한수지 5(2), 175-182, 17 Original Article Korean J Fish Aquat Sci 5(2),175-182,17 녹조대발생종솜대마디말 (Cladophora albida) 의유주자방출과초기생장에환경요인이미치는영향 나연주 전다빈 이정록 박서경 1 김영식 2 최한길 * 남기완 3 원광대학교생명과학부 / 환경과학연구소, 1 ( 주 ) 연안관리기술연구소, 2 군산대학교해양생물공학과, 3 부경대학교자원생물학과 Effects of Environmental Factors on Zoospore Release and Early Growth of the Green Tide Alga Cladophora albida Yeon Ju Na, Da Vine Jeon, Jung Rok Lee, Seo Kyoung Park 1, Young Sik Kim 2, Han Gil Choi* and Ki Wan Nam 3 Faculty of Biological Science and Institute for Environmental Science, Wonkwang University, Iksan 54538, Korea 1 Institute of Coastal Management and Technology, Muan 58552, Korea 2 Department of Marine Biotechnology, Kunsan National University, Kunsan 5415, Korea 3 Department of Marine Biology, Pukyong National University, Busan 48513, Korea We examined the effects of environmental factors on zoospore release and germling growth of the green tide alga Cladophora albida under various conditions of temperature irradiance (zoospore release), temperature irradiance nutrient (germling growth), and a single factor test of salinity. Zoospore release was maximized at 3 and 1 µmol photons m -2 s -1 in the temperature irradiance experiment and at 34 psu in the salinity experiment. Maximum germling growth was observed at 25 with 1 µmol photons m -2 s -1 and PES (Provasoli s Enriched Seawater) in the temperature irradiance nutrient experiment, and at 34 psu in the salinity experiment. Germlings grew faster at higher irradiances for a given temperature level, and also grew faster as salinity increased over the range of 5-34 psu. Overall, optimal environmental conditions for zoospore release were 3, 1 µmol photons m -2 s -1 and 34 psu. Maximal germling growth occurred at 25, 1 µmol photons m -2 s -1, PES, and 34 psu. C. albida blooms are most likely to occur under these optimal environmental conditions, as plentiful zoospore release and rapid germling growth lead to population growth. Key words: Cladophora albida, Green tide, Growth, Temperature, Zoospore release 서론, (green tide) (Nelson et al., 3b; Ha et al., 16). (, ) (Le Luherne et al., 16), (planktonic microalgae) (Nelson et al., 3a; Tang and Gobler, 11)., (Moreno-Marín et al., 16), (Nelson et al., 8)., 8 (Ulva prolifera) 5 (US$ 4 million) (Ye et al., 11; Gao et al., 16). (e.g., Ulva armoricana, Ulva rotundata) (e.g., Ulva intestinalis, Chaetomorpha valida), (Taylor et al., 1; Nelson et al., 8; Choi et al., 1).,,, http://dx.doi.org/1.5657/kfas.17.175 Korean J Fish Aquat Sci 5(2) 175-182, April 17 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens (http://creativecommons.org/licenses/by-nc/3./) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Received 6 January 17 Revised 16 March 17; Accepted March 17 *Corresponding author: Tel: +82. 63. 85. 6579 Fax: +82. 63. 857. 8837 E-mail address: hgchoi@wku.ac.kr Copyright 17 The Korean Society of Fisheries and Aquatic Science 175 pissn:374-8111, eissn:2287-8815
