NEA 클라이언트 Web-Browser NEA Web-Server NEA DATABASE SERVAER Internet
SNM Vaults/Concentrators Sensor Poling & Config system GraFIC DB Server (DBS) GraFIC Workstation (Client)
Regisonal Monitoring station Regisonal Monitoring station... Central Monitoring station Database Server DACOM Internet Client Browser
Manupulator WebCam Server RobWebCam Server Internet Client Manipulator Positioning Camera Image or Video
ϕ(ω) y(t) Y (ω) ˆ ω + S ( ) - + - IDFT s ˆ ( t ) n(t) N(ω)
) ˆ( ) ˆ( ) ˆ( ) ( ) ( ) ( ) ( 1 ) ( ) ( ) ˆ( ) ( ) ( ) ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1 ) ( 1 ) ( ) ( ) ( t s e S S Y H e Y N Y e S S N Y S n t t s t y e Y Y n t e N N t s e S S y y y y n s j j Na i i j Na i i j j j = = = = = + = = = = = = ω ϕ ω ϕ ω ϕ ω ϕ ω ϕ ω ϕ ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ) ˆ ˆ ˆ
ˆ s ( t ) + n ( t ) + e ( t ) = n ˆ( t ) z - - W k (t) s ˆ ( t ) w µε x k + 1 = w k + 2 k k
ξ ( t ) =e 2 ( t ) w µε x k + 1 = w k +2 Delay : step size: µ Filter Length: M k k W 1 W 1 W 2 W 1 W opt M=2 Initial point W 2 Initial point W 2 신호입력 x k w 0 z -1 x k-1 w 1 z -1 x k-2 w 2 x k--m+1 w M-1 z -1 x k-m w M 필터수정 Σ - y k 요구예측신호 오차 e k Σ d k + 요구신호
ˆ ˆ ˆ ˆ ˆ
y y ] T = [ y0, y1,... y N 1 y = y + n y y0 y1 H = Μ yl 1 y y y 1 2 Μ L Λ Λ Λ y y M 1 y M Μ N 1
H = H + N H y L M H R L M H R L M U R L M V R H T = U V T T U = HH V = H H = diag( σ1, σ 2,..., σ M ) σ1, σ 2,..., σ M 0
H 0 0 2 V T 1 V 1 [ U U ] = 1 2 T 2 U 1 R L K K K 1 R V 2 R M K H H 0 V T 1 0 V1 [ U U ] = 1 2 T 2 0 N T N = 0 T 2 N N = σ noise I 1 2 H σ K > σ K + 1 H
T 2 min HT H M M LS R F T 1 T ( H H) H H T = T 1 T HT = H( H H) H H HT = UU = H T H y
CWT ( a, b) = * t b s( t) ψ dt = a s( t) e 2 t b 2 / σ a e f0 j 2π ( t b) a dt ψ( t) = Ae t b a 2 2 / σ 0 e f j 2π ( t b) a
ψ ( t ) = Ae 2 t b 2 / f σ 0 j 2 π ( t b ) a a e Frequency (a) s(t) t Time(s) t j / 2 j W. ( t) = a0 ψ ( a0 t kb0 ) j k
y[ n] = x[ n]* g[ n] = x[ k] g[ n k] k
n h[ N 1 n] = ( 1) g[ n] y[ n] = x[ n]* h[ n] = x[ k] h[ n k] k
y [ k] = x[ n] g[2k n] high n y [ k] = x[ n] h[2k n] low n x[ n] = yhigh[ k] g[2k n]) + ylow[ k] h[2k n]) φ(t) 1 0 1
S ( t, f) * πτ f = h ( τ t) s( τ) e j2 d τ
requencyrequency(f(f) Time (t) F) Time (t) F
dt e e t s dt a b t t s b a CWT b t a f j a b t = = ) ( 2 / * 0 2 2 ) ( ) ( ), ( π σ ψ ) ( 2 / 0 2 2 ) ( b t a f j a b t e Ae t π σ = ψ Time(s) t Frequency ( a ) t s(t) ) ( 2 / 0 2 2 () b t a f j a b t e Ae t π σ = ψ Time(s) t Frequency ( a ) t s(t) ) ( 2 / 0 2 2 () b t a f j a b t e Ae t π σ = ψ
W ( t, f ) = τ s( t + ) s 2 * τ ( t ) e 2 j 2πfτ dτ Tw τ * τ τ * τ j2πτ f Wpw(, t f) = s( t+ ) s ( t ) h( ) h ( ) e dτ T 2 2 2 2 W
τ * τ j2π( ξt+ fτ ξu) Sc ( t, f ) = Φ( ξτ, ) s( u + ) s ( u ) e dξdudτ 2 2
Φ( ξτ, ) / = ξτ σ e 2 2
f c = 1.6 (2T ) d f c = 1.6 (2T d ) 1.6 (2( πk = 0.5 0.1 0.2 2 hm E R 1 1 0.5 0.1 0. )) = 0.8π K h m E R
2 1 3 1 5 5 2 5 1 + k 2 ) R ( mv ) F _ max = 1.23(k 2 k 1 ν = 2 1,2 1,2 πe1, 2 2 1 2 2 2 5 F 1.23 1 ν 1 ν 1 _ max = ( + ) R ( mv 2 E1 E 2 2 π 5 1 5 2 ) 3 5
0.5 1 x 104 D=25.4mm Acc 0-0.5-1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Time x 10-3 1 x 104 D=19.05mm 0.5 Acc 0-0.5-1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Time x 10-3
D(t) = D max π sin( T d t)
π D (t) = V(t) = T d D max π cos( T d t) π D (t) = A(t) = ( ) T d 2 D max π sin( T d t) 0 t Td V max = V 0 Td = π A max = V π 0 = D max Td
2.94 V = 0 D max Td π 2.94 = 7.2% 2.94 V 0
Acc 0.4 0.2 0 dist=0 dist=0.1m dist=0.2m -0.2 Max-Acc -0.4 0 1 2 3 4 5 6 7 8 Time Max-Acceleration By distance x 10-4 0.35 Experimental Acc 0.3 Theorical Acc 0.25 0.2 0.15 0.1 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Distance
