spark@kist.re.kr. 1974, Si wafer 200 mm 300 mm. Si wafer, Si wafer 3. Si CVD(Chemical vapor deposition). Si wafer process tube, liner tube, wafer wafer carrier boat, dummy wafer, edge ring, fork cantilever loading, susceptor, heater. (quartz), (SiC), (Al 2O 3), (AlN), 2. Si wafer,,,,. 300 mm Si wafer.,.,. Si graphite quartz, Al 2O 3,, AlN, BN, Si 3N 4,, Si. 1000, 38
900 CVD,, Si wafer,.,,.,., 15. Table 1 Fig. 1 SiC/Si, CVD- SiC, HF/HNO 3. CVD SiC 0.1 ppm, SiC/Si CVD SiC 3.0~3.2 g/cm 3 quartz,., CVD Si de-vitrification flaking., Fig. 1 LP CVD. 3.1 Table 1. SiC SiC/Si (Si impregnation) CVD SiC Fe 3 0.028 0.1-0.8 Ni 1 0.004 0.005 Cu <1 0.008 0.005-0.1 Ca 5 0.015 0.2-0.1 Al 25 0.017 8-28 (ppm) Na <1 0.004 0.2-2.0 α-sic+si β-sic α-sio 2 (kg/m 3 ) 3020 3210 2200 (%) 0 0 0 (MPa, RT) 226 834 59 (MPa, RT) 35000 50000 7400 (/K, RT-1200 ) 4.5*10-6 4.6*10-6 5.4*10-7 (W/mK) RT 174 70 1.4 (ohm m) 1*10-3 6*10 3 3*10 6 HF (10 % HF ) Fig. 1. HF/HNO3, Si SiC. 3.1.1 2300 2800. β-sic α-sic,. Acheson 39
Table 2. Manufacturer Loaction Capacity(metric tons) Norton Advanced Ceramics Canada 40,000 Exolon-ESK Hennepin 42,000 Treibacher Canada 18,000 Sicven Venezuela 15,000 Casil Brazil 28,000 Alcoa Brizil 12,000 Casale Argentina 4,000 Norton AS Norway 67,000 ESK Netherland 50,000 Lonza Switzerland 8,000 Nabaro Spain 16,000 Pacific Rundum Japan 7,000 Yakushima Denko Japan 24,000 Norton Venezuela 20,000 : annual mineral review, Am. Ceram. SoC. Bull., 75(6),153-4 (1996) Acheson furnace (SiO 2) (petrolium coke) 2200 ~ 2400 α- SiC ingot. SiO 2 + 3C SiC + 2CO α-sic ingot.,. Table 2. Lutch ceramic HCl, α- Table 3. HCl, Kuzenetsov N.N. Jokhov A.A. Toshiba ceramics Co. halogen gas halogen /hydrogen halide 1), graphite Table 4. CVD (chemical vapor deposition) CVD Table 3. Halogen purification graphite metallic impurity level (ppm) Al B Cu Fe Mg Mn Ti Ca Ni V 1 0.6 0.3 0.04 1 0.3 0.06 8 500 no 2 1# 0.06 0.01 0.04 0.01 0.5 0.05 0.05 2 no 0.05 2 0.2 0.2 0.01 0.3 0.5 0.07 6 12 no 5 2# 0.06 0.05 0.01 0.03 0.3 0.06 0.05 1 no 0.05 3 50 2 12 28 56 2 1 470 no 0.05 3# 0.1 0.1 0.05 0.06 1 0.06 0.05 4 no 0.05 4 3 3 1 30 63 0.09 0.5 10 no 0.6 4# 0.06 0.03 0.05 0.1 2 0.09 0.05 3 no 0.05 5 20 2 3 50 2 3 7 10 29 6 5# 7 0.1 0.05 0.06 0.01 0.05 0.02 0.1 0.06 0.01 1 - untreated sample, #-treated sample 1 - carbon MPG-6 2 - carbon G-347 3 - graphite thermal isolation NUGM 4 - graphite thermal isolation UTP-200 5 - green technical SiC with middle size grains 120 µm 1) Tahashi Tanaka et al, Method of manufacturing parts for use to the heat processing furnace, U.S. papent 4,619,798 40
