ๆญฏ๋ณ€์š”ํ•œ.PDF

Similar documents
41(6)-09(๊น€์ฐฝ์ผ).fm

Microsoft PowerPoint - [ ][๊ธˆ์š”๊ณผํ•™ํ„ฐ์น˜]-upload ๋ฒ„์ „.ppt

ํ•œ fm

Microsoft PowerPoint - dev6_TCAD.ppt [ํ˜ธํ™˜ ๋ชจ๋“œ]

๊ตฌ๋ฆฌ ์ „ํ•ด๋„๊ธˆ ํ›„ ์—ด์ฒ˜๋ฆฌ์— ๋”ฐ๋ฅธ ๋ฏธ์„ธ๊ตฌ์กฐ์˜ ๋ณ€ํ™”์™€ ๊ด€๋ จ๋œ Electromigration ์‹ ๋ขฐ์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

PowerPoint Presentation

<30365F28BFCFB7E129BEC8BAB4C5C22E687770>

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

๊ฐ€. ํšŒ์‚ฌ์˜ ๋ฒ•์ , ์ƒ์—…์  ๋ช…์นญ ๋‹น์‚ฌ์˜ ๋ช…์นญ์€ ์ฃผ์„ฑ์—”์ง€๋‹ˆ์–ด๋ง ์ฃผ์‹ํšŒ์‚ฌ๋ผ๊ณ  ํ‘œ๊ธฐํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ์˜๋ฌธ์œผ๋กœ๋Š” JUSUNG Engineering Co., Ltd. ๋ผ ํ‘œ๊ธฐํ•ฉ๋‹ˆ๋‹ค. ๋‚˜. ์„ค๋ฆฝ์ผ์ž ๋ฐ ์กด์†๊ธฐ๊ฐ„ ๋‹น์‚ฌ๋Š” ๋ฐ˜๋„์ฒด, FPD, ํƒœ์–‘์ „์ง€, ์‹ ์žฌ์ƒ์—๋„ˆ์ง€, LED ๋ฐ OLED ์ œ

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

๊ฐœ์ตœ์š”๊ฐ•

14.fm

untitled

09รˆยซยผยฎยฟยต 5~152s

ๆญฏ03-ICFamily.PDF

Microsoft Word - ๋ฅ˜์ œํ˜„.doc;_๊ธฐ์—…๋ถ„์„_ _57.doc

์Šฌ๋ผ์ด๋“œ ์ œ๋ชฉ ์—†์Œ

(Microsoft Word _\271\335\265\265\303\274_\300\314\264\326\303\326\301\276.docx)

Vertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket

Electropure EDI OEM Presentation

่กจ็ด™๏ผˆๅŒ–ๅญฆ๏ผ‰

12.077~081(A12_์ด์ข…๊ตญ).fm

๋ณธ๋ฌธ.PDF

์„œ๊ฐ•๋Œ€ํ•™๊ต ๊ธฐ์ดˆ๊ณผํ•™์—ฐ๊ตฌ์†Œ๋Œ€ํ•™์ค‘์ ์—ฐ๊ตฌ์†Œ ์‹ฌํฌ์ง€์—„๊ธฐ์ดˆ๊ณผํ•™์—ฐ๊ตฌ์†Œ

ํ•œ๊ตญ์ „์ง€ํ•™ํšŒ ์ถ˜๊ณ„ํ•™์ˆ ๋Œ€ํšŒ Contents ๊ธฐ์กฐ๊ฐ•์—ฐ LI GU 06 ์ดˆ๊ฐ•์—ฐ ๊น€๋™์šฑ 09 ์•ˆ์žฌํ‰ 10 ์ •์ฐฝํ›ˆ 11 ์ด๊ทœํƒœ 12 ๋ฌธ์ค€์˜ 13 ํ•œ๋ณ‘์ฐฌ 14 ์ตœ์›์ฐฝ 15 ๋ฐ•์ฒ ํ˜ธ 16 ์•ˆ๋™์ค€ 17 ์ตœ๋‚จ์ˆœ 18 ๊น€์ผํƒœ 19 ํฌ์Šคํ„ฐ ๊ฐ•์ค€์„ญ 23 ์œค์˜์ค€ 24 ๋„์ˆ˜์ • 25 ๊ฐ•์ค€ํฌ 26

< C6AFC1FD28B1C7C7F5C1DF292E687770>

ๆญฏ๊น€์œ ์„ฑ.PDF

<313920C0CCB1E2BFF82E687770>

64.fm

์Šฌ๋ผ์ด๋“œ 1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

KAERIAR hwp

[ ์˜์–ด์˜๋ฌธํ•™ ] ์ œ 55 ๊ถŒ 4 ํ˜ธ (2010) ( ) ( ) ( ) 1) Kyuchul Yoon, Ji-Yeon Oh & Sang-Cheol Ahn. Teaching English prosody through English poems with clon