m = 4 π R 3 ρ 3 2.5 2 Comparision of Theorical and Experimental Velocity steel ball diameter 25.4mm experimental velocity theorical velocity Velocity(m/s) 1.5 1 0.5 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Height(m)
1.8 1.6 Comparision of Theorical and Experimental Velocity steel ball diameter 19.05mm experimental velocity theorical velocity 1.4 Velocity(m/s) 1.2 1 0.8 0.6 0.4 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Height(m)
0.018 0.017 0.016 Estimated Radius By Theorical Velocity Estimated Radius for D=25.4mm Estimated Radius for D=19.05mm Radius D=25.4mm(True) Radius D=19.05mm(True) Radius(m) 0.015 0.014 0.013 0.012 0.011 0.01 0.009 0.008 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Height(m) 0.018 0.017 0.016 Estimated Radius By Experimental Velocity Estimated Radius for D=25.4mm Estimated Radius for D=19.05mm Radius D=25.4mm(True) Radius D=19.05mm(True) Radius(m) 0.015 0.014 0.013 0.012 0.011 0.01 0.009 0.008 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Height(m)
q 2 k 2 T k 2 w c T 2 2 k p 2 k 2 L k 2 w c L 2 k 2
b a θ z r
ur u 1 uθ u z ur σ rr = λ + + + + 2µ r r r θ z r σ r θ uθ uθ 1 ur = µ + r r r θ ur σ = zr µ z uz + r
2 2 n g3 σ rr = λ( α + ξ ) f + 2µ f " + g3' + ξg1' cos nθ cos( ωt + ξz) r r 2n f 2 n + 1 σ r θ = µ f ' (2g3" + β g3) ξ g1 g1' sin nθ cos( ωt + ξz) r r r
n n( n + 1) 2 2 nξ σ zr = µ 2ξf ' g1' + ( β ξ ) g1 g3 cos nθ sin( ωt + ξz) 2 r + r r
X 그림 4.1.4 S/G tube 유도초음파분산선도. (a) 군속도선도, (b) 위상속도선도 (2) 탐촉자와입사각에따른이론적인유도초음파의속도 그림 4.1.4 에서구한분산선도의모드들은이론적인해로써실제로모두발생가능하지는않다. 이는파동의기본원리에기인하며, 각의모드들이가지는위상속도 ( V ph ) 에식 (4.1.33) 의 Snell s Law 를적용, 임계각 (critical angle) 부근에서유도초음파가발생하는이론적인발생입사각 ( θ incidence ) 을계산할수있다. - 151 -
V Acryl ( wedge) sinθ incidence = V ph sin90 (4.1.33) 입사각은선택된모드의위상속도에의해결정이되는데, 이위상속도가웨지의종파속도보다작은모드들은전파하지못한다. 따라서각각의모드들에대한발생입사각을계산할수있는데, 3 종류의탐촉자 (0.5, 1.0, 2.25 MHz) 에대하여전파가능한모드들의입사각, 모드, 위상속도, 군속도 ( V g ) 의관계를표 4.1.3 에나타내었다. 표 4.1.3 탐촉자에따른군속도, 위상속도, 입사각, 모드와의관계 Frequency = 0.5 MHz (fd =0.545) θ inc ( ) Mode V ph (mm/ V g (mm/ Frequency = 2.25 MHz (fd =2.4525) θ inc ( ) Mode V ph (mm/ V g (mm/ μs ) μs ) μs ) μs ) 20.0401 F(4,3) 7.9375 3.1256 22.9262 F(5,5) 6.9825 3.4599 25.3905 F(3,3) 6.3435 4.1458 23.2609 F(4,5) 6.8875 3.5097 28.7307 F(2,3) 5.6585 4.7501 23.5140 F(3,5) 6.8175 3.5489 30.6119 F(1,3) 5.3415 5.0786 23.6983 F(2,5) 6.7675 3.5751 31.2277 L(0,2) 5.2465 5.1824 23.8066 F(1,5) 6.7385 3.5907 47.2767 F(5,2) 3.7025 2.4845 23.8404 L(0,3) 6.7295 3.5987 52.2831 F(4,2) 3.3485 2.7005 42.6520 F(5,4) 4.0145 2.3190 56.3766 F(3,2) 3.2665 2.8651 42.9169 F(4,4) 3.9945 2.3361 59.4480 F(2,2) 3.1585 2.9836 43.1180 F(3,4) 3.9795 2.3548 61.4173 F(1,2) 3.0975 3.0515 43.2669 F(2,4) 3.9685 2.3684 Frequency = 1.0 MHz (fd =1.09) 43.3486 F(1,4) 3.9625 2.3726 θ inc ( ) Mode V ph (mm/ V g (mm/ 45.4394 F(5,3) 3.8175 1.7030 μs ) μs ) 27.9227 F(5,3) 5.8085 4.3612 45.6539 F(4,3) 3.8035 1.7058 29.3436 F(4,3) 5.5505 4.5761 45.8242 F(3,3) 3.7925 1.7035 30.4165 F(3,3) 5.3725 4.7448 45.9333 F(2,3) 3.7855 1.7075 31.1749 F(2,3) 5.2545 4.8556 46.0117 F(1,3) 3.7805 1.7098 31.6168 F(1,3) 5.1885 4.9235 46.0431 L(0,2) 3.7785 1.7086 31.7672 L(0,2) 5.1665 4.9458 61.3157 F(5,2) 3.1005 3.0478 58.1648 F(5,2) 3.2015 2.9521 61.5878 F(4,2) 3.0925 3.0926 59.5404 F(4,2) 3.1555 2.9982 61.7944 F(3,2) 3.0865 3.0864 60.6516 F(3,2) 3.1205 3.0345 61.9682 F(2,2) 3.0815 3.0815 61.4513 F(2,2) 3.0965 3.0570 62.0382 F(1,2) 3.0795 3.0795 61.9333 F(1,2) 3.0825 3.0746 88.9015 F(5,1) 2.7205 3.0332-152 -
나. 실험 (1) 실험장치 본연구를위한실험장치로먼저신호를표시하고저장하는오실로스코프는 Lecory 9310A 모델로 400 MHz digital sampling 이가능하며, 외부와의통신을위해디스켓드라이브를비롯한 RS-232C 포트를가지고있다. 여기에서는실험대상체인증기발생기세관, 유도초음파를발진하고수신하기장치인 RAM-10000, 가변각웨지, 초음파탐촉자등에대해보다자세히설명한후, 이장치들의구성및실험과정을기술하였다. ( 가 ) 증기발생기세관 연구대상체로선정된증기발생기세관은원자력발전소의원자로에서만들어진열에너지를흡수하는장치로, 니켈및크롬이다량함유된합금강으로되어있어내산화및내환화성이좋으며특히, 고온내수성이뛰어나다. 그림 4.1.5(a) 증기발생기내 외부사용위치에따라그곡률의차이는있으나그림 4.1.5(b) 와같은 U 자형으로되어있으며, 본연구에서는울진 3,4호기용이사용되었다. 그림 4.1.5 연구대상체. (a) 증기발생기의구조, (b) 증기발생기세관 - 153 -
