60GHz 대역 WPAN 표준화및기술동향 (60GHz Frequency Band WPAN Technology) 2008. 6. 24. 초고속무선전송연구팀 이우용 본고는지식경제부및정보통신진흥원의 IT 성장동력기술개발사업의일환으로수행하였음.
I. 60GHz Band WPAN 응용서비스및표준화기구동향 II. IEEE 802.15.3c 표준화동향 III. Ecma TC48 표준화동향 IV. 결론 -2- KRnet 2008
I. Millimeter Wave (mmw( mmw) ) WPAN 응용서비스및표준화기구동향 -3- KRnet 2008
1. WPAN/WLAN 표준화진화방향 Enterprise True enterprise grade Gigabits WPAN/WLAN Phase 2 Phase 3 2 ~ 10 Gbps at 60 GHz Giga Fi Application space Ubiquitous TV SMB Home/ SOHO Phase 1 54 Mbps at 5.7 GHz 802.11a Bluetoot 802.11b h 11 Mbps at 2.4 GHz 802.11 802.15.3 2 Mbps at 2.4 GHz 54 Mbps at 2.4 GHz 802.11g QoS 802.11e Security 802.11i 802.11n UWB Infotainment Video Streaming High Speed Internet 1990s 2000 2005 2010 자료 : IEEE802 mmwlan,, Multi Gigabit data rate solution for wireless Gigabit To The Desktop D (GTTD) which operates in 56 + GHz bands, 2003-4- KRnet 2008
2. Multi-Gigabit 무선통신 (1/4) Multi-Gigabit Wireless Communications? UWB (3.1~10.6GHz freq. band, 110~480Mbps, ~10m): 각나라마다할당주파수가다름. 우리나라의경우 3.1 4.8GHz(Low Band), 7.2 10.2GHz(High Band) 2 개대역이분배되어있지만, Low Band 에서는간섭회피기술을적용하여야함. IEEE 802.11n (2.4 or 5GHz freq. band, 600Mbps, ~100m): 복잡한 MIMO 기술을적용하고 20MHz channel 2 개를 bonding 하여 40MHz 대역으로이용함. IEEE 802.15.3c (60GHz freq. band, 2~3Gbps, ~10m) -5- KRnet 2008
2. Multi-Gigabit 무선통신 (2/4): 응용서비스 External HDD Interface: EIDE (Ultra ATA100, 1.0 Gbps), SATA-I(1.5 Gbps), SATA-II(3.0 Gbps) Capacity: up to 750 GByte External ODD Format: Blu-ray HD-DVD Interface: EIDE (Ultra ATA100), SATA-I, SATA-II(3.0 Gbps) Capacity: up to 50 GByte 25 GByte Digital Camera Format 4368 x 2912 (4.6 Mbyte) Interface: USB 2.0 (480 Mbps), NG-wUSB (3.0 Gbps) Digital Camcorder Format: AVCHD (Video: 1080p at 24 fps, Audio: 5.1 CH AC3/7.1 CH Linear PCM) Interface: USB 2.0, NG-wUSB (3.0 Gbps) IEEE 1394 (400 Mbps) Portable Media Player Interface: USB 2.0, NG-wUSB (3.0 Gbps) IEEE 1394 (400 Mbps) Capacity: 100 Gbyte -6- KRnet 2008
2. Multi-Gigabit 무선통신 (3/4): 응용서비스 External Media Player Interface: USB 2.0, NG-wUSB (3.0 Gbps) IEEE 1394 (400 Mbps) Capacity: 200 Gbyte MP3 Player Interface: USB 2.0, NG-wUSB (3.0 Gbps) IEEE 1394 (400 Mbps) Capacity: 20 Gbyte Display Interface: DVI-D (up to 9.96 Gbps) PDP and LCD TV Interface: HDMI (up to 4.455 Gbps) AP Interface: 1000BASE-T (1 Gbps) Notebook PC/UMPC/Desktop Interface: USB 2.0, NG-wUSB IEEE 1394 1000BASE-T DVI-D -7- KRnet 2008
2. Multi-Gigabit 무선통신 (4/4): 주파수 60GHz 대역 Multi-Gigabit Wireless Communications 특징 57~66GHz 주파수대역을전세계가비허가대역으로분배했거나예정임 직진성이매우강함 동일채널을이용하여여러사용자간데이터통신가능 경로상에장애물이있을경우통신이어려움 60GHz 대역 RF 구현의어려움 이전까지는주로 MMIC 형태의 RF 가구현됨 최근에 BI-CMOS 또는 CMOS 형태의 RFIC 구현에성공함 고주파특징과산소분자로의흡수현상으로인해전파거리가짧음 우리나라와같이아파트가보편화된곳에서는 IEEE 802.11 무선랜사용시보안문제가발생하는데이와같은문제는해결될수있음 주파수재사용성이높아짐 먼거리의단말과통신하기위해서는전력소모가큼. Directional antenna 를이용하여극복가능 -8- KRnet 2008
3. 60GHz 대역주파수특성 대기감쇠특성 - 대기상산소분자와공진하여감쇠발생 ( 고정적인감쇠 ) - 60 GHz 대역에서 1 km 당 9 db 정도감쇄 - 군에서보안용으로먼저개발, 최근주파수재사용률이높아근거리용으로각광 강우감쇠특성 - 강우발생시감쇠발생 - 한국의경우 42 mm/h 강우지역에서 1 km 당약10 db 이상감쇠 60GHz 대 -9- KRnet 2008
4. 주파수대역특성비교 산소입자에의한감쇠량 감쇠요인 10GHz 이하 10-50GHz 60GHz 70-110GHz 산소입자 0.02dB/km 이하 0.5dB/km 이하 9dB/km 이하 1dB/km 이하 관심주파수에서의 km 당부가적인 Pass 손실 ( 단위 : db) 구분 3GHz 이하 26GHz 38GHz 40GHz 60GHz 77GHz 5 [mm/h] 0 1.5 1.5 1.5 3.0 3.5 강우감쇠 25 [mm/h] 0.01 6.0 7.0 8.0 10.0 12.0 50 [mm/h] 0.02 12.0 13.0 14.0 17.0 18.0 100 [mm/h] 0.04 20.0 22.0 25.0 31.0 34.0 산소입자에의한감쇠 0 0.15 0.15 0.17 9.0 0.5 농무에의한감쇠 0.01 0.8 1.2 1.3 3.0 4.5-10- KRnet 2008