ํŠนํ—ˆ์ฒญ๊ตฌ์˜ ๋ฒ”์œ„ ์ฒญ๊ตฌํ•ญ 1 ๋””๋ฐ”์ด์Šค๊ฐ€ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์‹คํ–‰ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์žˆ์–ด์„œ, ์ƒ๊ธฐ ๋””๋ฐ”์ด์Šค์— ์—ฐ๊ฒฐ๋œ ์ œ1 ์™ธ๋ถ€ ๋””๋ฐ”์ด์Šค์™€ ํ•จ๊ป˜ ์ƒ๊ธฐ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์‹คํ–‰ํ•˜๋Š” ๋‹จ๊ณ„; ์ƒ๊ธฐ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ์‹คํ–‰ ์ค‘์— ์ œ2 ์™ธ๋ถ€ ๋””๋ฐ”์ด์Šค๋ฅผ ํ†ต์‹  ์—ฐ๊ฒฐํ•˜๋Š” ๋‹จ๊ณ„; ๋ฐ ์ƒ๊ธฐ ์ œ1 ์™ธ๋ถ€ ๋””๋ฐ”์ด์Šค ๋ฐ

lastreprt(....).hwp

CERIUM OXIDE Code CeO CeO 2-035A CeO 2-035B CeO REO % CeO 2 /REO % La 2 O 3 /REO %

๊ณตํ•™๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ ์šด์˜ ์ค‘ ํ„ฐ๋„ํ™•๋Œ€ ๊ตด์ฐฉ์‹œ ์ง€๋ฐ˜๊ฑฐ๋™ ํŠน์„ฑ๋ถ„์„ ๋ฐ ํ”„๋กœํ…ํ„ฐ ์„ค๊ณ„ Ground Behavior Analysis and Protector Design during the Enlargement of a Tunnel in Operation 2011๋…„ 2์›” ์ธํ•˜๋Œ€

00....

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

19(1) 02.fm

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume


๋ฐ•์„ ์˜๋ฌด์„ ์ถฉ์ „-๋‚ด์ง€

_....

4.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ฮต r =4.4)

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

DBPIA-NURIMEDIA

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

ํ•œ fm

08์›์žฌํ˜ธ( )

์‹ค์  ๋ฐ ์ „๋ง 09๋…„ ํ•˜๋ฐ˜ PECVD ๊ณ ๊ฐ ๋‹ค๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์‹ค์ ๊ฐœ์„  10๋…„ ํƒœ์–‘๊ด‘ R&D ์žฅ๋น„ ๋งค์ถœ์„ ๋ฐ˜์œผ๋กœ ๋ณธ๊ฒฉ์ ์ธ ์ƒ์—…์ƒ์‚ฐ ์‹œ์ž‘ 1. 09๋…„ 3Q ์‹ค์  ๋™์‚ฌ๋Š” 09๋…„ 3Q์— ๋งค์ถœ๊ณผ ์˜์—…์ด์ต์œผ๋กœ ๊ฐ๊ฐ 142 ์–ต์›(YoY 16.7%, QoQ 142%), 6 ์–ต์›(ํ‘์ „ํ™˜)

์„œ๊ฐ•๋Œ€ํ•™์›123ํ˜ธ

6.24-9๋…„ 6์›”

[ ํ™”ํ•™ ] ๊ณผํ•™๊ณ  R&E ๊ฒฐ๊ณผ๋ณด๊ณ ์„œ ๋‚˜๋…ธ์ž…์ž์˜ํ‘œ๋ฉด์ฆ๊ฐ•์„์ด์šฉํ•œ ํƒœ์–‘์ „์ง€์˜ํšจ์œจ์ฆ๊ฐ€ ์—ฐ๊ตฌ๊ธฐ๊ฐ„ : ~ ์—ฐ๊ตฌ์ฑ…์ž„์ž : ๊น€์ฃผ๋ž˜ ( ์„œ์šธ๊ณผํ•™๊ณ ๋ฌผ๋ฆฌํ™”ํ•™๊ณผ ) ์ง€๋„๊ต์‚ฌ : ์ฐธ์—ฌํ•™์ƒ : ์›์Šนํ™˜ ( ์„œ์šธ๊ณผํ•™๊ณ  2ํ•™๋…„ ) ์ด์œค์žฌ ( ์„œ์šธ๊ณผํ•™๊ณ  2ํ•™๋…„ ) ์ž„์ข…