( 나 ) RAM-10000 (Pulser / Receiver) 유도초음파를발생시키기위해서, 일반초음파와는달리장거리탐상을위한고출력발생장치, 보다정밀한 Tone burst 출력과연속적인주파수등을제어하기위한 Pulser/Receiver로본연구에서는 RITEC RAM-10000을사용하였다. 이장치는그림 4.1.6과같이 PC에연결, 전용프로그램에서각종셋팅값을설정하여실험을수행한다. 그림 4.1.6 RITEC RAM-10000 [3-1] 표 4.1.4는본장치의대표적인특징으로고출력, 연속주파수파형발생가능, 광주파수대역, 정밀하고간편한제어등이나타나있다. 표 4.1.4 RITEC RAM-10000 특징 Item Contents Up to 5KW RF Burst Output Up to 7MHz Source Continuous wave frequency Frequency Range 20 KHz 45 MHz (3 models) Signal processing Phase angle: within 0.03 deg. Measurement Amplitude: within 0.01dB ( 다 ) 가변각쐐기 (Wedge with the changeable angle) 물리적인파동법칙을만족하는유도초음파를발생시키고또원하는모드 - 154 -
를선택적으로발생시키기위해서는초음파입사각의변경이가능해야한다. 이를위해서그림 4.1.7과같은가변각웨지 2개를설계, 제작하였다. 초음파의왜곡이발생할수있는접합계면을없애기위해서특수가공으로제작되었으며, 재질은 Plexiglass로써종파속도 2720 m/s 이다. 그림 4.1.7 쐐기도면 ( 라 ) 초음파탐촉자 (Probe) 초음파탐촉자는그림 4.1.8 과같은 Panametrics INC. ACCUSACN-S, 사각형탐촉자 0.5, 1.0, 2.25, 3.5 MHz 를사용하 였다. - 155 -
E : 0.73" F : 0.63" G : 1.31" H : 1.53" 그림 4.1.8 탐촉자의외관및크기 탐촉자는선택적으로유도초음파를발생시키기위해서그림 4.1.9 와같 이쐐기에장착되어실험이수행되었다. 그림 4.1.9 가변각웨지에장착된탐촉자관경에비해상당히큰크기로인한초음파빔퍼짐이라는단점에도불구하고본탐촉자를사용할수밖에없었던이유는, 고출력에견뎌내는탐촉자를선정하기가매우곤란하였기때문이다. 실제탐촉자제작 판매회사에문의를해본결과, 유도초음파용탐촉자는만들지않는다고한다. 일반적인탐촉자는평균 400 Volt, 최고 900 Volt 까지견딜수있다고한다. 그러나 RAM-10000에서유도초음파를발생시키기위해서는, 게인값과주파수에따라 4001400 Volt가필요하므로실험시초음파탐촉자의특성을보장할수없다. 본연구에서사용된탐촉자는이전연구에서사용되어그특성을검증받았다. 그럼에도 Attenuaton을최대한 - 156 -
줄여실험을할경우에는상당한주의가필요했다. ( 마 ) 실험장치의구성 그림 4.1.10 실험장치의구성앞서언급된오실로스코프, 증기발생기세관, RAM-10000, 가변각웨지, 초음파탐촉자및컨트롤 PC 등과같은실험장치는그림 4.1.10과같이구성되어실험이수행되어졌다. ( 바 ) 실험과정 <1> 케이블확인 : 실험을하는데앞서먼저해야할일은케이블을확인하는것이다. 그림 4.1.11은 Pitch-Catch 설정방법으로다음과같이실험장치들이연결되어실험이수행되어졌다. - 157 -
그림 4.1.11 실험장치간의연결도 (Pitch-catch) <2> RAM-10000 / Oscilloscope 의파워를켠다. <3> Control PC 를부팅한다. : 이때주의해야할점은 Control PC의 OS(operating system) 가 Win98인경우에는인터럽트를직접제어할수있기때문에별도의셋팅없이 RAM-10000 제어보드 / 프로그램을사용할수있으나, Win NT/2000/XP의경우에는 RAM-10000 제어보드에인터럽트를할당하는셋팅을해주어야한다. 이때, 윈도우기본프로그램에서는이를구현하기어려워별도의프로그램을사용하며, 시작프로그램에이를등록하여사용하면편리하다 - 158 -
Attenuator in 6dB 6dB 12dB out
400 300 Transit Time (μs) 200 100 0 500 1000 1500 2000 Distance (mm)
선결함 4mm 원결함 7mm 원결함
결함신호 모서리신호 L(0,5) L(0,4)
Amplitude [mv] Time [µs] 0.1 0.05 0-0.05-0.1-0.15 400 600 800 L(0,3), F(M,5) L(0,2), F(M,3) 6 0 100 200 300 400 500 600 700 800 900 1000 0 L(0,3), F(M,5) 200 L(0,2), F(M,3) L(0,4), F(M,6) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 fd [MHz mm] L(0,4), F(M,6) group velocity[km/s] 2 1 0 0.5 1.1 1.6 2.1 2.7 3.2 3.7 4.2 5 4 3 fd[mhz mm]
5 0 0 x 10-4 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 5 10 0 x 10-3 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 1 x 10 6 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
5 0 0 x 10-4 0.5 0 1 1.5 2 2.5 3 3.5 4 4.5 5 5 10-3 0 x 10 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 1 x 10 6 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5 x 10 6 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 x 10 6
τ = d c p d c p
a d N x n s n (t) = N Σ m =1,m n s mn t (m 1)d c, for n =1, 2, 3,, N p ms mn (t ) m n s mn (t ) c p τ = τ = d c p 1 s (t) = n Σ s n ( t (n 1) τ ) = N
t g = 2[x +(N 1)d ] c g + t 0 x N c g t 0 2(D + x ) (D (N 1)d )
R F S i g n a l Voltage 1. 0 0 0. 8 0 0. 6 0 0. 4 0 0. 2 0 0. 0 0-0. 2 0 0. 0 1 5. 0 1 1 0. 0 1 1 5. 0 1 2 0. 0 1 2 5. 0 1 3 0. 0 1 3 5. 0 1 4 0. 0 1 4 5. 0 1 5 0. 0 1-0. 4 0-0. 6 0-0. 8 0-1. 0 0 T i m e
10mm 4mm L
(a) (b) (c) L
t L L
t t t t
t t
Hole 200 배열형탐촉자 W.P1 W.P2 W.P3 S1 S2 100 W.P4 W.P5 200 200 200 Unit : [cm] 600 600 600 600