176 나연주ㆍ전다빈ㆍ이정록ㆍ박서경ㆍ김영식ㆍ최한길ㆍ남기완 (Taylor et al., 1; Nelson et al., 8; Human et al., 16), (Lin et al., 8), (Lin et al., 8; Zhang et al., 16)., (Ulva clathrata) (Ulva lactuca) 14 (El Shoubaky, 15), 4-6 (Pedersen and Borum, 1997). Deng et al. (11),.,, (Lotze et al., 1999, ; Song et al., 15). (propagule bank), (Lotze et al., 1999, ; Rinehart et al., 14),. (Cladophora spp.) C. laetevirens, C. sericea, C. glomerata (7-9 ) (Smith et al., 5; Malkin et al., 8; Gubelit and Berezina, 1; Balkıs et al., 13). (H 2 S) (anoxic layer) (Lavery and McComb, 1991; Panov et al., 2). (Claophora albida (Ness) Kützing) (Cambridge et al., 199), (-8~35 ), (Cambridge et al., 199). 3 (Gordon et al., 198), 23, (-3 psu) (Hayakawa et al., 12)., (Cladophora vadorum) ( 214 ) (25 ) (.44 mg L -1 ), (vegetative reproduction) (Ha et al., 16; Na et al., 16).,.,,,. 재료및방법 샘플채집과유주자방출 (36 78 N, 126 13 E) 15 16 5,. (.45 m). 3 g( ) (1 ml) (BL31, Tefal) 8, rpm 1 s (Ø.5 mm) (fragment). 1 fragments ml -1, 3-4 (cell)., (2.5 2.5 cm) 1 PES (5 ml, Provasoli, 1968) 24 (Ø 6 cm) 1 ml. (15,, 25, 3 ) (5, 1 mol photons m -2 s -1 ) (Bionex, Korea) 3 12:12h L:D. 4 (, 25, 3, 35 ), 35 2. (DX, Takemura), 3, GeO 2 (5 mgl -1 ) PES (Shea and Chopin, 7). 3,, (germlings mm -2 ). Sedgwick-Rafter Chamber 1 mm 2 5 (, 5 mm 2 ) (Olympus, BX53F, Japan).,, (5, 15, 25, 34, 45 psu) PES. 34 psu, (5, 15, 25 psu) (34 psu) 3, 45 psu. (Atago, S/Mil, Japan), 25, 1 mol photons m -2 s -1 12:12h L:D. 생활사와배아생장, 3 g (2.5 2.5 cm) (Ø 9 cm) (34 psu, 1 ml), 1 mol photons m -2 s -1 incubator. 2,
녹조대발생종솜대마디말의유주자방출과초기생장 177 1 PES (15 ml) (Ø 6 cm). GeO 2 (5 mg L -1 ), 3. Image J (1.4s, National Institute of Health, Bethesda, USA), (RGR, relative growth rate) (Serisawa et al., 2). RGR (% day -1 )=1(In L 2 In L 1 )/T 2 T 1 L 2, L 1 T 2 T 1 (day)., 15 ml PES (Ø 6 cm) 25, 1 µmol photons m -2 s -1 12:12h L:D.,. (, ), 1 15 ml (34 psu, autoclaved seawater) PES (Ø 6 cm) 4 (15,, 25, 3 ) 2 (5, 1 mol photons m -2 s -1 ) incubator 6., 12:12h L:D, 3.,, (5, 15, 25, 34, 45 psu) PES (15 ml), (25 ), (1 mol photon m -2 s -1 ) (12:12h L:D) incubator 12.. 통계분석 (,, ), Cochran s test (homogeneity of variances), one-way ANOVA test ( ), two-way ANOVA test ( ), three way ANOVA test ( ). Tukey s HSD test (Sokal and Rohlf, 1995), STATISTICA version 7.. 결과 유주자방출 3, 15-3, 5 mol photons m -2 s -1 1 mol photons m -2 s -1., 15 25 3, 35 ( ) 2. 3 1 mol photons m -2 s -1 339.8 3.56 mm -2 (n=3), 15 5 mol photons m -2 s -1 24.53 1.91 mm -2 (P<.1, Table 1). 3, 5 mol photons m -2 s -1 1 mol photons m -2 s -1 (Fig. 1). (5-45 psu), 34 psu 332.8 8.1 mm -2, 5 psu 29..6 mm -2. Table 1. Analysis of variance (two-way ANOVA) for the effects of temperature and irradiance on zoospore release of Cladophora albida after 3 days in culture Source of variation df MS F P Temperature (T) 3 1.4 752.2 <.1 Irradiance (I) 1.24 17.65 <.1 Interaction 3.2 1.47.26 Error 16.1 Tukey test (P=.5) Temperature 15=<25<3 Irradiance 5<1 No. of germlings (mm 2 ) 4 3 1 5 1 μmol photons m -2 s -1 15 25 3 Fig. 1. Effects of temperature and irradiance on the zoospore release examined with number of settled germlings (mm 2 ) of Cladophora albida fragments. Data represent mean±se (n=3 replicates).
