D push(d) top #define MAX_STACK_SIZE 100 int
More information신림프로그래머_클린코드.key
CLEAN CODE 6 11st Front Dev. Team 6 1. 2. 3. checked exception 4. 5. 6. 11 : 2 4 : java (50%), javascript (35%), SQL/PL-SQL (15%) : Spring, ibatis, Oracle, jquery ? , (, ) ( ) 클린코드를 무시한다면 . 6 1. ,,,!
More informationJMF3_심빈구.PDF
JMF JSTORM http://wwwjstormpekr Issued by: < > Revision: Document Information Document title: Document file name: Revision number: Issued by: JMF3_ doc Issue Date:
More informationAnalytics > Log & Crash Search > Unity ios SDK [Deprecated] Log & Crash Unity ios SDK. TOAST SDK. Log & Crash Unity SDK Log & Crash Search. Log & Cras
Analytics > Log & Crash Search > Unity ios SDK [Deprecated] Log & Crash Unity ios SDK. TOAST SDK. Log & Crash Unity SDK Log & Crash Search. Log & Crash Unity SDK... Log & Crash Search. - Unity3D v4.0 ios
More informationCONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관
방송 통신 전파 KOREA COMMUNICATIONS AGENCY MAGAZINE 2013 VOL.174 09+10 CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내
More informationスライド タイトルなし
2 3 회사 소개 60%출자 40%출자 주식회사 NTT데이타 아이테크 NTT DATA의 영업협력이나 첨단기술제공, 인재육성등 여러가지 지원을 통해서 SII 그룹을 대상으로 고도의 정보 서비스를 제공 함과 동시에 NTT DATA ITEC 가 보유하고 있는 높은 업무 노하우 와 SCM을 비롯한 ERP분야의 기술력을 살려서 조립가공계 및 제조업 등 새로운 시장에
More information자바 프로그래밍
5 (kkman@mail.sangji.ac.kr) (Class), (template) (Object) public, final, abstract [modifier] class ClassName { // // (, ) Class Circle { int radius, color ; int x, y ; float getarea() { return 3.14159
More information5장.key
JAVA Programming 1 (inheritance) 2!,!! 4 3 4!!!! 5 public class Person {... public class Student extends Person { // Person Student... public class StudentWorker extends Student { // Student StudentWorker...!
More informationuntitled
Embedded System Lab. II Embedded System Lab. II 2 RTOS Hard Real-Time vs Soft Real-Time RTOS Real-Time, Real-Time RTOS General purpose system OS H/W RTOS H/W task Hard Real-Time Real-Time System, Hard
More informationDomino Designer Portal Development tools Rational Application Developer WebSphere Portlet Factory Workplace Designer Workplace Forms Designer
Domino, Portal & Workplace WPLC FTSS Domino Designer Portal Development tools Rational Application Developer WebSphere Portlet Factory Workplace Designer Workplace Forms Designer ? Lotus Notes Clients
More information@OneToOne(cascade = = "addr_id") private Addr addr; public Emp(String ename, Addr addr) { this.ename = ename; this.a
1 대 1 단방향, 주테이블에외래키실습 http://ojcedu.com, http://ojc.asia STS -> Spring Stater Project name : onetoone-1 SQL : JPA, MySQL 선택 http://ojc.asia/bbs/board.php?bo_table=lecspring&wr_id=524 ( 마리아 DB 설치는위 URL
More information61 62 63 64 234 235 p r i n t f ( % 5 d :, i+1); g e t s ( s t u d e n t _ n a m e [ i ] ) ; if (student_name[i][0] == \ 0 ) i = MAX; p r i n t f (\ n :\ n ); 6 1 for (i = 0; student_name[i][0]!= \ 0&&
More informationOPCTalk for Hitachi Ethernet 1 2. Path. DCOMwindow NT/2000 network server. Winsock update win95. . . 3 Excel CSV. Update Background Thread Client Command Queue Size Client Dynamic Scan Block Block
More informationSpring Boot
스프링부트 (Spring Boot) 1. 스프링부트 (Spring Boot)... 2 1-1. Spring Boot 소개... 2 1-2. Spring Boot & Maven... 2 1-3. Spring Boot & Gradle... 3 1-4. Writing the code(spring Boot main)... 4 1-5. Writing the code(commandlinerunner)...