Instron 4505 PC AE Sensor Pre Amp Vallen AMSY-5 PC AE Sensor Pre Amp Oscilloscope
200 40 4 12 30 71 R9 200 40 4 12 30 71 R9 3 x 0.1 EDM Notch
180 160 180 160 160 140 160 140 140 120 140 120 Stress[kg/mm 2 ] 120 100 80 60 100 80 60 Event Count Stress[kg/mm 2 ] 120 100 80 60 100 80 60 Event Count 40 40 40 40 20 20 20 20 0 0 0 5 10 15 20 Displacement[mm] 0 0 0 1 2 3 4 5 6 7 8 9 10 Displacement[mm] 180 160 180 160 160 140 160 140 140 120 140 120 Stress[kg/mm 2 ] 120 100 80 60 100 80 60 Event Count Stress[kg/mm 2 ] 120 100 80 60 100 80 60 Event Count 40 40 40 40 20 20 20 20 0 0 0 5 10 15 20 25 30 35 40 Displacement[mm] 0 0 0 1 2 3 4 5 6 7 8 9 10 Displacement[mm]
180 4000 180 4000 160 3500 160 3500 140 3000 140 3000 Stress[kg/mm 2 ] 120 100 80 60 2500 2000 1500 Energy[eu] Stress[kg/mm 2 ] 120 100 80 60 2500 2000 1500 Energy[eu] 40 1000 40 1000 20 500 20 500 0 0 0 5 10 15 20 Displacement[mm] 0 0 0 1 2 3 4 5 6 7 8 9 10 Displacement[mm] 180 4000 180 4000 160 3500 160 3500 140 3000 140 3000 Stress[kg/mm 2 ] 120 100 80 60 2500 2000 1500 Energy[eu] Stress[kg/mm 2 ] 120 100 80 60 2500 2000 1500 Energy[eu] 40 1000 40 1000 20 500 20 500 0 0 0 5 10 15 20 25 30 35 40 Displacement[mm] 0 0 0 1 2 3 4 5 6 7 8 9 10 Displacement[mm] 1000 1000 Cumulative Event Count 100 10 Cumulative Event Count 100 10 30 40 50 60 70 80 90 100 Peak Amplitude[dB] 30 40 50 60 70 80 90 100 Peak Amplitude[dB]
1000 1000 Cumulative Event Count 100 10 Cumulative Event Count 100 10 30 40 50 60 70 80 90 100 Peak Amplitude[dB] 30 40 50 60 70 80 90 100 Peak Amplitude[dB] 100 100 90 90 80 80 Peak Amplitude[dB] 70 60 50 Peak Amplitude[dB] 70 60 50 40 40 30 0 500 1000 1500 2000 2500 3000 3500 4000 30 0 500 1000 1500 2000 2500 3000 3500 4000 Duration[µs] Duration[µs] 100 100 90 90 80 80 Peak Amplitude[dB] 70 60 50 Peak Amplitude[dB] 70 60 50 40 40 30 0 500 1000 1500 2000 2500 3000 3500 4000 30 0 500 1000 1500 2000 2500 3000 3500 4000 Duration[µs] Duration[µs]
제 5 장네트워크기반원격검사기술개발
Clients Internet LAN 발전소 Network DBMS Server Web & Application Server Web Server (JSP-JIN App.) 원자로초음파검사시스템 파이프검사시스템
class HelloWorld { public native void displayhelloworld(); static { System.loadLibrary("hello"); } public static void main(string[] args) { new HelloWorld().displayHelloWorld(); } }
#include <jni.h> /* Header for class HelloWorld */ #ifndef _Included_HelloWorld #define _Included_HelloWorld #ifdef cplusplus extern "C" { #endif /* * Class: HelloWorld * Method: displayhelloworld * Signature: ()V */ JNIEXPORT void JNICALL Java_HelloWorld_displayHelloWorld(JNIEnv *, jobject); #ifdef cplusplus } #endif #endif #include <jni.h> #include "HelloWorld.h" #include <stdio.h> JNIEXPORT void JNICALL Java_HelloWorld_displayHelloWorld(JNIEnv *env, jobject obj) { printf("hello world! n"); return; }
JAVA Code Java Compiler JAVA Class JAVA Header Generator Header File Write C Code in JAVA Code Compile C Code Shared Lib. Web Server Network Load To JAVA Application(JSP)
Client 웹 & 자바응용서버 IBM PC Workstation 원격지검사장비 Internet ( 웹 & 자바응용서버 ) 데이터베이스서버 Macintosh
Web Camera Server Web Server Control Application Web Camera Robot Internet Client Computer Web Browser Laser Pos. Indicator UT System
Rx wall UT inspection system Remote User Web Interface Camera Equip. Web Camera Server image image Camera control Internet Server UT Equip. control Robot control UT Equip. Inspection Robot
검사서버 Robot Control LAN Internet 로봇제어 검사로봇 Web Camera Server 영상처리 웹서버 Web Interface download 클라이언트컴퓨터
파이프검사로봇제어시스템 JAVA Application Server Web Server Network Client Computer Web Browser JNI Robot Motor Driver Motor Encoder Control Cable Pipe UT Inspection Robot