WOMA Pumps - Z Line

ๆญฏ15-ROMPLD.PDF

63-69ยฑรจยดรซยฟยต

(

06ร†ยฏรรฝ

<4D F736F F F696E74202D2028B9DFC7A5BABB2920C5C2BEE7B1A420B8F0B5E220C8BFC0B220BDC7C1F520BDC3BDBAC5DB5FC7D1B1B94E4920C0B1B5BFBFF85F F726C F72756D>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

COMPANY INITIATION

แ„…แ…ตแ„‚แ…ฒแ„‹แ…ฅแ†ฏ xtremI แ„Žแ…ฌแ„Œแ…ฉแ†ผ softcopy

Chap3.SiliconOxidation.hwp

ยฐรญยผยฎรร– รƒรขยทร‚

รยฆยธรฑยพรธร€ยฝ


Microsoft PowerPoint - FPD ์‚ฐ์—…์„ธ์ •

<BCBCC1BEB4EB BFE4B6F72E706466>

82-01.fm

(Table of Contents) 2 (Specifications) 3 ~ 10 (Introduction) 11 (Storage Bins) 11 (Legs) 11 (Important Operating Requirements) 11 (Location Selection)

์œ ํ•ด์ค‘๊ธˆ์†์•ˆ์ •๋™์œ„์›์†Œ์˜ ๋ถ„์„์ •๋ฐ€ / ์ •ํ™•๋„ํ–ฅ์ƒ์—ฐ๊ตฌ (I) ํ™˜๊ฒฝ๊ธฐ๋ฐ˜์—ฐ๊ตฌ๋ถ€ํ™˜๊ฒฝ์ธก์ •๋ถ„์„์„ผํ„ฐ,,,,,,,, 2012


135 Jeong Ji-yeon ์‹ฌํ–ฅ์‚ฌ ๊ทน๋ฝ์ „ ํ˜‘์ € ์•„๋ฏธํƒ€๋ถˆ์˜ ์ œ์ž‘๊ธฐ๋ฒ•์— ๊ด€ํ•œ ์—ฐ๊ตฌ ๋จธ๋ฆฌ๋ง ํ˜‘์ €๋ถˆ์ƒ( ๅคพ ็ดต ไฝ› ๅƒ )์ด๋ผ๋Š” ๊ฒƒ์€ ๋ถˆ์ƒ์„ ์ œ์ž‘ํ•˜๋Š” ๊ธฐ๋ฒ•์˜ ํ•˜๋‚˜๋กœ์จ ์‚ผ๋ฒ ( ้บป ), ๋ชจ์‹œ( ่‹ง ), ๊ฐˆํฌ( ่‘› ) ๋“ฑ์˜ ์ธํ”ผ์„ฌ์œ ( ้ญ ็šฎ ็บ– ็ถญ )์™€ ์น ( ๆผ† )์„ ์ฃผ๋œ ์žฌ๋ฃŒ

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 28(2),

NNFC ๋ถ„์„ / ํŠน์„ฑํ‰๊ฐ€์žฅ๋น„์˜๊ตฌ์„ฑ ๊ตฌ์กฐ & ํ‘œ๋ฉด๋ถ„์„ Mechanical & Bio ๋ถ„์„ Electrical ํŠน์„ฑ์ธก์ • In-Line ์ธก์ • ๋ถˆ๋Ÿ‰๋ถ„์„ RE ๋ถ„์„ FE-(S)TEM Cs-corrected STEM 3D FE-STEM In-situ TEM FE-SEM DB-F

ๆญฏ์‹ ํ˜ธ์ธก์ •

19 ์ด์˜์ฒ (1038~1043).hwp

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

00ยบยฝร‡รยผรบ-ยพร•

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

Microsoft Word IT Weekly_v5

DBPIA-NURIMEDIA

???? 1

(72) ๋ฐœ๋ช…์ž ๊น€์ฐฝ์šฑ ๊ฒฝ๊ธฐ ์šฉ์ธ์‹œ ๊ธฐํฅ๊ตฌ ๊ณต์„ธ๋กœ , (๊ณต์„ธ๋™) ๋ฐ•์ค€์„ ๊ฒฝ๊ธฐ ์šฉ์ธ์‹œ ๊ธฐํฅ๊ตฌ ๊ณต์„ธ๋กœ , (๊ณต์„ธ๋™) - 2 -