4 No. of germlings (mm2) 178 5 1 μmol photons m-2s-1 나연주ㆍ전다빈ㆍ이정록ㆍ박서경ㆍ김영식ㆍ최한길ㆍ남기완 3 도는 34 psu의 멸균해수였으며, 고염분(45 psu)에 비해 저염분 인 5,115 psu에서 유주자 방출은 억제되었다. 유주자 방출은 염 분 농도별 유의차를 보였지만(F4,1=612.81, P<.1), 저염분(5, 과 고염분 에서는 유의차가 없었다(P3<.1). 15 psu) 15 (34, 45 psu) 25 생활사 솜대마디말은 암녹색 또는 밝은 녹색이며, 체장은 1-5 cm이다. 정단 세포는 둥글고 세포 길이는 165.9±2.18 μm (mean±se, n=1 cells)였으며 직경은 42.92±1. μm (n=1)로서 길이/직 경의 비율은 3.96±.1 μm이다(fig. 2A). 성체 절편(3-4 cells) 은 연속광에서 접종 2일 이내에 배우자낭(gametangia)을 형성 하였고 세포의 옆면에 방출공이 생성된 후 배우자(n)를 배양액 으로 방출하였다(Fig. 2B). 서양배 모양의 배우자는 편모 2개로 빠른 움직임을 보였으며(Fig. 2C), 배우자 2개가 접합되면서 이 동성은 감소하고 나중에 기질에 착생하였다(Fig. 2D). 동형 배 우자 결합에 의한 접합자는 편모 4개와 안점 2개를 가지고 착생 C B 배아생장 솜대마디말 배아는 다양한 온도(15,, 25, 3 ), 광도(5, 1 μmol photons m-2s-1)와 영양염 농도(멸균해수와 PES 배 지)에서 19.9-32.9% day-1의 생장률을 보였다(Fig. 3A, 3B). 배 -2-1 양 PES 배지에서 G E 6일 후, 5 μmol F photons m s 의 멸균해수와 생장한 배아들의 평균 길이는 4 μm로서, 1 μmol photons m-2s-1에서 생장한 배아들의 평균 길이인 44 μm에 비해 현저 하게 느린 생장을 보였다(P<.1, Table 2). 배아 생장은 두 개 H 광도에서 25 까지 온도와 정비례 관계를 보였으나, 3 의 에서는 오히려 억제되었고, 동일한 온도조건에서는 멸균해수 에 비해 영양염 농도가 높은 PES배지에서 빠른 생장을 하였다 I K 1 μmol L photons m-2s-1 (Fig. 3A, 3B). 배아의J 길이는 25, 8 D A 시에 편모가 소멸되었다(Fig. 2E, 2F). 때로는 성숙한 세포 안 에서 배우자 2개의 접합이 일어나기도 하였으며(Fig. 2G), 세 포 밖으로 방출된 배우자 혹은 접합자는 기질에 착생하면서 세 C (Fig. 2I), 포 분열을 시작하였고(Fig. 2H), 가근이 형성되었으며 빠르게 생장하였다(Fig. 2J). 접종 12일 후, 엽체의 분지가 관찰 되었으며(Fig. 2K), 3일 후에는 많은 가지를 가진 성체가 되었 A B D 다(Fig. 2L). ASW (A) PES 6 4 E G F 15 25 3 8 ASW J K L Fig. 2. Growth and reproduction of Cladophora albida. (A) Field8 collected sample. (B) Gametes released via liberation pore. (C) A ASW PES (A) pear-shaped zoospore. (D) A conjugated gamete having four flagella.6(e) A zygote with four flagella. (F) Settled zygotes with distinct eye spots. (G) A fertile cell having gametes conjugated from the posterior ends of each zoospore (arrows). (H) Zygotes showing 4 cell division. (I) Germlings with primary rhizoid. (J) A germling showing apical growth. (K) Twelve-day old germling. (L) A adult plant with many branches after 3 days in culture. Scale bars represent: (A) and (L), µm; (B), µm; (C), (D), (E), (F) and (I), 1 µm; (G) and 5 µm. 15(J), 25 µm; (H), 5 µm; (K),25 3 (μm) 8 6 ASW PES (B) (B) PES 6 4 15 25 3 Fig.25 3. Effects of temperature and nutrient condition on the growth of Cladophora albida cultured for 6 days at 5 μmol photon m-2s-1 d (A) and 1 μmol photon m-2s-1 (B). Vertical bars indicate standard errors (n=3 replicates). ASW, Autoclaved seawater; PES, Provac c soli 15 enriched seawater. I H 1 b a 5