5. 60GHz Wireless Comm. 표준화단체 (1/3) IEEE 802.15.3c 2004년도에 IEEE 802.15.3a의표준화활동이시작되었으며, 2005 년 3월 Task Group으로승격됨. 현재 Philips, Intel, Motorola, 삼성전자, ETRI, IHP, SiBeam, NICT, NTT, OKI, France Telecom, Georgia Tech, LG전자등의회사들이참여함 HDTV와홈시어터등고속의스트리밍다운로드와같은고속인터넷접속을위해 1Gbps 이상의고속전송을목적으로함 IEEE 802.15.3 MAC 과의호환성을유지하여야함 WiHD CMOS RF 솔루션을가지고있는 SiBeam (from Berkley) 을주축으로삼성전자, LG전자, 마쓰시다전기, NEC, 소니, 도시바등의회사가모여결성한컨소시움으로 HDTV를케이블, 위성방송셋톱박스, 게임콘솔, DVD 플레이어, 캠코더및이동식멀티미디어장비와무선으로연결시키는기술개발을진행 유럽의표준화단체인 ETSI BRAN을통해국제표준화시도 -11- KRnet 2008
5. 60GHz Wireless Comm. 표준화단체 (2/3) ECMA (European Computer Manufactures Association) 1961 년, Information and Communication Technology 및 Consumer Electronics 분야의표준제정을위해설립. 1987 년, ISO/IEC JTC1(Information technology) 의 A-liaison 회원이됨. 1994 년, International 이란명칭을덧붙여유럽기반의표준기구에서범세계적표준기구로변신함. ECMA s TC32-TG20 task group reviewed proposal presentation s for a complete (PHY+MAC) standard for low power 2 to 10 Gi gabit/s data transport. ETRI, GEDC (Georgia Tech), Intel, KU (Korea University), Matsu shita Electric Industrial Co. Ltd. (Panasonic), NewLANS, Philips and Samsung Electro-Mechanics Co. Ltd., Samsung Electronic s Co. Ltd. reached a major milestone by analysing standard pro posals that will give rise to a slew of next generation wireless ap plications. -12- KRnet 2008
5. 60GHz Wireless Comm. 표준화단체 (3/3) 기타 WiMedia: IEEE 802.15.3a UWB 표준화시 MB-OFDM 진영의그룹이속해있던컨소시엄으로 WiMedia 내에 60GHz Study Group 을두고 60GHz 를이용한고속전송에관심을가지고있음. IEEE 802.11: 현재 2.4GHz 와 5GHz 대역만을이용할경우전송률을높이는데태생적인한계가있으므로 60GHz 대역을이용하여 WLAN 서비스를해보자활동중. 일본 2006 년 7 월일본에서는 60GHz 컨소시움이구성되었으며초기멤버로는후지쯔, NEC, NTT, 오키전기, 산요전기, 토호쿠대학등임. 2006 년 9 월회의부터단일화된의견을통해 IEEE 802.15.3c 표준화회의를주도하고있고상당히많은일본의의견이반영되고있음 국내표준화 TTA PG 304 WPAN 그룹내에서 60 GHz 무선통신과제를수행하는 60GHz Working Group 이활동중. 국내콘소시엄구성은이루어지지않았음. -13- KRnet 2008
6. 60GHz 대역비허가주파수할당국제동향 56 57 58 59 60 61 62 63 64 65 66 GHz TX Power /Ant. Gain Australia 59.4 62.9 Max: 10mW eirp Max: 150W (51.8dBm) Canada/ USA Unlicensed Band Max: 500mW/100MHz Density(ave.): 9μW/cm 2 @3m (40dBm-erip) Density(peak): 18μW/cm 2 @3m (43dBm-erip) Japan Unlicensed Band 10mW/47dBi (57dBm-erip) Europe Unlicensed Band Eirp Max: 43dBm (Under Discussion) Korea Unlicensed Band Max: 10mW 미국과캐나다는같은기술기준을채택,, 일본이가장큰 EIRP 출력임 -14- KRnet 2008
7. 60GHz 대역한국주파수할당 (1/2) 60GHz 를용도미지정대역으로할당 60GHz 대역은광대역정보의근거리초고속전송에최적 -15- KRnet 2008
7. 60GHz 대역한국주파수할당 (2/2): 기술기준 실내응용 60GHz 대역기술기준이완료됨 (2007.4) 실외응용 <Figure 1> Spectrum mask for indoor application 57~58GHz 대역의제 2 차고조파성분이전파천문에영향을미치는것을방지 <Figure 2> Spectrum mask for outdoor application -16- KRnet 2008
8. IEEE 802.15.3c Usage Model (1/3) UM1: Uncompressed Video Streaming U1/U3 TV TV or Monitor TV1 Point-to-point UM2: multi Uncompressed Video Streaming U1/U3 U1/U3 PC, umpc, Set top Box (STB) Separated by 5m TV or Monitor PC, umpc, TV2 Set top Point-to-multi-point Box (STB) -17- KRnet 2008
8. IEEE 802.15.3c Usage Model (2/3) UM3: Office Desktop TV TV or Monitor HDD U1/U2 U5 UM4: Conference Ad-hoc Computer (C2) U17 U16 Wireless Bridge (WB) U17 Computer (C1) U16 Computer (C) Computer (C0) Printer (PR) -18- KRnet 2008 U17 U16 U2 U9 TV TV or Projector
8. IEEE 802.15.3c Usage Model (3/3) UM5: Kiosk File-downloading U7/U9 U7/U9 STB, Game Consol Mobile Storage Device, PDA Movie and Game Kiosk -19- KRnet 2008
9. mm-w WPAN 응용서비스 : Portable Media Player d1(u3) Digital Camera d4(u17) AP PDP/LCD TV d3(u16) Digital Camcorder d2(u6) External ODD PMP Desktop PC 출처 : ETRI Response to request of UMD subgroup s Usage Models, IEEE 802.15-06/281r3-20- KRnet 2008
9. mm-w WPAN 응용서비스 : 유럽 (1/2) 실내고속통신 HDTV 와 VCR 또는 Camcorder 간대용량데이터전송 스튜디오내 HDTV 카메라의고속영상전송 WLAN : 5GHz/60GHz Dual-band 화 (Broadway Project) 자료 : Peter Smulders,, "Exploiting the 60 GHz Band for Local Wireless Multimedia Access: Prospects and Future Directions," IEEE Communications Magazine, pp. 140-147, 147, Jan. 2002. -21- KRnet 2008