์ œ 07 ์žฅ Al and Cu Metallization.hwp

ร†รทร€รฅยฝรƒยผยณ94ลก

<30352DB1E2C8B9C6AFC1FD2028C8ABB1E2C7F D36362E687770>

Microsoft Word _๋ฐ˜๋„์ฒด-์ตœ์ข…

PDF

( )-91.fm

(72) ๋ฐœ๋ช…์ž ์ด๋™ํฌ ์„œ์šธ ๋™์ž‘๊ตฌ ์—ฌ์˜๋Œ€๋ฐฉ๋กœ44๊ธธ 10, 101๋™ 802ํ˜ธ (๋Œ€ ๋ฐฉ๋™, ๋Œ€๋ฆผ์•„ํŒŒํŠธ) ๋…ธ์‚ผํ˜ ์„œ์šธ ์ค‘๊ตฌ ์ •๋™๊ธธ 21-31, B๋™ 404ํ˜ธ (์ •๋™, ์ •๋™์ƒ ๋ฆผ์›) ์ด ๋ฐœ๋ช…์„ ์ง€์›ํ•œ ๊ตญ๊ฐ€์—ฐ๊ตฌ๊ฐœ๋ฐœ์‚ฌ์—… ๊ณผ์ œ๊ณ ์œ ๋ฒˆํ˜ธ ๋ถ€์ฒ˜๋ช… ๊ต์œก๊ณผํ•™๊ธฐ์ˆ ๋ถ€

<C7D1BDC4BFAC20B1E8B5BFBCF6B9DABBE7B4D4676C75636F20C3D6C1BE5B315D2E687770>

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

09๊ถŒ์˜ค์„ค_ok.hwp

ISO17025.PDF

139~144 ยฟร€ยฐรธยพร ร„ยง

10 (10.1) (10.2),,

Transcription:

Wet etching of magnetic thin films 2003 2 ( )

Wet etching of magnetic thin films 2003 2

20032

Wet etching of magnetic thin films by

Submitted to the faculty of in partial fulfillment of the requirements for the degree of Department of Chemical Engineering February 2003

NiFe, CoFe, IrMn HNO 3, HCl, H 2 SO 4, H 3 PO 4, HF profile.. NiFe HNO 3, profilehcl H 2 SO 4. NiFe HCl, field emission auger electron spectroscopy(feaes) x-ray photoelectron spectroscopy(xps) ClNiFe. CoFe NiFe HNO 3, HCl. CoFe profilehno 3 HNO 3. HCl. FEAES XPS ClCoFe. IrMn HNO 3, HCl, HF

. HNO 3 HCl, HF. : Magnetic material, Wet etching, Etchant, Magnetoresistive random access memory(mram), Tunneling magnetoresistance (TMR)

The wet etching characteristics of magnetic materials such as NiFe, CoFe, and IrMn were investigated in terms of etch rate and etch profile by using various etching solutions (etchants). Among the various etching solutions, HNO 3, HCl, H 2 SO 4, H 3 PO 4, and HF were selected for the etching of magnetic materials and the etch results were interesting and showed different characteristics. In the case of NiFe films, faster etch rate were obtained with HNO 3 solution and the HCl and H 2 SO 4 solutions gave rise to better etch profile than HNO 3 solution. When NiFe films were etched with HCl solution, white etch residues were found on the surface of etched films. From field emission auger electron spectroscopy(feaes) analysis and x-ray photoelectron spectroscopy(xps) analysis of these etch residues, they were confirmed to be the by-products from the reaction of NiFe with Cl. The variation of etch rate of CoFe thin films showed the similar trend to the that case of NiFe films. They were etched fast in HNO 3 solution while they showed slow etching in HCl solution. The etch profiles of CoFe films were smooth in dilute HNO 3 solution but revealed the partial etching around the patterns in HNO 3 solution of relatively high concentration. It was observed that the etched surface etched with HCl solution was clean and smooth while white etch residues were also

remained on the etched films. From FEAES and XPS analyses of these etch residue, they were proved to be by-product from the reaction of CoFe with Cl. IrMn thin films were etched fast for HNO 3, HCl and HF solutions. However the film surfaces etched with HNO 3, and HCl solutions were craked and in case of HF solution, the etched surface was smooth. Keywords: Magnetic material, Wet etching, Etchant, Magnetoresistive random access memory (MRAM), Tunneling magnetoresistance (TMR)

Table of Contents......i Abstract...iii List of figures...vi List of table...ix 1. Introduction...1 2. Theoretical Background...8 (1)...8 (2)...8 3. Experimental...11 4. Results and Discussion...13 (1) NiFe...15 (2) CoFe...26 (3) IrMn...35 (4) TMR stackwet cleaning...39 5. Conclusions...41 6. References...44 7. Acknowledgements...45

List of Figures Fig.1.MTJ. 2 Fig.2.MRAM. 4 Fig.3.FESEMmicrographsoftypicalwetetching. 10 Fig.4.Flowchartofexperimental. 12 Fig. 5. Etch depth of NiFe as a function of etch time in HNO 3 solutions at 25 o C. 16 Fig. 6. Etch depth of NiFe as a function of etch time in HCl solutions at 25 o C. 16 Fig. 7. Etch depth of NiFe as a function of etch time in H 2 SO 4 solutions at 25 o C. 17 Fig. 8. Etch depth of NiFe as a function of etch time in H 3 PO 4 solutions at 25 o C. 17 Fig. 9. FESEM micrographs of NiFe films etched by using HNO 3 :H 2 O=1:8 solutionsat25 o C. (a) Etch time : 1 min 30 sec (b) Etch time : 2 min 30 sec (c) Etch time : 3 min 19