녹조대발생종솜대마디말의유주자방출과초기생장 179 Table 2. Analysis of variance (three-way ANOVA) for juvenile growth Cladophora albia grown at different temperature, nutrient and irradiance Source of variation df MS F P Temperature (T) 3 1423.25 915.15 <.1 Nutrient (N) 1 199.68 128.39 <.1 Irradiance (I) 1 118.13 75.96 <.1 T N 3 11.52 7.41 <.1 T I 3 7.93 5.1 <.1 N I 1.23.15.71 T N I 3.57.36.78 25 15 1 5 d c c b a 5 15 25 34 45 Salinity (psu) PES (61.79.93 m), 15 5 mol photons m -2 s -1, (26.97.69 m). Threeway ANOVA,, (P<.1), (P<.1, Table 2). (5, 15, 25, 34, 45 psu), 12 58.39-193.1 m (Fig. 4). (34 psu) 193.1 5.72 m, (5, 15 psu) (45 psu). 15.8-25.85% day -1 (P<.1), 3 (25, 34, 45 psu). 고찰 (sexual reproduction) (vegetative reproduction), Fig. 4. Average lengths of Cladophora albida germlings cultured under different salinity levels for 12 days. Culture conditions were 25, 12:12h L:D and 1 μmol photons m -2 s -1. Vertical bars indicate standard errors (n=3 replicates). Different letters indicate significant group of mean found with the Tukey's HSD test. 2, (2-3 ). Monostroma grevillei var. arctirum (Bast et al., 9; Xu et al., 13), ( ) Cladophora monteagneana (Kamermans et al., 1998; Na et al., 16). 8 (Gao et al., 1; Zhang et al., 16). 25, 1 mol photons m -2 s -1, 34 psu, PES 2 (12 h 3 ). Table 3. Environmental conditions and the period of zoospore formation of green tide macroalgae Species Temperature ( ) Irradiance (μmol photons m -2 s -1 ) Daylength Nutrient Salinity (h) type (psu) Zoospore formation (day) References Ulva australis 1 12 ASW - 2-3 Hiraoka and Enomoto (1998) Ulva fasciata 25-3 15 12-15 2 Mantri et al. (11) 25-35 15 12-15-3 6 (8-1%) Mantri et al. (11) Ulva intestinalis - 5 12 MGM - 8-15 Ruangchuay et al. (12) Ulva prolifera 4 12 - -32 4 (8-1%) Dan et al. (2) Chaetomorpha linum 1 24 ASW 34 4 Han et al. (16) Chatomorpha valida 22 72 1 - - 7-14 Deng et al. (13) Cladophora albida 25 1 12 PES 34 3 This study 25 1 24 PES 34 2 This study ASW, Autoclaved seawater; MGM, Modified von Stosch medium; PES, Provasoli enriched seawater; -, no data
18 나연주ㆍ전다빈ㆍ이정록ㆍ박서경ㆍ김영식ㆍ최한길ㆍ남기완,, 5 mol photons m -2 s -1, 12 h, (Table 3)., Ulva fasciata 15 mol photons m -2 s -1 2-6 (Table 3)., (ASW, PES) (15-34 psu) 4, 1-2. (3 ). (reproductive differentiation) (sporulation), (Dan et al., 2; Lüning et al., 8). ( ) 25 3 28 mm -2 15 3 mm -2 9, 1 mol photons m -2 s -1 173 mm -2 5 mol photons m -2 s -1 136 mm -2 1.3., 25 3, 25. 16 7 19, 8-9 23 25. (15-3 ), (15 ) (, 25, 3 ), 5 mol photons m -2 s -1 1 mol photons m -2 s -1, PES., 25 1 mol photons m -2 s -1 PES 32.91% day -1, (Chatomorpha linum) 26.56% day -1 ( 25 1 mol photons m -2 s -1 ) % day -1 ( 1 mol photons m -2 s -1 ) (Luo et al., 12; Han et al., 16).,. (5-45 psu), (34 psu, 26% day -1 ) (5, 15 psu) (45 psu) (15-23% day -1 )., 25 psu 4% day -1, 1-3 psu -4% day -1 (Gordon et al., 198). 