9. mm-w WPAN 응용서비스 : 유럽 (2/2) ACTS 의 MEDIAN 프로젝트에서는 60GHz 대역을이용한 ATM 기반의 150Mbps 급무선구내망및 LAN pilot 시스템을구현하여시연을수행함. MEDIAN 시스템응용분야 (four MEDIAN case application areas) -22- KRnet 2008
9. mm-w WPAN 응용서비스 : Intel 사 자료 : Ali Sadri and Achin Bhowmik,, "Wireless Display Throughput Requirements," IEEE802.15.3c, -23- Nov. 2005. KRnet 2008
9. mm-w WPAN 응용서비스 : W-GTTD Wireless Gigabit To The Desktop GigE Switch GigE Backbone GigE Edge Switch 2 GigE Link 0.1~1 Gbps Link 1 Access Point Server 3 0.1~1 Gbps Link 서버의자원은 AP를통하여 Notebook에의해서점유. FE 연결은 the edge switch에데이터가버퍼되는것이보장되어야함. W-GTTD eliminates or minimizes the queuing and transmission delay. GTTD in a client-server scenario can improve the performance by 67% 자료 : Dr. Roger Billings, Gigabit Ethernet - Emergence to the edge of the network at GEC keynote address, Washington D.C., August 2002. -24- KRnet 2008
9. mm-w WPAN 응용서비스 : 일본 BS CS Terrestrial TV 60 GHz Transmitter LCD TV Wall-mount TV DVD 60 GHz Portable PC within TV tuner CATV 자료 : This system has been developed by YRP Collaboration Research Project on Millimeter-Wave Video Transmission Systems, Japan, November, 2003. -25- KRnet 2008
9. mm-w WPAN 응용서비스 : Inter-vehicle 통신 Inter-Vehicle Communication System Transmitter & Receiver Transmitter & Receiver 자료 : Application of mmw-based PHYs, 15-04-0118-00 -26- KRnet 2008
9. mm-w WPAN 응용서비스 : Vehicular Train 자료 : Application of mmw-based PHYs, 15-04-0118-00 -27- KRnet 2008
9. mm-w WPAN 응용서비스 : Distribution in stadiums To Outside Broadcast Van Broadcasting Transmission System ~1.5Gbps Receiver Small HDTV Camera Transmitter 자료 : Application of mmw-based PHYs, 15-04-0118-00 -28- KRnet 2008
9. mm-w WPAN 응용서비스 : Distribution Link in the Dome Video signal Modulator Tx Tx Video camera Horizontal polarization Vertical polarization 210m 220m Domed baseball stadium Power supply 자료 : Application of mmw-based PHYs, 15-04-0118-00 3 F BS tuner -29- KRnet 2008 Rx Rx 2F Display
9. mm-w WPAN 응용서비스 : Info-station Service Multimedia data download -30- KRnet 2008
9. mm-w WPAN 응용서비스 : Wireless PCIe Bus Wireless System/Storage Area Network (SAN) PCIe Wireless PCIe High data rate Basic PCI Bus PCI Express: each slot has dedicated bandwidth to PC memory, unlike PCI which shares bandwidth -31- KRnet 2008
II. IEEE 802.15.3c 표준화동향 -32- KRnet 2008
1. IEEE802.15 WPAN Overview WPAN IEEE 802.15 TG 15.1 Bluetooth TG 15.2 Coexistence TG 15.5 Mesh Network SC wng Standing Committee TG 15.6 (BAN) TG 15.3 High Data Rate MAC & PHY TG 15.3a UWB PHY (Withdrawn) TG 15.3b MAC Maintenance TG 15.3c TG 15.4 Low Data Rate (ZigBee Alliance) TG 15.4a Location Awareness TG 15.4b 15.4 Revision TG 15.4c 15.4 for China TG 15.4d mmw PHY (Gbps) TG 15.4e 15.4 for Japan -33- KRnet 2008
2. IEEE802.15.3c 표준화그룹개요 (1/2) IEEE 802.15.3 WPAN Millimeter Wave Alternative PHY Task Group 3c (TG3c) Overview The IEEE 802.15.3 Task Group 3c was formed in March 2005. TG3c is developing a millimeter-wave-based alternative physical layer (PHY) for the existing 802.15.3 Wireless Personal Area Network (WPAN) Standard 802.15.3-2003. This mmwave WPAN will operate in the new and clear band including 57-64 GHz unlicensed band defined by FCC 47 CFR 15.255. The millimeter-wave WPAN will allow high coexistence (close physical spacing) with all other microwave systems in the 802.15 family of WPANs. -34- KRnet 2008
2. IEEE802.15.3c 표준화그룹개요 (2/2) Overview ( 계속 ) In addition, the millimeter-wave WPAN will support high data rate at least 1 Gbps applications such as high speed internet access, streaming content download (video on demand, home theater, etc.). Very high data rates in excess of 2 Gbps in option will be provided for simultaneous time dependent applications such as real time multiple HDTV video stream and wireless data bus for cable replacement. -35- KRnet 2008