Table 4. Lucth ceramics Impurities Impurities Impurities Element Element Element content(ppm) content(ppm) content(ppm) Mn 0.16 Mo <0.5 Au <1 Dy 0.005 Cu 3 Cr 6.1 U <0.01 W 0.52 Ni 1.3 Th 0.15 Na 4.1 Co 0.2 La <0.05 K 2.2 Fe 3.7 Sb <0.2 Sc <0.05 Hf 0.025 Ta 0, 011 Zr <0, 5 Ir <0, 01 : G.I. Babayants, Special purity substances, Microelectronics, Jan, 17, 1996 & www.lutchceramics.com CVD. SiCl 2, SiH 2 CH 4, C 3H 4, CCl 4 CVD CH 3SiCl 3, (CH 3) 2SiCl 2, Si(CH 3) 4.. 7SiCl 3 + C 7H 8 + 10H 2 7SiC + 28HCl SiH 4 + CH 4 SiC + 4H 2 CH 3SiCl 3 SiC + 3HCl cabothermal reduction, SiO 2 β-sic. (ethyl silicate) β-sic. Table 5 Bridgestone Co. β-sic.. Table 5. (ethyl silicate) (phenol) (formaldehyde) β- Na K Ca Fe Ni Cu Cr V A <1 <1 <1 <1 <1 <1 <1 <1 B 4 <1 <1 5 <1 <1 <1 <1 : 5-24818 3.1.2...,, CVD SiC. (pressureless sintered or hot pressed SiC) 1970 G.E. Prochazka B C 2000. C B 4C, BN, BP boron, Al, AlN, Al 4C 3, AlB 2 Al. Omori Takei.. Al 2O 3- Y 2O 3 Al 2O 3-Y 2O 3-CaOAlN-Y 2O 3. Alliegro Fe, Al, Al 2O 3 wt % 41
. Al, Fe, W, B, AlN.,,,., 1~5 wt %.. Si Si-SiC CVD SiC coating forks plate Si wafer handling, plate edge ring lapping plate.. Toshiba ceramics (CERASIC) Ceradyne Ceralloy146., Bridgestone β- PureBeta-S, Table 6 Bridgestone PureBeta-S grade. Bridgestone PureBeta-S grade ppb, CVD. PureBeta-S dummy wafer, heater related products, etching Table 6. Bridgestone PureBeta-S grade Element Bulk(ppm) Surface (10 10 atoms/cm 2 ) B 0.03 - Na <0.002 - Al 0.05 - K <0.01 <DL Ca 0.07 <DL Ti 0.01 <DL Cr <0.03 <DL Mn <0.001 <DL Fe 0.05 0.4 Ni 0.009 0.2 Cu <0.006 <DL Zn <0.01 <DL W <0.002 <DL - Bulk : based on glow discharge mass spectrometry(gd-ms) - Surface : based on total reflection X-Ray fluorescence analysis(txrf) - DL : minimum limit of detection : www.purebeta.com Table 7. Toshiba ceramics CERASIC Bridgestone PureBeta-S grade Company BRIDGESTONE Toshiba Ceramics Product name PUREBETA-S CERASIC Structure β-sic α-sic Density(g/cm 3 ) 3.15 3.1 Vickers Hardness 2200 - Bending strength(mpa) 600 450 Elasticity(GPa) 390 420 Poisson s ratio 0.15 0.18 Thermal expansion(10-6/k) 4.3 4.5 Thermal conductivity(w/m.k) 230 170 Electrical/volume resistivity(.m) 0.02 - equipments parts, ion implanter parts, CVD equipment parts. Table 7 Toshiba ceramics CERASIC Bridgestone PureBeta- S grade, PureBeta-S grade CERASIC. (recrystallized SiC). 42
., 2000 -.,, 10~30 %. (binder),, 2000 ~ 2400, 2200,. Si. Si SiO 2 (wetting angle) 90 (non-wetting) SiO 2 Si Si Si 1800. Si Si-SiC. Table 8 Si,. Si Si Si 1420 Table 8. Si Noton Asahi ceramics AGEM Corp. Saint-Gobain ( ) (Roiceram HS-U) (Agem) (CRYSTAR) Fe 3 3.8 3 Al 10 12.9 50 Ni 1 0.7 - Ca 3 3.9 1 Cu <1 <0.4 0.03 Na <1 <0.6 0.1 Ti 1 1 2.1 Mg - <0.2 0.04 K - <0.2 0.3 (ppm) Zn - <0.4 0.3 Zr - - 3 V - 1 - Cr - <0.6 - Mn - <0.2 0.05 α-sic+si α-sic+si α-sic+si (g/cm 3 ) - - 3.05 (%) - - < 1 % (MPa) 230 - - (GPa, RT) - - 280 (RT-1000 ) - - 4.8*10-6 / (W/mK) RT - - 36 (ohm cm) 0.1 : www.asahiceramics.com, www.crystar.com, www.agem-usa.com. (reaction bonded SiC, RBSC) / Si (β-sic) Si SiC-Si. Si Si Si. Si 1450~1600, 43