Fig. 10. FESEM micrographs of NiFe films etched by using pure HCl solutions at25 o C. (a) Etch time : 2 min (b) Etch time : 3 min 20 Fig. 11. FEAES analysis of NiFe films etched bypurehcl. 2 Fig. 12. XPS ful spectra of NiFe films etched bypurehcl. 23 Fig. 13. XPS narrow scanofnifefilmsetchedbypurehcl. 24 Fig. 14. FESEM micrographs of NiFe films etched by using H 2 SO 4 :H 2 O=1:5 solutionsat25 o C.(Etchtime:9min) 25 Fig. 15. Etch depth of CoFe as a function of etch time in HNO 3 solutions at 25 o C. 27 Fig. 16. Etch depth of CoFe as a function of etch time in HCl solutions at 25 o C. 27 Fig. 17. Etch depth of CoFe as a function of etch time in H2SO 4 solutions at 25 o C. 28 Fig. 18. Etch depth of CoFe as a function of etch time in H3PO 4 solutions at 25 o C. 28 Fig. 19. FESEM micrographs of CoFe films etched by using etch solutions at25 o C 31. (a) HNO 3 :H 2 O=1:700, Etch time : 50 sec (b) HCl:H 2 O=1:1, Etch time : 5 min

Fig. 20. FEAES analysis of CoFe films etched by HCl solutions. 32 Fig. 21. XPS ful spectra of CoFe films etched by HCl solutions. 33 Fig. 22. XPS narrow scan of CoFe films etched by HCl solutions. 34 Fig. 23. Etch depth of IrMn as a function of etch time in HNO 3 solutions at 25 o C. 36 Fig. 24. Etch depth of IrMn as a function of etch time in HCl solutions at 25 o C. 36 Fig. 25. Etch depth of IrMn as a function of etch time in HF solutions at 25 o C. 37 Fig. 26. FESEM micrographs of IrMn films etched by using etch solutions at25 o C. 38 (a) HNO 3 :H 2 O=1:700, Etch time : 1 min (b) HCl:H 2 O=1:700, Etch time : 1 min (c) HF:H 2 O=1:1000, Etch time : 1 min Fig. 27. FESEM micrographs of TMR stack etched by using etch solutions at25 o C. 40 Fig. 28. FESEM micrographs of TMR stack etched by using etch solutions at25 o C. 40

List of Tables Table 1. melting point boilingpoint. 14

1. Introduction 21.,,, /, Ubiquitous,, Video-phone/Video-conference, 3-D. non-volatile memory. DRAMscaling down dopant level, interconnect RC delay, gate 5-10 4-16 GDRAM. Flash memoryspeed ferroelectric random access memory(feram).

spin magnetoresistive random access memory (MRAM). MRAM tunnel (magnetic tunnel junction; MTJ). MTJ2 nm Al 2 O 3. tunnel conductance spin. 2. 2 spin tunnel (tunneling magnetoresistance; TMR). Tunnel 1 spin Antiferromagnet Ferromagnet Insulator Ferromagnet Fig. 1. MTJ.

spin switch spin valve [1]. MRAM 2(a) matrix bit (BL)word(WL) memory cell. cell spin. 1, 0 TMR. cell switch 2(b)bit1MTJ 1 MOS transistor. DRAMcapacitorMTJ. MTJspin ns SRAM DRAM memory [2]. IBM 1 k-16 klow density MRAM [2]. MRAM non-volatile DRAM read/write. MRAM MTJ, power, architecture, LSIprocess. LSI TMR ion milling

Word line Current TMR cell Bit line (a) Insulating layer M2 M1 Bit line M3 M4 TMR cell Word line M1 p n + Gate n + MOSFET (b) Fig. 2. MRAM.

(reactive ion etching; RIE) [3]. spintronics anisotropic magnetoresistance(amr), gaint magnetoresistance(gmr), tunneling magnetoresistance(tmr), cell,,. TMR cell ion milling m MR % micron. GMR TMR cellmram TMR stack. 1986 AT&T Bell lab chemically assisted ion beam etching(caibe) NiFe 10 1996 (NRIM) NiFeMo (reactive ion etching; RIE). 1997 1999 Honeywell, IBM, NiFe, NiFeCo, FeMn, NiMnSb

2000 MotorolaGMR. HoneywellIBM1999 ion beam etching(ion milling) GMR TMR cell. 1 m ion beam etching GMR TMR cell. Ion beam etching. (a) (etch residue) (b) (radiation damage) (c) (d) (redeposition) 4 inch6 inch wafer ion milling GMR TMR integration uniformity (etch damage) yield. TMR cell MRAM

integration. MRAM NiFe, CoFe, IrMn, (etchant) HNO 3, HCl, H 2 SO 4, H 3 PO 4, HF, [4-6]. profile. field emission auger electron spectroscopy (FEAES)xray photoelectron spectroscopy (XPS)., MRAMTMR stack, TMR stack (etch residue) cleaning.