3. IEEE802.15.3c CFI 현황 : 27 개사 (1/2) CFI Responses 1. P. Pagani, M. Bellec, W. Li (France Telecom) 2. A. Mathew (NewLANs) 3. A. Seyedi, D.Birru(Philips) 4. S. K. Yong (Samsung) 5. WY. Lee, JK Kim, YS Kim, KP Kim (ETRI) 6. A. Sadri (Intel Corporation) 7. B. Bosco (Motorola) 8. I. Lakkis (Tensorcom, Inc) 9. E. Grass (IHP) 10.G. Baldwin, J. Gilb(SiBeam) 11.H. Ikeda, Y. Shiraki (Oki Electric Industry) 12.S. Skafidas, T. Pollock, K. Saleem (NICTA, Australia) -36- KRnet 2008
3. IEEE802.15.3c CFI 현황 : 27 개사 (2/2) 13. H. Harada (NICT) 14. I. Toyoda, K. Nishikawa, T. Seki, S. Kubota (NTT) 15. A. Bourdoux (IMEC) 16. T. Huang, C. Tzuang, C. Wang, H. Chang (National Taiwan Univ) 17. A. Astrin (Astrin Radio Artistry) 18. S. Pinel (Georgia Institute of Technology) 19. JS Yoon and M Lee (Samsung Joint Lab of CUNY) 20. K. Takahashi (Matsushita Electric, Panasonic) 21. M. Mc Laughlin (DecaWave) 22. H. Nakase (RIEC, Tohoku University) 23. A. Valdes, B. Gaucher (IBM) 24. BJ. Jeon, YH. Kim (LG Electronics) 25. JH. Kim (Information and Communication Univ.) 26. CS. Park (IREC, Info. And comm. Univ.) 27. S. Nedic (AOL) 28. S. Emami (Freescale, Email Failed) -37- KRnet 2008
4. IEEE802.15.3c Proposal (CFP) 현황 Order Affiliation DCN Proposer's name (Representatives) 1 10 TensorCom Inc. 07/700r0 I. Lakkis 2 2 NICT/ CoMPA 07/693r2 H. Harada 3 7 NewLANs Inc 07/685r0 A. Mathew 4 5 IMEC 07/691r0 A. Bourdoux, S. Derore 5 1 Astrin Radio 07/703r0 A. Astrin 6 14 Tohoku Univ./ Mitsubishi 07/690r0 H. Nakase/ Y. Nagai 7 13 Matsushita/ Panasonic 07/698r0 K. Takahashi/Y. Zan 8 8 NICTA 07/686r0, 07/687r0 S. Skafidas 9 9 Phlips/Korea Unv./ETRI/GEDC 07/681r0 A. Seyedi/S.S. EOM/Y.S. Kim 10 16 Decawave 07/683r0 M. Mc Laughlin 11 6 Motorola/ Phiar 07/695r2 B. Bosco/A. Rentschler 12 15 N. Taiwan Univ./CSIST/Yuan-ze Univ. 07/615r1, 07/692r0 T.W. Huang/ Y.M. Chuang/J.K. Hwang 13 3 FranceTelecom/ IHP 07/688r0 P. Pagani/E.. Grass 14 12 WirelessHD/Samsung/LG/Panasonic/Toshiba/NEC/Sony 07/702r0 J. Marshall/J. Gilb/S. Kim/B.Jeon/H. Ohue/T. Okuya 15 11 Samsung Electronics 07/701r0 S. K. Yong, E. Kwon 16 4 IBM Research 07/694r0 A. Valdes -38- KRnet 2008
5. IEEE 802.15.3c 2008 년 5 월회의요약 (1/3) 회의내용요약 2008 년 5 월 12 일 ~ 15 일, Jacksonville, FL, USA. 평균참석자는약 60 여명의 voter. Broadcom 으로부터 12 개의 comment 를받고그에대한 resolution 수행. 10 개의 comment 해결. 2 개의 comment 는추후계속논의. 서로다른 PHY 모드간 interoperability 문제. 2 개의 OFDM 을하나로통합. TX antenna diversity 와관련하여 3 개의 comment 를받음. 현재표준초안에는 TX 안테나의개수만정의되어있고, RX 안테나에대한정보및 RX 안테나의스위칭에대한언급은없는데, TX switched diversity 는 TX 에관한내용이므로 RX 에대한내용은정의하지않음. TX 안테나의스위칭을위한기준값은구현이슈로간주함. -39- KRnet 2008
5. IEEE 802.15.3c 2008 년 5 월회의요약 (2/3) 회의내용요약 3월회의에서해결하지못한 17개의 comment에대한 resolution 수행. Channel probing에관련된 comment에대한 resolution 기고제출. UEP와관련된 comment 2건에대해서 resolution 기고제출. TDE와관련된 comment는프레임구조변경없이해결됨. Beamforming에관련된 4개의 comment는새로갱신된 beamforming 텍스트로해결예정 ETRI에서제출한 2개의 UEP comment는미해결상태, ETRI 에서이에대한 resolution 기고제출예정. 인하대학교로부터의 2개의 MAC comment는미해결상태. OOK, SC/HSI 프리앰블구조통합, 공통모드, OFDM 2개의통합등과관련된 comment가각각 1개씩미해결상태임. -40- KRnet 2008
5. IEEE 802.15.3c 2008 년 5 월회의요약 (3/3) 회의내용요약 SC PHY 관련 10 개의 comment 및 resolution 수행 6 개의 Editorial resolution MAC, MCS, Spreading, m sequence 및 Golay sequence 의비교관련 comment 들이각각 1 개씩제출되었고, resolution 이수행됨. 기타일반적인이슈에대한 comment resolution 및 HSI (High Speed Interface) OFDM 및 MAC 이슈에대한 comment resolution 을수행함. 향후일정 2008 년 9 월첫번째 Letter Ballot 완료 2009 년 3 월 Sponsor Ballot 시작 2009 년 9 월 RevCom 승인 ( 표준규격작업완료 ) -41- KRnet 2008