More informationfundamentalOfCommandPattern_calmglow_pattern_jstorm_1.0_f…
Command JSTORM http://www.jstorm.pe.kr Command Issued by: < > Revision: Document Information Document title: Command Document file name: Revision number: Issued by: Issue
More informationSpecial Theme _ 모바일웹과 스마트폰 본 고에서는 모바일웹에서의 단말 API인 W3C DAP (Device API and Policy) 의 표준 개발 현황에 대해서 살펴보고 관 련하여 개발 중인 사례를 통하여 이해를 돕고자 한다. 2. 웹 애플리케이션과 네이
모바일웹 플랫폼과 Device API 표준 이강찬 TTA 유비쿼터스 웹 응용 실무반(WG6052)의장, ETRI 선임연구원 1. 머리말 현재 소개되어 이용되는 모바일 플랫폼은 아이폰, 윈 도 모바일, 안드로이드, 심비안, 모조, 리모, 팜 WebOS, 바다 등이 있으며, 플랫폼별로 버전을 고려하면 그 수 를 열거하기 힘들 정도로 다양하게 이용되고 있다. 이
More information02 C h a p t e r Java
02 C h a p t e r Java Bioinformatics in J a va,, 2 1,,,, C++, Python, (Java),,, (http://wwwbiojavaorg),, 13, 3D GUI,,, (Java programming language) (Sun Microsystems) 1995 1990 (green project) TV 22 CHAPTER
More informationETL_project_best_practice1.ppt
ETL ETL Data,., Data Warehouse DataData Warehouse ETL tool/system: ETL, ETL Process Data Warehouse Platform Database, Access Method Data Source Data Operational Data Near Real-Time Data Modeling Refresh/Replication
More information자바-11장N'1-502
C h a p t e r 11 java.net.,,., (TCP/IP) (UDP/IP).,. 1 ISO OSI 7 1977 (ISO, International Standards Organization) (OSI, Open Systems Interconnection). 6 1983 X.200. OSI 7 [ 11-1] 7. 1 (Physical Layer),
More informationConnection 8 22 UniSQLConnection / / 9 3 UniSQL OID SET
135-080 679-4 13 02-3430-1200 1 2 11 2 12 2 2 8 21 Connection 8 22 UniSQLConnection 8 23 8 24 / / 9 3 UniSQL 11 31 OID 11 311 11 312 14 313 16 314 17 32 SET 19 321 20 322 23 323 24 33 GLO 26 331 GLO 26
More information11 템플릿적용 - Java Program Performance Tuning (김명호기술이사)
Java Program Performance Tuning ( ) n (Primes0) static List primes(int n) { List primes = new ArrayList(n); outer: for (int candidate = 2; n > 0; candidate++) { Iterator iter = primes.iterator(); while
More informationI. - II. DW ETT Best Practice
IBM Business Intelligence Solution Seminar 2005 - IBM Business Consulting Service (cslee@kr.ibm.com) I. - II. DW ETT Best Practice (DW)., (EDW). Time 1980 ~1990 1995 2000 2005 * 1980 IBM Information Warehouse
More information더스마트한 가상화 CCTV 관제센터 임동현주무관, 서울시관악구청
더스마트한 가상화 CCTV 관제센터 임동현주무관, 서울시관악구청 Introduction 3 관악구 CCTV 는 1,123 개소, 2,536 대카메라운영 (2016.12.31) 2017 년말 3,100 대이상설치예정 2,500 대이상 FULL HD 급 (1080p) 4 관악구 CCTV는 관악구 CCTV 통합관제센터는 1,123 개소현장및카메라 2,536 대통합관리
More informationMicrosoft PowerPoint - 04-UDP Programming.ppt
Chapter 4. UDP Dongwon Jeong djeong@kunsan.ac.kr http://ist.kunsan.ac.kr/ Dept. of Informatics & Statistics 목차 UDP 1 1 UDP 개념 자바 UDP 프로그램작성 클라이언트와서버모두 DatagramSocket 클래스로생성 상호간통신은 DatagramPacket 클래스를이용하여
More informationJournal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on
Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp.157-176 DOI: http://dx.doi.org/10.21024/pnuedi.28.3.201809.157 NCS : * A Study on the NCS Learning Module Problem Analysis and Effective
More informationFileMaker ODBC and JDBC Guide
FileMaker 13 5 5 5 6 6 6 7 7 8 8 8 8 9 9 10 10 11 11 12 12 12 12 12 12 13 13 14 14 16 16 18 4 19 19 20 20 21 21 21 23 23 23 23 25 26 26 26 26 27 28 28 28 28 29 31 31 32 33 33 33 33 34 34 35 35 35 36 1
More information1217 WebTrafMon II
(1/28) (2/28) (10 Mbps ) Video, Audio. (3/28) 10 ~ 15 ( : telnet, ftp ),, (4/28) UDP/TCP (5/28) centralized environment packet header information analysis network traffic data, capture presentation network
More informationMicrosoft PowerPoint - XP Style
Business Strategy for the Internet! David & Danny s Column 유무선 통합 포탈은 없다 David Kim, Danny Park 2002-02-28 It allows users to access personalized contents and customized digital services through different
More informationilist.add(new Integer(1))과 같이 사용하지 않고 ilist.add(1)과 같이 사용한 것은 자바 5.0에 추가된 기본 자료형과 해당 객체 자료 형과의 오토박싱/언박싱 기능을 사용한 것으로 오토박싱이란 자바 컴파일러가 객체를 요구하는 곳에 기본 자료형
바에 제네릭스(generics)를 도입하기 위한 연구는 이미 8년 전인 1996년부터라고 한다. 실제로 자바에 제네릭스를 도입하 는 몇 가지 방안들이 논문으로 나오기 시작한 것이 1998년 초임을 감 안하면 무려 8년이 지난 후에야 자바 5.0에 전격 채택되었다는 것은 이것이 얼마나 어려운 일이었나 하는 것을 보여준다. 자바의 스펙을 결정하는 표준화 절차인
More informationChap7.PDF
Chapter 7 The SUN Intranet Data Warehouse: Architecture and Tools All rights reserved 1 Intranet Data Warehouse : Distributed Networking Computing Peer-to-peer Peer-to-peer:,. C/S Microsoft ActiveX DCOM(Distributed
More informationuntitled
(shared) (integrated) (stored) (operational) (data) : (DBMS) :, (database) :DBMS File & Database - : - : ( : ) - : - : - :, - DB - - -DBMScatalog meta-data -DBMS -DBMS - -DBMS concurrency control E-R,
More informationSpring Data JPA Many To Many 양방향 관계 예제
Spring Data JPA Many To Many 양방향관계예제 오라클자바커뮤니티 (ojc.asia, ojcedu.com) 엔티티매핑 (Entity Mapping) M : N 연관관계 사원 (Sawon), 취미 (Hobby) 는다 : 다관계이다. 사원은여러취미를가질수있고, 하나의취미역시여러사원에할당될수있기때문이다. 보통관계형 DB 에서는다 : 다관계는 1
More information슬라이드 1
Big Architecture 2014.10.23 SK C&C Platform 사업팀이정일차장 Table of 1. Big 개요 2. Big 플랫폼아키텍처 3. 아키텍처수립시고려사항 4. 하둡배포판기반아키텍처 5. Case Study 1. Big 개요 Big 란 Big Big Big Big 3 1. Big 개요 Big 의특성 3V 데이터의크기 (Volume)
More information05(533-537) CPLV12-04.hwp
모바일 OS 환경의 사용자 반응성 향상 기법 533 모바일 OS 환경의 사용자 반응성 향상 기법 (Enhancing Interactivity in Mobile Operating Systems) 배선욱 김정한 (Sunwook Bae) 엄영익 (Young Ik Eom) (Junghan Kim) 요 약 사용자 반응성은 컴퓨팅 시스템에서 가장 중요 한 요소 중에 하나이고,
More information°í¼®ÁÖ Ãâ·Â
Performance Optimization of SCTP in Wireless Internet Environments The existing works on Stream Control Transmission Protocol (SCTP) was focused on the fixed network environment. However, the number of
More information1