2. Theoretical Background 2.1 Microelectronic. 2.2 (a) Wet etching (b) Dry etching Non-reactive plasma : Reactive plasma : High density plasma : Sputtering Ion beam etching (Ion milling) Plasma etching Reactive ion etching Reactive ion beam etching Chemically assisted ion beam etching Magnetron RIE Electron cyclotron resonance(ecr) RIE Inductively coupled plasma(icp) RIE Transformerly coupled plasma(tcp) RIE..

,...,, hard mask SiO 2. (isotropic). 3 FESEM [7].

Fig. 3. FESEM micrographs of typical wet etching. 3. Experimental

SiO 2 Si NiFe, CoFe, IrMn dc magnetron sputtering 2000. (photoresist) 1.2 lithography. gradehno 3, HCl, H 2 SO 4, H 2 SO 4, HF deionized(di) water [8-9]., dektak surface profilometer(dektak 3), profilefield emission scanning electron microscopy(fesem ; Hitachi S-4500). field emission auger electron spectroscopy(feaes ; VG 350)x-ray photoelectron spectroscopy(xps ; PHI Quantum 2000, µ-xps).

Fig. 4. Flow chart of experimental. 4. Results and Discussion

(photoresist) NiFe, CoFe, IrMn.. FEAES.,. 1 [10]., NO 3, F IrF 6..,, NO 3 HNO 3, IrMn F HF.

Table 1. melting point boiling point. 4.1 NiFe

5 8. 5 HNO 3.., HNO 3 :H 2 O 2:1 550 /min, 1:2 900 /min, 1:81:12 710 /min. 6, 7 8 HCl, H 2 SO 4, H 3 PO 4. 50~100 /min HNO 3. HF HF:H 2 O 1:10, 1:5, 1:1, 1:0 NiFe HF.

2500 Etch depth () 2000 1500 1000 HNO 3 :H 2 O 2:1 1:2 1:8 1:12 500 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 Etch time (sec) Fig. 5. Etch depth of NiFe as a function of etch time in HNO 3 solutions at 25 o C. 2500 2000 HCl:H 2 O 1:10 1:0 Etch depth () 1500 1000 500 0 0 2 4 6 8 10 Etch time (min) Fig. 6. Etch depth of NiFe as a function of etch time in HCl solutions at 25 o C.

2500 2000 H 2 SO 4 :H 2 O 2:1 1:5 Etch depth () 1500 1000 500 0 0 2 4 6 8 10 Etch time (min) Fig. 7. Etch depth of NiFe as a function of etch time in H 2 SO 4 solutions at 25 o C. 2500 2000 H 3 PO 4 :H 2 O 1:1 1:5 Etch depth () 1500 1000 500 0 0 2 4 6 8 10 12 14 16 Etch time (min) Fig. 8. Etch depth of NiFe as a function of etch time in H 3 PO 4 solutions at 25 o C.

NiFe profile 9. 9(a), 9(b) 9(c)HNO 3 :H 2 O 1:8 NiFe FESEM. NiFe HNO 3,.,. 10(a) 10(b) HCl NiFe profilefesem. 10(a) 10(b) HCl HNO 3.. NiFe HCl, FEAESXPS. 11NiFe HCl FEAES. 11 NiFe Cl., HCl ClNiFe. FESEM. mask

Fig. 9. FESEM micrographs of NiFe films etched by using HNO 3 :H 2 O=1:8 solutions at 25 o C. (a) Etch time : 1 min 30 sec (b) Etch time : 2 min 30 sec (c) Etch time : 3 min

Fig. 10. FESEM micrographs of NiFe films etched by using pure HCl solutions at 25 o C. (a) Etch time : 2 min (b) Etch time : 3 min

CO. 12NiFe HCl, sputter XPS full spectra. full spectra Clpeak. COpeak. Nipeak Fe peak. sputter XPS full spectrasputter full spectra Clpeak. C Opeak, NiFepeak. 12 sputter Clsputter,, NiFe HCl Cl. 13NiFe pure HCl NiFe Ni 2p3sputter sputter XPS narrow scan. Sputter narrow scanni 2p3 peak binding energy856.6 ev. Sputter Ni 2p3 peakbinding energy 852.8 ev NiFe