6. IEEE 802.15.3c Project 진행과계획 Present all final proposals Present updated/merged proposals x x Down Selection started x Down Selection finished x Draft baseline completed x x x 1st letter ballot completed Resolution of comments completed Re-circulation completed Resolve re-circulation comments 2nd re-circulation Resolve 2nd re-circulation comments. Resolve re-circulation comments 3rd re-circulation Resolve 3rd re-circulation comments. Sponsor ballot started Sponsor ballot comment resolution. Re-circulation completed RevCom Approval 2007 2008 2009 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9-42- KRnet 2008 x x Completed x x x x x x
7. SC (Single-Carrier) 표준 ( 안 ) 제안서 (1/16) CoMPA (Consortium of millimeter-wave practical applicat ions) 표준제안내용요약 NiCT 외약 19개일본기업, 기관및학교참여 9GHz 대역을 4개의채널 ( 각 2.16GHz) 로나누어사용 PHY-SAP에서 1Gbps 이상의전송률지원 Single Carrier 방식채택 Frequency Domain Equalizer 사용 변조 : BPSK, QPSK, 8PSK 사용 채널코딩 : RS Code, LDPC Code 사용 Common Mode 제안 Single Carrier 혹은 OFDM으로확장가능 다중 PHY 지원 : OFDM 또는 Single Carrier 방식등 -43- KRnet 2008
7. SC (Single-Carrier) 표준 ( 안 ) 제안서 (2/16) Conditions to Merge The same channel plan to avoid interference efficiently 3 (4) channels over 7 (9) GHz The Common rate (50 Mbps single carrier) communication capability to avoid interference accurately - to ensure interference free operation through DEV-DEV communication which could be done by detection-and avoidance (DAA) with much lower accuracy The Mandatory rate to meet PAR: 1 Gbps or higher transmission 1.5 Gbps in Single carrier mode -44- KRnet 2008
7. SC (Single-Carrier) 표준 ( 안 ) 제안서 (3/16) 주파수및채널할당 : Full-rate (2GHz) -45- KRnet 2008
7. SC (Single-Carrier) 표준 ( 안 ) 제안서 (4/16) 주파수및채널할당 : Same Channel Plan, Half-rate (1GHz) -46- KRnet 2008
7. SC (Single-Carrier) 표준 ( 안 ) 제안서 (5/16) Common rate (50 Mbps) communication A base rate single carrier (SC) transmission Mandatory for all devices except non-pnc capable OFDM or non-pnc capable OOK devices A bridge to realize coexistence and interoperability between SC and OFDM, OOK and also functions The most robust performance in all transmission modes, A long transmission range with omni * antennas in both LOS (AWGN) and NLOS channels without any equalization 10 m (TX and RX antenna gains are 4 dbi) in LOS (AWGN) 10 m (TX and RX antenna gains are 4 dbi) in NLOS Used for beaconing and signaling for association / disassociation, beam forming, and channel probing Employs p/2-bpsk and Reed Solomon (RS) (255, 239) and Golay code of 64 chips (equivalent spreading factor: 32), Can be easily implemented Extra protection designed for preamble and header of the Common mode to further increase its robustness for a fallback mode -47- KRnet 2008
7. SC (Single-Carrier) 표준 ( 안 ) 제안서 (6/16) PHY parameters for Common rate -48- KRnet 2008
7. SC (Single-Carrier) 표준 ( 안 ) 제안서 (7/16) Common rate (50 Mbps single carrier) communicati on capability required for all SC devices and PNC c apable OFDM or OOK Devices All 802.15.3c compliant PNC capable devices shall support dependent piconets both as a parent PNC and as a dependent PNC. A DEV may start a dependent PNC as described in 8.2.5 and 8.2.6. enable communications with and among entities that do not support common rate A PNC capable OOK/OFDM device can become a member of an existing piconet. This PNC capable OOK/OFDM device can borrow a time slot in CTA and create a child piconet in which other non-pnc capable OOK/OFDM devices can enjoy OOK or OFDM piconet communications respectively. -49- KRnet 2008
7. SC (Single-Carrier) 표준 ( 안 ) 제안서 (8/16) Mandatory rate (single carrier) required for all SC devices and PNC capable devices only To meet PAR: 1 Gbps or higher transmission 1.5 Gbps (PHY-SAP) In Single carrier mode Transmission range: 5 m in LOS environments Based on Common rate transmission capability -50- KRnet 2008