<html> <head> <font color=#ffffff size=5> 파이프검사로봇원격제어화면 </font>... </head> <BODY bgcolor="#000000">... <!-- 로봇 DSP 보드초기화 --> <script language="javascript"> function runboardinit() { pfrm = document.b_clear; <!-- 결과값디스플레이를위한윈도우생성 --> var openval = "resizable = no, status = no, scrollbars = no, height = 240, width = 320, left = 200, top = 200";
var openurl = ""; var newwin = window.open(openurl,"result_win",openval); newwin.focus(); return true; } </script> <table border=0 cellpadding=0 cellspacing=3 align=center width=60%> <br> <form name=b_clear method=post target=result_win method=post action = "/jsp/pipe/board_init.jsp" onsubmit="return runboardinit();"> 로봇초기화 : <input type=submit value=robot_clear> </table>... </body></html>
@ page contenttype = "text/html; charset=ksc5601" %> <%@ page import="java.sql.*" %> <%@ page import="java.io.*" %> <%@ page import="java.util.*" %> <%@ page import="java.text.*" %> <%@ page import="init" %> <% /* JNI 객체생성 */ Init b_init = new Init(); /* JNI Call */ out.println("<br><br>laseron JNI Call Start..."); int result=b_init.initialize(); out.println("<br>jni Call OK..."); %> public class Init { public native int initialize(); static { System.loadLibrary("init_lib");
} public static void main(string[] args) { new Init ().initialize(); } } /* DO NOT EDIT THIS FILE - it is machine generated */ #include <jni.h> /* Header for class Init */ #ifndef _Included_Init #define _Included_Init #ifdef cplusplus extern "C" { #endif /* * Class: Init * Method: initialize
* Signature: ()I */ JNIEXPORT jint JNICALL Java_Init_initialize (JNIEnv *, jobject); #ifdef cplusplus } #endif #endif #include "Init.h" #include "pcdsp.h" #include <stdio.h> JNIEXPORT int JNICALL Java_Init_initialize(JNIEnv *env, jobject obj) { int16 error; error=dsp_init(0x320); if(error!= DSP_OK){ return -1; }
... return 0; } Web Server Application Server Java Applet Java Application JSP Web Server Network JDBC Driver DBMS Server
DDD gdb gdbserver Application Host system Network or Serial Target board
# cd /home/embedded/arm/ # tar xvfpz gdb-5.2.tar.gz # cd gdb-5.2 #./configure --target=armv5l-linux --prefix=/usr/local/armv5l-linux -v # make # su - root Password:***** # make install # cd /home/embedded/arm/gdb-5.2 # export PATH='echo $PATH':/usr/local/armv5l-linux/bin #./configure --target=armv5l-linux --host=armv5l-linux # cd gdb/gdbserver # mv config.h config.h.org # sed "s/#define HAVE_SYS_REG_H 1/ /*#define HAVE_SYS_REG_H 1* //1" config.h.org >config.h # rm config.h.org # make CC=armv5l-linux-gcc
# cd /ez/sw/app # tar -xvzf boa-0.94.13.tar.gz # cd boa-0.954.13/src #./configure # cd /ez/sw/app/boa-0.94.13/src/makefile
--> Makefile 에서그림 2.6 과같이 CC = armv5l-linux-gcc CPP = armv5l-linux-gcc -E 를수정한다. # make clean # make all # cd /ez/sw/app/boa-0.94.13/boa.conf --> boa.conf 의파일을아래와같이편집하여야한다. User nobody Group nobody ErrorLog /user/local/boa/log AccessLog /user/local/boa/log ServerName 147.43.11.41 (target board의 IP) DocumentRoot /user/local/boa/html DirectoryMaker /user/local/boa/boa_indexer
MimeTypes /user/local/boa/mime.types # cd /ez/sw/app/boa-0,94.13 # mkdir /usr/local/boa # cp -a./src/boa /usr/local/boa/ # cp -a./src/boa_indexer /usr/local/boa/ # cp -a./boa.conf /usr/local/boa/ # cp -a /etc/mime.types /usr/local/boa/ # vi /usr/local/boa/log --> log 파일을만들어서 /usr/local/boa 디랙트리에넣는다. # mkdir /usr/local/boa/html --> index.htm 파일을만들어 /usr/local/boa/html 디랙트리에넣는다. # cp -a /usr/local/boa /nfs/ $ cp -a boa /usr/local/ $ cd /usr/local/boa/ $ chmod +x boa $./boa -c /usr/local/boa & http://147.43.11.41/:index.htm --> 테스트 # cd /ez/sw/app # tar -xvzf wen21.tqr.tar.gz # cd /goa/linux/makefile --> Makefile 에서그림 5.2.21 과같이 CC = armv5l-linux-gcc CPP = armv5l-linux-ar... armv5l-linux-gcc -c -o $@ $(DEBUG) $(CFLAGS) $(IFLAGS) $< 를수정한다.