24 psu (7 % day -1, C. laetevirens), 27 psu (6 % day -1, C. dalmatica) 3 psu (23% day -1, C. coelothrix), (34 psu) (Taylor et al., 1; de Paula Silva et al., 8; Hayakawa et al., 12)., (-15 psu) C. laetevirens 4% day -1 (Hayakawa et al., 12), 5 15 psu 15-18% day -1. (5-45 psu), (lagoon) (gulf), (estuary). ( ),., (25 ) (1 mol photons m -2 s -1 ). 사사., 16 ( ) (NRF-16R1A2B11342). References Balkıs N, Sivri N, Fraim NL, Balcı, Durmuş T and Sukatar A. 13. Excessive growth of Cladophora lateirens (Dillwyn) Kützing and enteric bacteria in mats in the Southwestern Istanbul coast, Sea of Marmara. IUFS J Biol 72, 43-5. Bast F, Shimada S, Hiraoka M and Okuda K. 9. Asexual life history by biflagellate zoids in Monostroma latissimum (Ulotrichales). Aquat Bot 91, 213-218. http://dx.doi. org/1.116/j.aquabot.9.6.6. Cambridge ML, Breema AM and van den Hoek C. 199. Temperature limits at the distribution boundaries of four tropical to temperate species of Cladophora (Cladophorales: Chlorophyta) in the North Atlantic Ocean. Aquat Bot 38, 135-151. http://dx.doi.org/1.116/34-377(9)91-2. Choi TS, Kang EJ, Kim JH and Kim KY. 1. Effects of salinity on growth and nutrient uptake of Ulva pertusa (Chlo-
녹조대발생종솜대마디말의유주자방출과초기생장 181 rophyta) from an eelgrass bed. Algae 25, 17-26. http:// dx.doi.org/1.449/algae.1.25.1.17. Dan A, Hirosawa A, Makino K, Ohno M and Critchley AT. 2. Observation on the effect of salinity and photon fluence rate on the induction of sporulation and rhizoidal formation in the green alga Enteromorpha prolifera (Müller) J. Agardh (Chlorophyta, Ulvales). Fish Sci 68, 1182-1188. http://dx.doi.org/1.146/j.1444-296.2.553.x. de Paula Silva PH, McBride S, de Nys R and Paul NA. 8. Integrating filamentous green tide algae into tropical pondbased aquaculture. Aquaculture 284, 74 8. http://dx.doi. org/1.116/j.aquaculture.8.7.35. Deng Y, Tang X, Huang B and Ding L. 11. Life history of Chaetomorpha valida (Cladophoraceae, Chlorophyta) in culture. Bot Mar 54, 551-556. https://doi.org/1.1515/bot.11.66. Deng Y, Tang X, Zhan Z, Teng L, Ding L and Huang B. 13. Culture observation and molecular phylogenetic analysis on the blooming green alga Chaetomorpha valida (Cladophorales, Chlorophyta) from China. Chin J Oceanol Limnol 31, 552-559. https://doi.org/1.17/s343-13-2216-x. El Shoubaky GA. 15. On the annually recurrent of green macroalgal bloom phenomenon in Timsah Lake, Suez Canal, Egypt. J Bio Environ Sci 6, 3-39. Gao G, Zhong Z, Zhou X and Xu J. 16. Changes in morphological plasticity of Ulva prolifera under different environmental condition: A laboratory experiment. Harmful Algae 59, 51-58. http://dx.doi.org/1.116/j.hal.16.9.4. Gao S, Chen XY, Yi QQ, Wang GC, Pan GH, Lin AP and Peng G. 1. A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation. PLoS One 5, e8571. http://dx.doi. org/1.1371/journal.pone.8571. Gordon DM, Birch PB and McComb AJ. 198. The effect of light, temperature and