Table 9. Process Preform materials Characteristics REFEL α-sic /carbon powder Capillary Climb & reaction Capillary Climb & reaction Shortening the infiltration time by using carbon fiber / C fiber SILCOMP C-precursor / Large and thin-shelled structure having SiC fiber complex curvature can be easily produced Large scale structure can be produced SiC powder / without forming preform Inex Si powder / SiC/Si/C mixture is consolidated by a Carbon powder moving hot zone (Induction heating) Impregnation of Si melt using graphite a continuous α-sic/carbon feeder Si infiltration powder continuous process & large scale complex process shaped articles can be easily produced.., Si Si 1400 1350. Si. REFEL process, SICOMP process, Inex process continuous reaction sintering process Table 9. CVD,, CVD heater Si wafer handling. ( ). ( ). handling, CVD. Toshiba ceramics TPSS grade Norton Saint- Gobain CRYSTAR. Toshiba ceramics TPSS grade, U-grade α-grade., Maicom-Quarz Gmbh 8 inch Si wafer. Bridgestone PureBeta-R grade β-sic 1400 CVD., Purebeta-R grade CVD. Acheson α-sic α-sic β- SiC. Table 10 44
. CVD (chemically vapor deposited SiC, CVD-SiC) Si C 1200~1500. CVD, (mirror),. Si C (precursor) Silane Si:C (stoichiometric) 1:1 MTS(methyl trichlorosilane, CH 3SiCl 3), (CH 3) 2SiCl 2., CVD Si C SiC l4/ch 4. CVD 2 Si., CVD Si : C 1 : 1 MTS. MTS carrier gas H 2 CVD. CH 3SiCl 3(g) + excess H 2 SiC(s) + 3HCl(g) + excess H 2 1 : Carbon containing species : CH 3 radical, CH 4 Silicon containing species : SiCl 3 radical, SiCl 3, SiCl 2 2 : Si, C Table 10. Toshiba Toshiba Maicom Quarz Bridgestone/ / ceramics/ ceramics/ GmbH/SiC- PureBeta-R TPSS-U TPSS-alpha Silicon carbide Fe 2.5 3.8 3.7 0.02 Al 0.5 12.9-0.05 Ni 0.3 0.7 1.3 0.01 Ca 0.7 3.9-0.04 Cu <0.01 <0.4 3 0.05 Na <0.2 <0.6 4.1 0.03 Ti - 1-0.01 Mg - <0.2 - K - <0.2 2.2 0.03 Zn - <0.4 - (ppm) Zr - - - 0.05 V - 1 - Cr - <0.6 6.1 0.06 Mn - <0.2 0.16 0.01 B 0.04 W 0.01 α-sic+si α-sic+si α-sic+si SiC + Si (g/cm 3 ) 3.05 2.9 (%) < 1 % (MPa) 1500 (MPa, RT) 230 420 (GPa, RT) 280 (RT-1000 ) 4.8*10-6 / 4.2*10-6 / (W/mK) RT 36 180 specific heat (j/g K) 0.68 (ohm cm) 0.1 0.01 CH 4 C + H 2 SiCl 3 + 3/2 H 2 Si + 3HCl 3 : Si + C SiC thermal CVD, plasma enhanced CVD, laser CVD, electron beam assisted CVD, CVD thermal CVD. CVD CVD hot-wall type cold-wall type. CVD 45
Table 11. CVD Application Characteristic/Property Benefits Low Etch Rate Longer component life than quartz or silicon in fluorine or chlorine based plasmas Longer component life than reaction bonded or hot pressed SiC in fluorine based plasmas High purity(99.9995%+) No aluminum contamination issue as when using alumina components No sintering aid additives No matallic contamination caused by sitering adis as in Hot pressed or direct sintered SiC Plasma Etch Homogeneous Structure Low particle generation No Secondary phases Low Resistivity (1-10 ohm-cm) available Useful