Legin3 Title: rt - run program on realtime priority
Version: 1.0 Entered-date: 12 Jan 1997 Description: rt starts any program on realtime priority, like nice does with lower priority. Lets you choose scheduler class (SCHED_RR vs SCHED_FIFO policy) and priority. Keywords: linux, real time, scheduler Author: Boris Tobotras <boris@xtalk.msk.su> Maintained-by: Boris Tobotras <boris@xtalk.msk.su> Primary-site: sunsite.unc.edu /pub/linux/system/admin 10 kb rt-1.0.tar.gz Alternate-site: ftp.macsimum.ru /pub/linux/local 10 kb rt-1.0.tar.gz Platform: Linux 1.3.87 and later Copying-policy: GPL End
# modprobe rt_prio_sched.o # modprobe rt_fifo_new.o # lsmod Module Pages Used by rt_fifo_new 2 [rt_process] 0 rt_prio_sched 1 0 sbpcd 14 1 aic7xxx 10 0 bsd_comp 1 0 ppp 5 [bsd_comp] 1 slhc 2 [ppp] 1 lp 2 0
CAMERA Video digitizer RF Transmitter (video, data) PXA-255 CPU Module LM 629 Motion controller Network Servo Amplifier RF Transmitter Host Computer Motor Encoder
280 XLPE EPR Activation energy [kj/mol] 270 260 250 240 0 400 800 1200 1600 2000 Dose [kgy]
320 Conversion level 15% Conversion level 20% Activation energy [kj/mol] 300 280 260 240 0 400 800 1200 1600 2000 Dose [kgy]
Non-irradiated XLPE Heat flow [mw] Heating Rate 1 o C/min 2 o C/min 5 o C/min 7 o C/min 10 o C/min 15 o C/min 20 o C/min 40 60 80 100 120 140 160 180 200 Temperature [ o C]
310 Activation energy [kj/mol] 300 290 280 270 260 0 400 800 1200 1600 2000 Dose [kgy]
8 6 1, 3, 10, 30, 100, 300 Hz, 1, 3, 10, 30, 100 khz Heating rate = 3 o C/min ε'' Loss Factor 4 2 1Hz Non-irradiated EPR 100kHz 0-150 -100-50 0 50 Temperature [ o C]
Activation energy from loss factor [kj/mol] 95 90 85 80 75 70 Activation energy from loss factor Activation energy from thermal decomposition 240 0 400 800 1200 1600 2000 Dose [kgy] 280 270 260 250 Activation energy from thermal decomposition [kj/mol]
AC breakdown strength [kv/cm] 700 600 500 400 300 200 0 200 400 600 800 1000 Dose [kgy] LDPE CSPE AC breakdwon strength [kv/cm] 140 120 100 80 0 20 40 60 80 100 120 Thermal Aging [years]
Volume resistivity [Ohm.cm] 1E16 1E15 1E14 0 400 800 1200 1600 2000 Dose [kgy]
0.30 0.28 0.26 10Hz 100Hz 1kHz 10kHz 100kHz Loss factor 0.24 0.22 0.20 0.18 0.16 0.14 0 400 800 1200 1600 2000 Dose [kgy]
0.35 0.30 10Hz 100Hz 1kHz 10kHz 100kHz Dielectric tan δ 0.25 0.20 0.15 0 400 800 1200 1600 2000 Dose [kgy]
800 700 Elongation at break [%] 600 500 400 300 200 0 20 40 60 80 100 120 Thermal Aging [years] Elongation at break [%] 700 600 500 400 300 200 100 0 Elongation at break Tensile strength 0 400 800 1200 1600 2000 Dose [kgy] 1.8 1.6 1.4 1.2 1.0 0.8 Tensile strength [kg f /mm 2 ]
5% decomposition temperature [ o C] 280 5% decomposition temperature 800 Elongation at break 270 260 250 240 230 0 0 400 800 1200 1600 2000 Dose [kgy] 600 400 200 Elongation at break [%]
Temperature at 5% weight loss Elongation at break 500 400 300 200 100 Elongation at break [%] 0 400 800 1200 1600 2000 Dose [kgy]
1715cm -1 carbonyl group 1610cm -1 C=C % Transmittance Non-irradiated 400kGy irradiated 800kGy irradiated 1200kGy irradiated 1600kGy irradiated 2000kGy irradiated 1900 1800 1700 1600 1500 Wavenumbers [cm -1 ]
Polymer + 열 a 휘발성의연소성물질산출 c 열전달열 + 연소부산물 b 화염 (flame)
CH 2 C Cl C CH 2 CH 2 C Cl C CH 2 H H Trans-1,4 (85%) Cis-1,4 (10%) CH 2 Cl C CH CH 2 1,2- (1.5%) CH CH 2 C Cl CH 2 3,4- (1%)