salinity on photosynthetic rates of an estuarine Cladophora. Bot Mar 23, 749-755. Gubelit YI and Berezina A. 1. The causes and consequences of algal blooms: The Cladophora glomerata bloom and the Neva estuary (eastern Baltic Sea). Mar Pollut Bull 61, 183-188. http://dx.doi.org/1.116/j.marpolbul.1.2.13. Ha DS, Yoo HI, Chang SJ and Hwang EK. 16. Bloom of a filamentous green alga Cladophora vadorum (Areschoug) Kützing and nutrient levels at Shangrok beach, Buan, Korea. Korean J Fish Aquat Sci 49, 241-246. http://dx.doi. org/1.5657/kfas.16.241. Han SJ. Na YJ, Jeon DV, Kim YS, Choi HG and Nam KW. 16. Effects of environmental factors on the zoospore release and germling growth of the green macroalga Chaetomorpha linum. Ocean Polar Res 38, 47-57. http://dx.doi. org/1.4217/opr.16.38.1.47. Hayakawa Y, Ogawa T, Yoshikawa S, Ohki K and Kamiya M. 12. Genetic and ecophysiological diversity of Cladophora (Cladophorales, Ulvophyceae) in various salinity regimes. Phycol Res 6, 86-97. http://dx.doi.org/1.1111/j.144-1835.12.641.x. Hiraoka M and Enomoto. 1998. The induction of reproductive cell formation of Ulva pertusa Kjellman (Ulvales, Ulvophyceae). Phycol Res 46, 199-3. http://dx.doi. org/1.1111/j.144-1835.1998.tb114.x. Human LRD, Adams JB and Allanson BR. 16. Insights into the cause of an Ulva lactuca Linnaeus bloom in the Knysna Estuary. S Afr J Bot 17, 55-62. http://dx.doi.org/1.116/j. sajb.16.5.16. Kamermans P, Malta E, Verschuure JM. Lentz LF and Schrijvers L. 1998. The role of cold resistance and burial for winter survival and spring initiation of an Ulva spp. (Chlorophyta) bloom in a eutrophic lagoon (Veerse Meer lagoon, The Netherlands). Mar Biol (Berl) 131, 45-51. http://dx.doi. org/1.17/s2275295. Lavery PS and McComb AJ. 1991. The nutiritional ecophysiology of Chaetomorpha linum and Ulva rigida in Peel Inlet Western Australia. Bot Mar 34, 251-26. https://doi. org/1.1515/botm.1991.34.3.251. Le Luherne E, Réveillac E, Ponsero A, Sturbois A, Ballu S, Perdriau M and Le Pape O. 16. Fish community responses to green tides in shallow estuarine and coastal areas. Estuar Coast Shelf Sci 175, 79-92. http://dx.doi.org/1.116/j. ecss.16.3.31. Lin A, Shen S, Wang J and Yan B. 8. Reproduction diversity of Enteromorpha prolifera. J Integr Plant Biol 5, 622-629. http://dx.doi.org/1.1111/j.1744-799.8.647.x. Lotze HK, Schramm W, Schories D and Worm B. 1999. Control of macroalgal blooms at early developmental stages: Pilayella littoralis versus Enteromorpha spp. Oecologia 119, 46-54. http://dx.doi.org/1.17/s445759. Lotze HK, Worm B and Sommer U.. Propagule banks, herbivory and nutrient supply control population development and dominance patterns in macroalgal blooms. Oikos 85, 46-54. http://dx.doi.org/1.134/j.16-76..8916.x. Lüning