7. SC (Single-Carrier) 표준 ( 안 ) 제안서 (9/16) SC PHY mandatory parameters -51- KRnet 2008
7. SC (Single-Carrier) 표준 ( 안 ) 제안서 (10/16) Frame configuration -52- KRnet 2008
7. SC (Single-Carrier) 표준 ( 안 ) 제안서 (11/16) Transmitter 및 Receiver 블록다이어그램 -53- KRnet 2008
7. SC (Single-Carrier) 표준 ( 안 ) 제안서 (12/16) Reed Solomon Encoder in GF(28) -54- KRnet 2008
7. SC (Single-Carrier) 표준 ( 안 ) 제안서 (13/16) MAC 프로토콜제안 - Superframe structure Newly defined variable beacon period Improved time resolution for superframe timing control - Frame aggregation Frame aggregation with dedicated subheader Definition of Blk-ACK for aggregation - Four new procedures to realize 15.3c functions Option : Beamforming, Channel probing, DEV-DEV directional communications, UEP -55- KRnet 2008
7. SC (Single-Carrier) 표준 ( 안 ) 제안서 (14/16) Superframe structure Newly defined variable beacon period (BP) up to 256us Multiple beacon support of omni * and directional beacons in CR, OFDM/OOK beacons as well Contention Access Period (CAP) based on CSMA/CA Channel Time Allocation Period (CTAP) based on TDMA Improved time resolution of 9ns (16symbols/1.728Gsps) for superframe timing control. Modification of piconet synchronization parameters: Superframe duration (3 octets from 2 octets in 15.3b) CAP end time (3 octets from 2 octets in 15.3b) -56- KRnet 2008
7. SC (Single-Carrier) 표준 ( 안 ) 제안서 (15/16) Aggregation and Blk-ACK Frame aggregation for High throughput Subheader for each subframe protected by HCS When subframe information in subheader indicates the subframe contains MSB and LSB together, the corresponding subframe shall have two FCSs (MSB FCS and LSB FCS) attached to it. FCS information shall be set to 1 in this case Newly defined Block ACK (Blk-ACK) Independent retransmission for each subframe Scalability for other function such as UEP -57- KRnet 2008
7. SC (Single-Carrier) 표준 ( 안 ) 제안서 (16/16) MAC New operation procedures and primitives Beamforming (Option) Beamforming by receiving beam training sequence Channel probing (Option) Determination of most suitable PHY transmission mode Forward and backward channel probing by transmitting channel probing sequence DEV-DEV directional communications (Option) DEV-DEV beamforming, channel probing and streaming Peer discovery for capability confirmation UEP (Option) MCS (modulation and coding scheme) control by the subheaders -58- KRnet 2008
8. HSI-OFDM 표준 ( 안 ) 제안서 (1/5) HSI (High Speed Interface)-OFDM TensorCom 사의주도 SC / OFDM 를동시에지원하는 Common Frame Format 및 Spreading Code 제안 CoMPA 와공동으로 OFDM 표준규격의제안함 Common Rate (CR 50 Mbps) and Mandatory Low Rate (MLR 1.5Gbps) are mandatory for all SC devices and all OFDM and OOK PNC capable devices. -59- KRnet 2008
8. HSI-OFDM 표준 ( 안 ) 제안서 (2/5) HIS-OFDM 모드요약 Same Channel Plan as Single Carrier Homogeneous Sampling frequency with Single Carrier OFDM : 2592 MHz = 1.5 x 1728 MHz (SC) Optional OFDM Rate: 2538 MHz (same XTAL) Data Rates up to 0.7 Gbps to 7.3 Gbps Beaconing & Signaling modes from 58 Mbps to 900 Mbps Low Latency Shortened RS + Hamming Two high performance FEC schemes Concatenated Outer RS, Inner LDPC Block Code Concatenated Outer RS, Inner Convolutional Code Multiple Preamble Types for improved efficiency & Beamforming Aggregation & UEP support Beamforming support in Beacon & CTAP -60- KRnet 2008
8. HSI-OFDM 표준 ( 안 ) 제안서 (3/5) HSI-OFDM 변조기 -61- KRnet 2008
8. HSI-OFDM 표준 ( 안 ) 제안서 (4/5) HSI-OFDM Parameters -62- KRnet 2008
8. HSI-OFDM 표준 ( 안 ) 제안서 (5/5) HIS-OFDM 송신기 -63- KRnet 2008