Limited oxygen index [%] 44 42 40 38 36 34 32 30 CR-1 CR-3 CR-5 CR-2 CR-4 CR-6 0 500 1000 1500 2000 Dose [kgy] 260 240 220 CR-1 CR-2 CR-3 CR-4 CR-5 CR-6 DOT [ o C] 200 180 160 140 0 500 1000 1500 2000 Dose [kgy]
Volume resistivity [Ohm-cm] 10 15 10 14 10 13 10 12 10 11 10 10 10 9 0 500 1000 1500 2000 Dose [kgy] CR-1 CR-2 CR-3 CR-4 CR-5 CR-6 10 15 Surface resistivity [Ohm/cm 2 ] 10 14 10 13 10 12 10 11 10 10 10 9 10 8 10 7 CR-1 CR-2 CR-3 CR-4 CR-5 CR-6 0 500 1000 1500 2000 Dose [kgy]
Elongation at break [%] 800 600 400 200 CR-1 CR-2 CR-3 CR-4 CR-5 CR-6 0 0 500 1000 1500 2000 Dose [kgy] Tensile strength [kg f /mm 2 ] 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 500 1000 1500 2000 Dose [kgy] CR-1 CR-2 CR-3 CR-4 CR-5 CR-6
100 Weight [%] 80 60 40 20 CR-1 CR-2 CR-3 CR-4 CR-5 CR-6 100 200 300 400 500 600 700 800 Temperature [ o C]
Weight [%] 100 80 60 Non-irradiated 100 kgy irradiated 250 kgy irradiated 500 kgy irradiated 800 kgy irradiated 1000 kgy irradiated 1500 kgy irradiated 2000 kgy irradiated 40 20 100 200 300 400 500 600 700 800 Temperature [ o C] (a) CR-1 그림 6.2.21. 방사선조사에따른 CR 의열중량분해곡선 Weight [%] 100 Non-irradiated 100 kgy irradiated 250 kgy irradiated 500 kgy irradiated 80 800 kgy irradiated 1000 kgy irradiated 1500 kgy irradiated 60 2000 kgy irradiated 40 20 100 200 300 400 500 600 700 800 Temperature [ o C] (b) CR-2-347 -
Weight [%] 100 Non-irradiated 100 kgy irradiated 250 kgy irradiated 500 kgy irradiated 80 800 kgy irradiated 1000 kgy irradiated 1500 kgy irradiated 60 2000 kgy irradiated 40 20 100 200 300 400 500 600 700 800 Temperature [ o C] (c) CR-3 그림 6.2.21. 방사선조사에따른 CR 의열중량분해곡선 - 348 -
100 Weight [%] 80 60 40 20 Non-irradiated 100 kgy irradiated 250 kgy irradiated 500 kgy irradiated 800 kgy irradiated 1000 kgy irradiated 1500 kgy irradiated 2000 kgy irradiated 100 200 300 400 500 600 700 800 Temperature [ o C] (d) CR-4 Weight [%] 100 Non-irradiated 100 kgy irradiated 250 kgy irradiated 80 500 kgy irradiated 800 kgy irradiated 1000 kgy irradiated 1500 kgy irradiated 60 2000 kgy irradiated 40 20 100 200 300 400 500 600 700 800 Temperature [ o C] (e) CR-5 그림 6.2.21. 방사선조사에따른 CR 의열중량분해곡선 - 349 -
Weight [%] 100 Non-irradiated 100 kgy irradiated 250 kgy irradiated 500 kgy irradiated 80 800 kgy irradiated 1000 kgy irradiated 1500 kgy irradiated 60 2000 kgy irradiated 40 20 100 200 300 400 500 600 700 800 Temperature [ o C] (f) CR-6 그림 6.2.21. 방사선조사에따른 CR 의열중량분해곡선 5% decomposition temperature [ o C] 260 240 220 200 180 160 0 500 1000 1500 2000 Dose [kgy] CR-1 CR-2 CR-3 CR-4 CR-5 CR-6 그림 6.2.22. 난연제를첨가한 CR 의방사선조사에따른 5% 분해개시온도 변화 - 350 -
Non-irradiated 100 kgy irradiated 250 kgy irradiated 500 kgy irradiated % T 1000 kgy irradiated 1500 kgy irradiated 2000 kgy irradiated 4000 3500 3000 2500 2000 1500 1000 Wavenumbers [cm -1 ] 그림 6.2.23. 방사선조사에따른 CR-1 의적외선분광흡수스펙트럼 - 351 -
표 6.2.6. 방사선조사에따른 CR-1 의 FT-IR 특성피크의정량분석 Radiation Dose [kgy] Non 200 400 600 1000 Peak areas of experimental peaks Normalized peak areas Peak Position 3380 Peak Position 2915+2849 Peak Position 1655+1587 Peak Position 3380/(2915+2849) Peak Position (1655+1587)/ (2915+2849) 2.143 14.939 18.736 21.642 4.54 3.169 2.671 2.754 3.185 0.567 2.572 6.12 15.3 18.742 4.03 0.676 5.593 6.803 6.795 8.007 0.812 2.291 5.556 5.884 7.108-352 -
OH O POO + ( 3 ') POOH + O O O + POO ( 3 ) R 1 R 1
HO O O HO CHCHCO CH HO CHCHCOCH C