1 1....6 1.1...6 2. Java Architecture...7 2.1 2SDK(Software Development Kit)...8 2.2 JRE(Java Runtime Environment)...9 2.3 (Java Virtual Machine, JVM)...10 2.4 JVM...11 2.5 (runtime)jvm...12 2.5.1 2.5.2
More informationPowerPoint Presentation
객체지향프로그래밍 클래스, 객체, 메소드 ( 실습 ) 손시운 ssw5176@kangwon.ac.kr 예제 1. 필드만있는클래스 텔레비젼 2 예제 1. 필드만있는클래스 3 예제 2. 여러개의객체생성하기 4 5 예제 3. 메소드가추가된클래스 public class Television { int channel; // 채널번호 int volume; // 볼륨 boolean
More informationR50_51_kor_ch1
S/N : 1234567890123 Boot Device Priority NumLock [Off] Enable Keypad [By NumLock] Summary screen [Disabled] Boor-time Diagnostic Screen [Disabled] PXE OPROM [Only with F12]
More information리뉴얼 xtremI 최종 softcopy
SSD를 100% 이해한 CONTENTS SSD? 03 04 05 06 07 08 09 10 11 12 13 15 14 17 18 18 19 03 SSD SSD? Solid State Drive(SSD) NAND NAND DRAM SSD [ 1. SSD ] CPU( )RAM Cache Memory Firmware GB RAM Cache Memory Memory
More informationÆí¶÷4-¼Ö·ç¼Çc03ÖÁ¾š
솔루션 2006 454 2006 455 2006 456 2006 457 2006 458 2006 459 2006 460 솔루션 2006 462 2006 463 2006 464 2006 465 2006 466 솔루션 2006 468 2006 469 2006 470 2006 471 2006 472 2006 473 2006 474 2006 475 2006 476
More informationMasoJava4_Dongbin.PDF
JSTORM http://wwwjstormpekr Issued by: < > Revision: Document Information Document title: Document file name: MasoJava4_Dongbindoc Revision number: Issued by: < > SI, dbin@handysoftcokr
More informationIntro to Servlet, EJB, JSP, WS
! Introduction to J2EE (2) - EJB, Web Services J2EE iseminar.. 1544-3355 ( ) iseminar Chat. 1 Who Are We? Business Solutions Consultant Oracle Application Server 10g Business Solutions Consultant Oracle10g
More information다중 한것은 Mahout 터 닝알 즘몇 를 현 다는것외 들을 현 Hadoop 의 MapReduce 프 워크와결 을 다는것 다. 계산 많은 닝은 컴퓨터의큰메 와연산기 을 만 Mahout 는최대한 MapReduce 기 을활용 터분 다용 졌다.. Mahout 의설 Mahou
IV. 데이터분 의실 예 1. Mahout 83 를이용한군집분 (1). Mahout 프 의 Mahout 는 Apache 프 의한분 진 되 는기계 습용 Java 브 다. 기계 습 란 84 컨대 ' 대상 터 대 컴퓨터 알 분 할 을 는것 ' 을말 는 간 런기 터 닝솔 션들 현되 활 히 용되 다. 다 최근 Hadoop 의 MapReduce 프 워크활용을전 한기계
More informationOpen Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤
Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 (byounggon.kim@opence.org) 빅데이터분석및서비스플랫폼 모바일 Browser 인포메이션카탈로그 Search 인포메이션유형 보안등급 생성주기 형식
More informationChap12
12 12Java RMI 121 RMI 2 121 RMI 3 - RMI, CORBA 121 RMI RMI RMI (remote object) 4 - ( ) UnicastRemoteObject, 121 RMI 5 class A - class B - ( ) class A a() class Bb() 121 RMI 6 RMI / 121 RMI RMI 1 2 ( 7)
More informationfinal_thesis
CORBA/SNMP DPNM Lab. POSTECH email : ymkang@postech.ac.kr Motivation CORBA/SNMP CORBA/SNMP 2 Motivation CMIP, SNMP and CORBA high cost, low efficiency, complexity 3 Goal (Information Model) (Operation)
More informationuntitled
Push... 2 Push... 4 Push... 5 Push... 13 Push... 15 1 FORCS Co., LTD A Leader of Enterprise e-business Solution Push (Daemon ), Push Push Observer. Push., Observer. Session. Thread Thread. Observer ID.