K, Kadel P and Pang SJ. 8. Control of reproduction rhythmicity by environmental and endogenous signals in Ulva pseudocurvata (Chlorophyta). J Phycol 44, 866-873. Luo MB, Liu F and Xu ZL. 12. Growth and nutrient uptake capacity of two co-occurring species, Ulva prolifera and Ulva linza. Aquat Bot 1, 18-24. http://dx.doi.org/1.116/j. aquabot.12.3.6. Malkin SY, Guildford SJ and Hecky RE. 8. Modeling the growth response of Cladophora in a Laurentian Great Lake to the exotic invader Dreissena and to lake warming. Limnol Oceanogr 53, 1111-1124. http://dx.doi.org/1.4319/lo. 8.53.3.1111. Mantri VA, Singh RP, Bijo AJ, Kumari P, Reddy CRK and Jha B. 11. Differential response of varying salinity and temperature on zoospore induction, regeneration and daily growth rate in Ulva fasciata (Chlorophyta, Ulvales). J Appl
182 나연주ㆍ전다빈ㆍ이정록ㆍ박서경ㆍ김영식ㆍ최한길ㆍ남기완 Phycol 23, 243-25. http://dx.doi.org/1.17/s1811-1- 9544-4. Moreno-Marín F, Vergara JJ, Pérez-Llorens JL, Pedersen MF and Brun FG. 16. Interaction between ammonium toxicity and green tide development over seagrass meadows: a laboratory study. PloS one 11, e152971. http://dx.doi.org/1.1371/ journal.pone.152971. Na YJ, Jeon DV, Lee JR, Kim YS, Choi HG and Nam KW. 16. Effects of temperature, irradiance, and nutrient type on the fragment growth of green tide alga Cladophora vadorum. Korean J Fish Aquat Sci 49, 657-664. http://dx.doi. org/1.5657/kfas.16.657. Nelson T, Lee D and Smith B. 3a. Are 'green tides' harmful algal blooms? Toxic properties of water-soluble extracts from two bloom-forming macroalgae, Ulva fenestrata and Ulvaria obscura (Ulvophyceae). J Phychol 39, 874-879. http://dx.doi.org/1.146/j.1529-8817.3.2157.x. Nelson TA, Nelson AS and Tjoelker M. 3b. Seasonal and spatial patterns of "green tides" (Ulvoid algal blooms) and related water quality parameters in the coastal of Washington State, U.S.A. Bot Mar 46, 263-275. https://doi.org/1.1515/ BOT.3.24. Nelson TA, Haberlin K, Nelson AV, Ribarich H, Hotchkiss R, Van Alstyne KL, Buckingham L, Simunds DJ and Fredrickson K. 8. Ecological and physiological controls of species composition in green macroalgal blooms. Ecology 89, 1287-1298. http://dx.doi.org/1.189/7-494.1. Panov VE, Alimov AF, Golubkov SM, Orlova MI and Telesh IV. 2. Environmental problems and challenges for coastal zone management in the Neva Estuary (Eastern Gulf of Finland). In: Schernewski G and Schiewer U (Eds.) Baltic Coastal Ecosystems. Structure, Function and Coastal Zone Management. Springer-Verlag, Berlin, Germany, 171-184. Pedersen MF and Borum J. 1997. Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Mar Ecol Prog Ser 161, 155-163. http://dx.doi.org/1.3354/meps161155. Provasoli L. 1968. Media and prospects for the cultivation of marine algae. In: Cultures and Collections of Algae. Watanabe A. and Hattori A (Eds.) Proceeding of the US-Japan Conference, Japanese Society for Plant Physiology, Tokyo, Japan, 63-75. Rinehart S, Guidone M, Ziegler A, Schollmeier T and Thornber C. 14. Overwintering strategies of bloom-forming Ulva species in Narragansett Bay, Rhode Island, U.S.A. Bot Mar 57, 337-341. http://dx.doi.org/1.1515/bot-13-122. Ruangchuay R, dahamat S, Chirapat A, and Notoya M. 12. Effects of culture conditions on the growth and reproduction of Gut Weed, Ulva intestinalis Linnaeus (Ulvales, Chlorophyta). Songklanakarin J Sci Technol 34, 51-57. Serisawa Y, Yokohama Y, Aruga Y and Tanaka J. 2. Growth of Ecklonia cava (Laminariales, Phaeophyta) sporophytes transplanted to a locality with different temperature conditions. Phycol Res 5, 1-7. http://dx.doi.org/1.146/ j.144-1835.2.274.x. Shea R and Chopin T. 7. Effects of germanium dioxide, an inhibitor of diatom growth, on the microscopic laboratory cultivation stage of the kelp, Laminaria saccharina. J Appl Phycol 19, 27-32. http://dx.doi.org/1.17/s1811-6-917-x. Smith JE, Runcie JW and Smith CM. 5. Characterization of a large-scale ephemeral bloom of the green alga Cladophora sericea on the coral reefs of West Maui, Hawai'i. Mar Ecol Prog Ser 32, 77-91. http://dx.doi.org/1.3354/meps377 Sokal RR and Rohlf FJ. 1995. Biometry, 3 rd Edition. Freeman, NewYork, U.S.A. Song W, Li Y, Fang S, Wang Z, Xiao J, Li R, Fu N, Zhu M and Zhang X. 15. Temporal and spatial distribution of green algae micro-propagules in the coastal waters of the Subei Shoal, China. Estuar Coast Shelf Sci 163, 29-35. http:// dx.doi.org/1.116/j.ecss.14.8.6 Tang YZ and Gobler CJ. 11. The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via alleopathy. Harmful Algae 1, 48-488. http://dx.doi.org/1.116/j.hal.11.3.3. Taylor R, Fletcher RL and Raven JA. 1. Preliminary studies on the growth of selected green tide algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate. Bot Mar 44, 327-336. http://dx.doi. org/1.1515/bot.1.42. Xu D, Li F, Gao Z, Wang D, Zhang X, Ye N and Zhung Z. 13. Facilitative interactions between the green-tide macroalga Monostroma arctium and the red macroalga Porphyra yezoensis. J Exp Mar Biol Ecol 444, 8-15. http://dx.doi. org/1.116/j.jembe.13.3.4. Ye NH, Zhang XW, Mao YZ, Liang CW, Xu D, Zou I, Zhung ZM and Wang QY. 11. 'Green tides' are overwhelming the coastline of our blue planet: taking the world's largest example. Ecol Res 26, 477-485. http://dx.doi.org/1.17/ s11284-11-821-8. Zhang J, Kim JK, Yarish C and He P. 16. The expansion of Ulva prolifera O.F. Müller macroalgal blooms in the Yellow sea, PR China, through asexual reproduction. Mar Pollut Bull 14, 11-16. http://dx.doi.org/1.116/j.marpolbul.16.1.56.