for applications requiring RF coupling High purity(99.9995%+) No contamination of water or processing chamber High Thermal Conductivity High thermal shoch resistance (300 W/m K) Exellent wafer temperature uniformity High Elastic Modulus (466 Gpa), Rapid Allows very thin cross sections and low mass, resulting in increased wafer thru-put High Specific Stiffness Thermal Elastic Modulus nearly independent Flatness retained during and after high temp. use, aids in even heating Epitaxy of Temp (435 Gpa@ 1000 ) and processing of wafer High Chemical Resistance Little or no degradation in 1000 + HCl or HF chamber cleaning cycles Solid, Not a coating Components cannot pin-hole as CVD coated graphite parts do, so lifetime of the component is extended and contamination of wafers is prevented High purity(99.9995%+) No contamination of water or processing chamber High Thermal Conductivity Rapid (300 W/m K) High thermal shoch resistance Thermal High Elastic Modulus (466 Gpa), Processing High Specific Stiffness Allows very thin cross sections and low mass, resulting in increased wafer thru-put Elastic Modulus nearly independent of Temp (435 Gpa@ 1000 ) Flatness retained during and after high temp. use, aids in even heating and processing of wafer. CVD Si wafer., CVD Si. Table 11 CVD. CVD CVD. CVD Rohm and Hass advanced materials division CVD SILICON CARBIDE. CVD SILICON CARBIDE Rhom and Hass Advanced Material bulk CVD, ( > 99.9995%) β-sic,. CVD SILICON CARBIDE Tables 12, 13,. CVD CVD 50~70, CVD Si, Toshiba ceramics, Asahi ceramics, Norton Saint-Gobain. 46
Table 12. CVD SILICON CARBIDE PROPERTIES TYPICAL VALUES (Room Temperature) Crystal Structure FCC(face-centered cubic b-phase)polycrystalline Sublimation Temperature (degrees C) ~ 2700 Grain size (microns) 5-10 Density (grams per cc) 3.21 Hardness (kg per square mm) - - Knoop (500 g load) 2540 - Vickers (500 g load) 2500 Chemical Purity >99.9995% SiC Flexural Strength, 4-point (MPa/Ksi) Mil Std 1942 B - - At Room Temperature 470 / 68 - At 1400 575 / 84 Weibull Parameters - - Modulus, m 11.45 - Scale Factor, beta (Mpa/Ksi) 462 / 66 Fracture Toughness, KIC values - - Micro-indentation (MN m -1.5 ) 3.3 - Controlled Flow (MN m -1.5 ) 2.7 Elastic Modulus (GPa/106psi) - - Sonic 466 / 68-4 point Flexure 461 / 67 Coefficient of Thermal Expansion (1/K) - - At Room Temperature 2.2 10-6 - Room Temperaure to 1000 4.0 10-6 Heat Capacity (J/Kg-K) 640 Thermal Conducitivy (W/m-K) 300 Poisson s Ratio 0.21 Polishability (Optical profilometer) <3 Angstroms RMS Low < 1 ohm-cm Electrical Resistivity Standard 1-1000 ohm-cm High > 1000 ohm-cm POCO speciality materials CVD vapor phase diffusion reaction in-situ vapor solid reaction graphite SiO SiC SUPERSiC. SiO 2 + C SiO(g) + CO(g) SiO(g) + 2C SiC(s) + CO(g) SUPERSiC β-sic, 99.999% CVD SUPERSiC MTS H 2 CVD Table 13. CVD SILICON CARBIDE