. Reference Nihalides Ni 2p3 peakbinding energy855~867.5 ev. XPS narrow scannihalides., NiCl, NiCl 2. NiFe films kcounts/ev Fe Fe Fe Ni/Fe Ni C O Cl Ni 100 200 300 400 500 600 700 800 900 1000 Kinetic Energy(eV) Fig. 11. FEAES analysis of NiFe films etched by pure HCl.

after sputtering before sputtering Fe Fe2p3 Fe2p1 Fe Ni Fe Ni Ni Ni2p1 Intensity (arb. units) Ni2s C Ni2p1 Ni2p3 O Fe O1s Ni Ni C1s Cl2s C1s Cl2p Cl2p Ni2p3 Ni3s Fe3s Fe3p Ni3p Ni3s O2s Ni3p 1000 800 600 400 200 0 Binding Energy (ev) Fig. 12. XPS full spectra of NiFe films etched by pure HCl.

Ni2p Ni2p3 Intensity (arb. units) after sputtering before sputtering 885 880 875 870 865 860 855 850 Binding Energy (ev) Fig. 13. XPS narrow scan of NiFe films etched by pure HCl.

14H 2 SO 4 :H 2 O 1:5H 2 SO 4 NiFe FESEM. HCl, HCl. Fig. 14. FESEM micrographs of NiFe films etched by using H 2 SO 4 :H 2 O=1:5 solutions at 25 o C ; Etch time: 9 min.

4.2 CoFe 15 18HNO 3, HCl, H 2 SO 4, H 3 PO 4 CoFe. 15 CoFe HNO 3. HNO 3 :H 2 O 1:500, HNO 3 :H 2 O 1:1000 1.. HNO 3 :H 2 O 1:700 400 /min. 16NiFe, CoFe HCl. 50 /min. 17 18 H 2 SO 4 H 3 PO 4. H 2 SO 4 H 3 PO 4 100~200 /min. HF HF:H 2 O 1:10, 1:5, 1:1 1:0 CoFe 10.

2500 Etch depth () 2000 1500 1000 HNO 3 :H 2 O 1:100 1:700 1:1000 500 0 0 10 20 30 40 50 60 Etch time (sec) Fig. 15. Etch depth of CoFe as a function of etch time in HNO 3 solutions at 25 o C. Etch depth () 2500 2000 1500 1000 HCl:H 2 O 1:0 1:1 1:5 500 0 0 2 4 6 8 Etch time (min) Fig. 16. Etch depth of CoFe as a function of etch time in HCl solutions at 25 o C.

2500 2000 H 2 SO 4 1:1 1:5 Etch depth () 1500 1000 500 0 0 2 4 6 8 10 12 14 16 Etch time (min) Fig. 17. Etch depth of CoFe as a function of etch time in H 2 SO 4 solutions at 25 o C. 2000 H 3 PO 4 1:1 1:5 1500 Etch depth () 1000 500 0 0 2 4 6 8 10 12 14 16 Etch time (min) Fig. 18. Etch depth of CoFe as a function of etch time in H 3 PO 4 solutions at 25 o C.

19CoFe HNO 3 HCl FESEM. 19(a)HNO 3 :H 2 O 1:700 CoFe profile. NiFe HNO 3. 19(b)HCl:H 2 O 1:1 profile. NiFe HCl,., FEAESXPS. 20CoFe HCl FEAES. 20 NiFe Cl., HCl CoFe. FESEM. mask CO. 21 CoFe XPS full spectra. Cl., COpeak, NiFe

. Copeak Fepeak. sputterfull spectra Clpeak. Cpeaksputter O peak., CoFepeak. 21 sputter sputter XPS full spectracofe HCl Cl. Cl Co Co 2p3. 22 CoFe Co 2p3 peakxps narrow scan CoFe sputter Co 2p3 peakxps narrow scan. Sputter Co2p3 peakbinding energy778.5 evcoreference data., sputtercofe Co Co., sputter Co 2p3 peakbinding energy782 ev. Cohalides. CoFe HCl FESEM CoCl, CoCl 2.

Fig. 19. FESEM micrographs of CoFe films etched by using etch solutions at 25 o C. (a) HNO 3 :H 2 O=1:700, Etch time : 50 sec (b) HCl:H 2 O=1:1, Etch time : 5 min

CoFe films kcounts/ev Fe Fe Cl O Co/Fe Co/Fe C Co 100 200 300 400 500 600 700 800 900 1000 Kinetic Energy (ev) Fig. 20. FEAES analysis of CoFe films etched by HCl solutions.

after sputtering C Co2p before sputtering Fe2p3 Fe2p1 O Co Co Co O1s Co C1s Co2p1 Co2p3 Intensity (arb. units) Co2s Cl2s C1s Cl2p Co3p Co3s Co3s Co3p O2s 1000 800 600 400 200 0 Binding Energy (ev) Fig. 21. XPS full spectra of CoFe films etched by HCl solutions.