9. AV-OFDM 표준 ( 안 ) 제안서 (1/5) AV-OFDM 표준제안내용요약 LG전자, NEC, 삼성전자, SiBeam, Sony, Toshiba 등의업체참여 최소 10m 이상의범위에서최고해상도의 HD A/V 지원 OFDM을기반으로한 2가지 PHY 모드지원 High rate PHY: Beam forming 시최대 4 Gbps 지원 Low rate PHY: Beam forming 유무에따라최대 10 / 40 Mbps 지원 Dual PHY 또는 Optional PHY 지원 각 PHY는서로다른응용에중점을맞춤 Device discovery, Blocking avoidance 기능지원 추가적인 MAC 기능 HRP/LRP 선택및 Beam forming 등을위한추가적인제어필드필요 Throughput 향상을위한 Directional ACK 지원 -64- KRnet 2008
9. AV-OFDM 표준 ( 안 ) 제안서 (2/5) PHY 에서지원하는모드 -65- KRnet 2008
9. AV-OFDM 표준 ( 안 ) 제안서 (3/5) HRP 및 LRP 를위한채널할당 HRP 를위해 2GHz 크기의 4 개채널할당 LRP 를위해 HRP 채널을 3 개의작은채널로나누어할당 -66- KRnet 2008
9. AV-OFDM 표준 ( 안 ) 제안서 (4/5) Transmitter 블록다이어그램 -67- KRnet 2008
9. AV-OFDM 표준 ( 안 ) 제안서 (5/5) AV-OFDM PHY 표준의 Link Budget -68- KRnet 2008
III. Ecma TC48 표준화동향 -69- KRnet 2008
1. Review: EC, CEPT and ETSI Relationship of the Organizations EC Info Soc European Gvrn ts EC Mandate to ETSI to standardize UWB tests RSC CEPT ETSI Ecma JEEC BRAN ERM TC48 60 GHz UWB? TG31a TG20-70- KRnet 2008
2. 60 GHz review procedure overview 60 GHz contributions TC48 review TC48 Drafting Final Draft 60 GHz Dec. 2008 JTC 1/SC 06 review Wimedia review Open-60GHz@ Ecma- International.org Ecma General Assembly vote ETSI BRAN review TC48 finalisation ECMA-xxx 1 st edition ISO/IEC JTC 1 Fast track procedure Ecma s Technical Comments + Proposed Dispositions ISO/IEC 22xx -71- KRnet 2008
3. Heterogeneous networking Homogeneous Networking All device PHYs have the same capability Heterogeneous Networking All device PHYs do not have the same capability TC48 60 GHz offers the only heterogeneous network solution that provides interoperability between all devices! -72- KRnet 2008
4. Device Types Type A Device Services video and data over LOS/NLOS with Trainable Antennas Considered high end device Bandwidth efficient modulation Significant baseband DSP (equalization, FEC, etc.) Type B Device Services video and data over LOS with Non-Trainable Antennas Considered economy device Minimal baseband DSP (no equalization, minimal FEC, etc.) Type C Device Data only over LOS at <1 meter range Considered bottom end device Cheap PHY implementation Limited EIRP/range with Non-Trainable Antennas -73- KRnet 2008
5. Applications Wireless Uncompressed / Lightly Compressed Video - 10 meters - 1 to 5 Gbps - Obscured LOS / Strong NLOS Reflection Wireless Docking Station - 1 meter - 1 to 5 Gbps - NLOS Large File Download - >500 Mbps - 10 meters - LOS / NLOS Short Range Sync & Go - 0.5 meter - LOS - >500 Mbps -74- KRnet 2008
6. Protocol Structure Optional PAL DME Device Management Entity MAC Layer MAC SAP MAC MLME MAC Layer Management Entity TC PLCP TB PLCP TA PLCP TC PHY TB PHY TA PHY PLME PHY Layer Management Entity PHY Layer ANT AFE -75- KRnet 2008 ANT
7. Frequency Plan 2160 MHz 1728 MHz 240 MHz 120 MHz 1 2 3 4 57 58 59 60 61 62 63 64 65 66 f GHz -76- KRnet 2008
8. PHY Layer Device Types Type A Common Mode SCBT Mandatory Modes SCBT DBPSK OOK Optional Modes OFDM UEP DQPSK 4ASK Type B Common Mode DBPSK Mandatory Modes DBPSK OOK Optional Modes DQPSK UEP Dual AMI 4ASK Type C Common Mode OOK Mandatory Modes OOK Optional Modes 4ASK Type A: Type B: Type C: Beacon SCBT DBPSK SCBT* No Beacon DRP SCBT / OFDM / DBPSK / DQPSK / OOK / UEP /4ASK DBPSK / DQPSK / UEP / Dual AMI / OOK / 4ASK OOK /4ASK * Transmit Only -77- KRnet 2008
9. Type A PHY The Type A PHY includes two general transmission schemes, namely Single Carrier Block Transmission (SCBT), also known as Single Carrier with Cyclic Prefix, and Orthogonal Frequency Division Multiplexing (OFDM). For beacon transmissions and to ensure interoperability among Type A devices, a common, mandatory mode is defined based on the SCBT transmission scheme. Furthermore, a mandatory Discovery Mode is defined to allow the initial communication between Type A devices, prior to antenna training. A flexible multi-segment frame format is employed. -78- KRnet 2008