More informationPowerPoint Presentation
객체지향프로그래밍 인터페이스, 람다식, 패키지 ( 실습 ) 손시운 ssw5176@kangwon.ac.kr 예제 1. 홈네트워킹 public interface RemoteControl { public void turnon(); // 가전제품을켠다. public void turnoff(); // 가전제품을끈다. 인터페이스를구현 public class Television
More information<BCBCBBF3C0BB20B9D9B2D9B4C220C5ACB6F3BFECB5E520C4C4C7BBC6C3C0C720B9CCB7A128BCF6C1A4295F687770>
세상을 바꾸는 클라우드 컴퓨팅의 미래 KT 그룹컨설팅지원실, 김미점(mjkim@kt.com) Gartner 10대 IT Trend에서 2009년에서 2011년까지 3년 연속 선정되고, 기업에서의 경영 방식이나 개인의 삶을 다양한 방식으로 바꿀 것으로 예상되는 클라우드 컴퓨팅의 미래 전망은 어떠할까? 빅 데이터의 등장과 다양한 모바일 디바이스의 출현으로 클라
More informationT100MD+
User s Manual 100% ) ( x b a a + 1 RX+ TX+ DTR GND TX+ RX+ DTR GND RX+ TX+ DTR GND DSR RX+ TX+ DTR GND DSR [ DCE TYPE ] [ DCE TYPE ] RS232 Format Baud 1 T100MD+
More informationPowerPoint 프레젠테이션
Flamingo Big Data Performance Management Product Documentation It s the Best Big Data Performance Management Solution. Maximize Your Hadoop Cluster with Flamingo. Monitoring, Analyzing, and Visualizing.
More informationAnalyst Briefing
. Improve your Outlook on Email and File Management iseminar.. 1544(or 6677)-3355 800x600. iseminar Chat... Improve your Outlook on Email and File Management :, 2003 1 29.. Collaboration Suite - Key Messages
More informationRemote UI Guide
Remote UI KOR Remote UI Remote UI PDF Adobe Reader/Adobe Acrobat Reader. Adobe Reader/Adobe Acrobat Reader Adobe Systems Incorporated.. Canon. Remote UI GIF Adobe Systems Incorporated Photoshop. ..........................................................
More informationJava XPath API (한글)
XML : Elliotte Rusty Harold, Adjunct Professor, Polytechnic University 2006 9 04 2006 10 17 문서옵션 제안및의견 XPath Document Object Model (DOM). XML XPath. Java 5 XPath XML - javax.xml.xpath.,? "?"? ".... 4.
More information* Factory class for query and DML clause creation * tiwe * */ public class JPAQueryFactory implements JPQLQueryFactory private f
JPA 에서 QueryDSL 사용하기위해 JPAQuery 인스턴스생성방법 http://ojc.asia, http://ojcedu.com 1. JPAQuery 를직접생성하기 JPAQuery 인스턴스생성하기 QueryDSL의 JPAQuery API를사용하려면 JPAQuery 인스턴스를생성하면된다. // entitymanager는 JPA의 EntityManage
More information1.장인석-ITIL 소개.ppt
HP 2005 6 IT ITIL Framework IT IT Framework Synchronized Business and IT Business Information technology Delivers: Simplicity, Agility, Value IT Complexity Cost Scale IT Technology IT Infrastructure IT
More informationdbms_snu.PDF
DBMS : Past, Present, and the Future hjk@oopsla.snu.ac.kr 1 Table of Contents 2 DBMS? 3 DBMS Architecture naive users naive users programmers application casual users casual users administrator database
More informationFMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2
FMX FMX 20062 () wwwexellencom sales@exellencom () 1 FMX 1 11 5M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2 FMX FMX D E (one
More information