Element GDMS NAA Element GDMS NAA Li <3.2 - Rh <3.6 - Be <5.9 - Pd <25 - B 290 - Ag <20 <0.047 Na 30 0.63 Cd <150 <0.57 Mg <34 - In <22 <0.097 Al 9.1 - Sn <29 <4.1 P 28 - Sb <27 0.072 S 88 - I <63 - K <9.4 <21 Te <26 - Ca <5.8 <840 Cs <13 <0.0083 Sc <0.64 <0.0006 Ba <5.7 <2.2 Ti <4.2 <1400 La <1.2 <0.0062 Cr - 0.16 Ce <9.8 <0.038 V <1.4 - Eu - 0.021 Mn <3.9 - Tb - <0.0004 Fe <40 <5 Yb - <0.021 Co <4.0 <0.67 Nd <7.3 - Ni <13 205 Hf <6.1 <0.0058 Cu <16 1.55 Ta - <0.0057 Zn <36 1.28 W <12 0.688 Ga <29 <0.16 Re <5.3 - Ge <28 - Os <6.3 - As <9.4 5.70 Ir <8.5 <0.0001 Se <100 0.11 Pt <9.6 <19 Br - <0.02 Au - 0.028 Rb <11 <0.36 Hg <43 <0.02 Sr <1.1 <3.9 Tl <21 - Y <0.87 - Pb <7.1 - Zr <3.2 <4.5 Bi <6.1 - Nb <3.5 - Th <0.61 <0.007 Mo <17 0.28 U <0.42 <0.039 Ru <7.5 - - - - : Typical Trace Element Impurities in Parts per Billion by Weight using Gas Discharge Mass Spectrometry (GDMS) and Neutron Activation Analysis (NAA)., CVD. SUPERSiC graphite SiC. Graphite 2500 Fluorine chlorine-radical, CCl 2F 2, halogenhalogen, Toshiba ceramics 5ppm Ultra-puricfication. 47
Table 14. : (800~1200 ) (SiO 2) Horizontal/ (Oxidation & vertical : Furnace( ). Diffusion) Furnace (Horizontal) (Vertical). AP- CVD LP- CVD (CVD) PE- CVD gas gas Implanter. Sputter. (Al). (Thin Film) (Na), Grinder. Etcher. (Etch) Stripper. Station 3.2 Table 14.,, handling.,. : (Diffusion)/(oxidation), CVD, ion implantation - /. Horizontal vertical assembly processing tube, liner tube, cantilever paddles system, pedestals, Si wafer carrying boat (or conti boat), dummy wafer, thermo-couple sheath. Figs. 2, 3. Si wafer 1000~2500mm, processing liner tube Si wafer 150~450 mm. Processing liner tube. Si wafer boat Fig. 2.,. Fig. 3.,. 48
wafer Si wafer Si wafer. Dummy wafer Si wafer Si wafer carrying boat Si wafer. Cantilever paddles system cantilever liner tube Si wafer carrying boat loading system. Pedestals heat barrier Si carrying boat. - CVD LP(low pressure)-cvd, AP(atomospheric pressure)-cvd, PE(Plasma enhanced)-cvd. CVD. Single wafer process Si wafer susceptor, electrode heating system, susceptor, electrode heat Fig. 4. Norton Saint- Gobain, CVD CRYSTAR Si wafer boat Si waferboat Si wafer slip Fig. 5. - Ion implantation Single wafer CVD. 1350.,. processing tube liner tube, 1350., processing tube liner tube device. 300mm Si wafer. boat liner tube LP-CVD spalling., slot. dummy wafer LPCVD. dummy wafer 1~10, dummy wafer dummy wafer,,. dummy wafer, CVD CVD. Fig. 6 Bridgestone β-sic heater dummy wafer. : (etching), handling Si wafer handling,,, guide ring, edge ring, wafer chamber, fork, Robot arm, focus ring, electrode, holder. Fig. 7 Bridgestone electrode edge ring. 49
Fig. 4. LP-CVD vertical wafer boat gas injector. Fig. 5. LPCVD vertical wafer boat. Dummy Wafer Heater Fig. 6. Dummy wafer heater. (Bridgestone PureBeta-S).,.,,.,,,, Si wafer LP-CVD,,.,.,.,.. Electrode Edge Ring Fig. 7. electrode edge ring. (Bridgestone PureBeta-S). 2004 Si wafer 4.1 Acheson,. 50