Co2p Co2p3 Intensity (arb. units) after sputtering before sputtering 810 805 800 795 790 785 780 775 Binding Energy (ev) Fig. 22. XPS narrow scan of CoFe films etched by HCl solutions.

4.3 IrMn 23 25HNO 3, HCl HF IrMn. 23 24IrMn HNO 3 HCl. 400~500 /min. HNO 3 :H 2 O, HCl:H 2 O 1:500. 25 HF HF:H 2 O 1:2000. H 2 SO 4 H 3 PO 4 H 2 O1:1000 IrMn. 26(a) 26(b)IrMn HNO 3 HCl FESEM. 26(a) 26(b). 25(c)HF FESEM..

2500 2000 HNO 3 :H 2 O 1:700 1:1000 Etch depth () 1500 1000 500 0 0 30 60 90 120 150 180 Etch time (sec) Fig. 23. Etch depth of IrMn as a function of etch time in HNO 3 solutions at 25 o C. 2500 2000 HCl:H 2 O 1:700 1:1000 Etch depth () 1500 1000 500 0 0 10 20 30 40 50 60 Etch time (sec) Fig. 24. Etch depth of IrMn as a function of etch time in HCl solutions at 25 o C.

2500 2000 HF:H 2 O 1:1000 1:2000 Etch depth () 1500 1000 500 0 0 10 20 30 40 50 60 Etch time (sec) Fig. 25. Etch depth of IrMn as a function of etch time in HF solutions at 25 o C.

Fig. 26. FESEM micrographs of IrMn films etched by using etch solutions at 25 o C. (a) HNO 3 :H 2 O=1:700, Etch time : 1 min (b) HCl:H 2 O=1:700, Etch time : 1 min (c) HF:H 2 O=1:1000, Etch time : 1 min

4. 4 TMR stackwet cleaning ion milling. ion milling... HNO 3, HCl profile cleaning. 27HNO 3 :H 2 O 1:50 TMR stackwet cleaningfesem. Wet cleaning. 28 FESEM. HNO 3 :HCl:H 2 O=1:1:50.

. (a) before cleaning (b) after cleaning Fig. 27. FESEM micrographs of TMR stack etched by using etch solutions at 25 o C. (a) before cleaning (b) after cleaning Fig. 28. FESEM micrographs of TMR stack etched by using etch solutions at 25 o C.

5. Conclusions MRAM NiFe, CoFe, IrMn HNO 3, HCl, H 2 SO 4, H 3 PO 4 HF.,. HNO 3, HCl, H 2 SO 4, H 3 PO 4, HF NiFe, CoFe, IrMn profile. NiFeHNO 3,. HCl. HCl, FEAESXPS HCl ClNiFe. H 2 SO 4 HCl profile, HCl. H 3 PO 4

, HF. CoFe, HNO 3. HCl. FEAESXPS ClCoFe. H 2 SO 4 H 3 PO 4 HCl. HF. IrMn HNO 3 HCl, H 2 SO 4 H 3 PO 4 IrMn. HF HF:H 2 O 1:2000. TMR stackion milling cleaning. FESEM cleaning.

, cleaning.

6. References [1] S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, IEEE ransactions on Magnetics, 35(5) (1999). [2] S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. eyers, R. E. Scheuerlein, et al., J. Appl. Phys., 85(8), 5828 (1999). [3] Nikkei Electronics, p.65 (2000. 3. 27). [4] X. A. CAO, J. A. Caballero, K. B. Jung, J. W. Lee, S. Onishi, J. A. Childress and S. J. Pearton, Solid-State Electronics. 42(9), 1705 (1998). [5] A. O. Adeyeye, J. A. C. Bland, C. Daboo, D. G. Hasko and H. Ahmed, J. Appl. Phys. 82(1), 469 (1997). [6] Y. H. Byun, H. I. Kim and C. W. Chung, Proceedings of 2001 KIChE, Fall Meeting, 7(2), 5159 (2001). [7] C. Y. Chang and S. M. Sze, ULSI Technology, The McGRAW-HILL, 329 (1996). [8] Y. H. Byun,, C. W. Chung,, 15(2), 105 (2002). [9] Y. H. Byun, H. I. Kim, Y. S. Song, J. K. Yoon and C. W. Chung, J. Ind. Eng. Chem., 8(3), 257 (2002). [10] David R. Lide, CRC Handbook of Chemistry and Physics 81 st Edition, CRC Press, (2000).

7. Acknowledgements