HO O O CHCHCNHNHCCHCH OH
TL response [a. u.] 140000 120000 100000 80000 60000 40000 20000 Non-irradiated 200 kgy irradiated 400 kgy irradiated 600 kgy irradiated 800 kgy irradiated 1000 kgy irradiated 0 50 100 150 200 250 300 Temperature [ o C] (a) HDPE - 368 -
TL response [a. u.] 140000 120000 100000 80000 60000 40000 20000 Non-irradiated 200 kgy irradiated 400 kgy irradiated 600 kgy irradiated 800 kgy irradiated 1000 kgy irradiated 0 50 100 150 200 250 300 Temperature [ o C] (b) PA-1 그림 6.3.3. 배합 PE 의방사선조사에따른열발광량변화 - 369 -
TL response [a. u.] 100000 80000 60000 40000 Non-irradiated 200 kgy irradiated 400 kgy irradiated 600 kgy irradiated 800 kgy irradiated 1000 kgy irradiated 20000 0 50 100 150 200 250 300 Temperature [ o C] (c) PA-2 TL response [a. u.] 450000 400000 350000 300000 250000 200000 150000 100000 50000 0 Non-irradiated 200 kgy irradiated 400 kgy irradiated 600 kgy irradiated 800 kgy irradiated 1000 kgy irradiated 50 100 150 200 250 300 Temperature [ o C] (d) PM-1 그림 6.3.3. 배합 PE 의방사선조사에따른열발광량변화 - 370 -
TL response [a. u.] 180000 160000 140000 120000 100000 80000 60000 40000 20000 0 Non-irradiated 200 kgy irradiated 400 kgy irradiated 600 kgy irradiated 800 kgy irradiated 1000 kgy irradiated 50 100 150 200 250 300 Temperature [ o C] (e) PM-2-371 -
TL response [a. u.] 80000 70000 60000 50000 40000 30000 20000 10000 0 Non-irradiated 200 kgy irradiated 400 kgy irradiated 600 kgy irradiated 800 kgy irradiated 1000 kgy irradiated 50 100 150 200 250 300 Temperature [ o C] (f) PS-1 그림 6.3.3. 배합 PE 의방사선조사에따른열발광량변화 - 372 -
TL response [a. u.] 100000 Non-irradiated 200 kgy irradiated 400 kgy irradiated 80000 600 kgy irradiated 800 kgy irradiated 1000 kgy irradiated 60000 40000 20000 0 50 100 150 200 250 300 Temperature [ o C] (g) PS-2 그림 6.3.3. 배합 PE 의방사선조사에따른열발광량변화 - 373 -
Integrated TL response [a. u.] 2000 1800 1600 1400 1200 1000 800 600 400 200 0 HDPE PA-1 PA-2 PM-1 PM-2 PS-1 PS-2 0 200 400 600 800 1000 Dose [kgy] 그림 6.3.4. 방사선조사에따른배합 PE 의열발광집적량 (50~300 ) ⑵ 기계적특성및표면특성 방사선조사에따른배합 PE의파단시연신율의변화를그림 6.3.6에나타내었다. 케이블절연재료로파단시연신율과인장강도는초기치의 50% 감소치를열화에대한수명의한계로규정하고있으다. 본연구에서사용한고밀도폴리에틸렌의연신율은건전상태에서 300% 이상의파단시연신율을나타내고있으며, 배합제를첨가하지않은경우약 550% 로적절한유연성을가지는것으로나타났다. 배합제첨가에따라파단시연신율은 HDPE의경우보다모두감소하는것으로나타났으며, 이것은무기질충진제역할을하는난연제의첨가로시편내부에서유기질의상대적감소에기인하는것으로해석된다. 방사선조사에따른변화는 500 kgy까지급격하게감소하다가이후선량에서포화하는경향을나타내었다. 이러한연신율의저하는방사선조사로인해시편이취성으로변하면서시편의탄성을잃게되고 500 kgy 이후의선량에서는시편의주쇄절단으로인하여 - 374 -
더이상의감소가나타지않은것으로보인다. 연신율의결과에서 PA-1이 200 kgy의선량에서다른시편에서보다연신율의감소정도가적게나타나며 HDPE와유사한특성을지녀우수한내방사선특성을나타낸것으로볼수있다. 방사선조사에따른배합 PE의접촉각변화를그림 6.3.7에나타내었다. 일반적으로방사선조사에따른 ester 결합을포함하는고분자는방사선에의해라디칼을형성하고, β-scission에의해 -OH기를더많이갖는 ester 를형성하여, 소수성이급격히감소하게되지만, 조사량이더증가하여 phthalate의형성도많아지게되면소수성이다시증가하게된다 [6.39]. 그러나 ester 결합을갖고있지않는경우의고분자는방사선조사선량이증가할수록공기중의산소와반응하여알콕시라디칼 (RO ) 을형성하고, 이렇게형성된라디칼들이주쇄를공격하여주쇄에카르보닐기 (-C=O) 이나하이드록시기 (-C-OH) 를형성하게되어고분자표면의소수성을감소시키게된다. 또한조사량이더증가하면알콕시라디칼의농도가증가하게되고, 표면의산화에그치지않고고분자주쇄를절단 (scission) 하거나, 고분자간의가교를유도하기도한다 [6.40]. 첨가제의종류에따른배합 PE 의방사선조사에대한접촉각변화는초기방사선미조사경우에높은접촉각을보였으나조사선량의증가에따라접촉각이감소하는경향을나타내고있다. - 375 -
Elongation at break [%] 600 500 400 300 200 100 HDPE PA-1 PM-1 PS-1 PA-2 PM-2 PS-2 0 0 200 400 600 800 1000 Dose [kgy] 그림 6.3.5. 방사선조사에따른배합 PE 의파단시연신율 Contact angle [degree] 120 110 100 90 80 70 60 Pure PE PA-1 PA-2 PM-1 PM-2 PS-1 PS-2 50 0 200 400 600 800 1000 Radiation dose [kgy] 그림 6.3.6. 배합 PE 의방사선조사에따른접촉각 - 376 -