., Si wafer CVD. handling ppb., CVD., CVD. Bridgestone PureBetar-S PureBeta-R. Bridgestone CVD PureBeta-S, R grade. 1400 CVD., -SiC., - -SiC.. 4.2, Si 30., Si wafer 300 mm,.,.,. CVD, dummy wafer. Bridgestone PureBeta CVD,., 51
Si.,. 4.3, key fact. 300 mm Si wafer,., Norton Saint-Gobaind LP-CVD vertical Si wafer boat., 300 mm Si wafer. KISTI /. 1. N. Kageyama, Silicon carbide products for silicon semiconductor manufacturing, Ceramics, jpn, 30[5] 424-427 (1995) 2. J. A. Tomanovich, LPCVD components trend toward SiC, Solid State Tech., 135-141, (1997). 3. K. Segawara, Introductory remarks on ceramics for silicon semiconductor manufacturing VLSI fabrication and its related ceramics, Ceramics, jpn, 30[5] 409-414 (1995). 4. K. Shiraishi, Silica glass for semiconductor process, Ceramics, jpn, 30[5] 415-418 (1995). 5. Chang-Bin Lim, Microstucture Control or Reaction- Sintered Silicon Carbide, Ph. D. Thesis, TiT (1989) 6. J. L. Fitzjohn and W. L. Holsten, Divergent Flow in Chemical Vapor Deposition Reactors, J. Electrochem.Soc., 137[2] 699-703 (1990) 7. Brochers, Midland Materials Research, Inc., Midland, Michigan, U.S.A. 8. S. R. Billington, J. Chown and A.E.S. White, P.1934 in Special Ceramics deited by J.J. Bueke et al. (1974) 9. C. E. Morosanu, Thin Films by Chemical Vapor Deposition. 42-49. Elsevier. 1990. 10. J. Chin. P. K. Gantzel and R. G, Hudson, The structure of Chemical Vapor Deposited Silicon Carbide Thin Solid Films, 40, 57-72 (1977). 11. R. A. Alliegro, L. B. Coflin and J.R. Tinklepaugh : J. Am. Ceram. Soc., 39, 386 (1956) 12. S. Prochazka and R. J. Charles :Am. Ceram. Bull., 52, 885 (1973) 13. S. Prochazka and : Ceramics for High Performance Applications (edited by J.J. Burke, A. E. Gorum and R. N. Katz), Brook Hill Pub. Co., p253 (1974) 14. S. Prochazki : special ceramics 6(edited by P. Popper),B. Ceram. R. A., Stoke-on trent, p.171 (1975) 15. M. G. Rogers : Special ceramics 5, p.87 16. A. W. C. Van Kemenade and C. F. Stemfoort, On the Formation of -SiC form Pyrolysis of CH3SiCl3 in Hydrogen, J. Cryst. Growth, 12, 13-16 (1972). 17. S. Motojima, H. Yagi and N. Iwamori, Chemical Vapor Deposition of SiC and Some of its properties, J. Mater. Sci. Lett., 5, 13-15 (1986). 18. 2000-44223 19. www.poco.com 20. www.cvdmaterials.com 21. www.purebeta.com 22. www.moicom-quarz.de 23. www.tocera.co.jp 24. www.agem-usa.com 25. www.coradyne.com 26. www.crystar.com 27. www.aqc.co.jp 28. www.coorstek.com 29. www.tokaicarbon.co.jp 30. www.tocera.co.jp 31. www.ceradyne.com 32. www.purebeta.com 33. www.agem-usa.com 52
1987 1987-1996 1996-. 2004. 5 Ph.D 2004. 8 Postdoctoral Fellow 2004.9-2007.2 Postdoctoral Research Scientist 2007.3-. 2007 2007-. Postdoctoral researcher 2007 2007-. 2007. 2007-. 53