10. Single Carrier Block Transmission (SCBT) (1/2) Employs an adaptive length Cyclic Prefix (4 possible lengths, including 0) Allows frequency domain equalization Allows time domain equalization For good performance in different multipath environments Particularly important since the level of multipath significantly varies as a function of antenna directionality as well as the environment. The SCBT modes: p/2-bpsk, QPSK, p/2-ns8qam, 16QAM, UEP-QPSK and UEP-16QAM with multiple code rates -79- KRnet 2008
10. Single Carrier Block Transmission (SCBT) (2/2) A concatenated Reed-Solomon (RS) and convolutional code is used with for p/2-bpsk, QPSK modes. For the larger constellations Trellis Coded Modulation is concatenated with the same RS code. Type A SCBT supports data rates from 0.4Gbps to 6.4 Gbps, without channel bonding. Mandatory common beaconing mode is based on p/2-bpsk at a data rate of 0.4 Gbps. -80- KRnet 2008
11. OFDM PHY (1/2) Incoming data is split into two parallel branches for baseband encoding and interleaving Eight different data rates are achieved using four different coding modes along with QPSK and 16-QAM modulation. Reed Solomon code is concatenated with convolutional codes to provide coding gain to overcome fading channels Eight parallel convolutional encoders are used to keep the cost of ultra-high throughput decoding under control -81- KRnet 2008
11. OFDM PHY (2/2) The coding modes support diverse application requirements Equal Error Protection (EEP) coding Unequal Error Protection (UEP) coding UEP mapping MSB-only Modes are also combined with an advanced bit interleaver to provide better performance Efficient OFDM tone interleaver provides error resilience based on bit reversal operation at reduced complexity -82- KRnet 2008
12. Discovery mode and antenna training Channel bandwidth: 2.16 GHz Data Channel Data Channel Discovery Channel Data Channel Data Channel Bit Rate: up to 6.4 Gbps Just Antenna Tracking No Training High Performance Antenna Patterns DRP Provides QoS Discovery Bit Rate: ~1 Mbps neighbour Discovery Antenna Training CSMA Data Access: >1 Gbps No QoS -83- KRnet 2008
13. Type B PHY (1/2) Type B minimizes the complexity and power consumption of the receiver Uses DBPSK waveform instead of p/2-bpsk Uses Reed-Solomon (RS) FEC instead of concatenated RS and convolutional code Uses a simplified single carrier transmission scheme Allows for both simple coherent and non-coherent demodulation Minimizes the implementation overhead for support interoperability with Type A devices Uses the same frame format as Type A beacon -84- KRnet 2008
13. Type B PHY (2/2) The Type B device does not support Cyclic prefix Discovery mode used for antenna training Optional Waveforms: DQPSK, UEP-QPSK, Dual AMI and 4ASK Flexible multi-segment frame format Multiple sectors antennas (non-trainable antennas) Transmit antenna training sequences to assist Type A device antenna training Transmission rate of a Type B device: 864 Mbps, optionally 1728 and 3456 Mbps. -85- KRnet 2008
14. Type C PHY (1/2) Uses simple Amplitude-Shift-Keying (ASK) modulation Allows for both coherent and non-coherent detection For management and interoperability with Type A or Type B devices, the On-Off-Keying (OOK: 2 level ASK) with 2 symbols repetition for beaconing (polling) mode Optional closed loop transmission power control for better channel reuse and power saving -86- KRnet 2008
14. Type C PHY (2/2) Does not support multi-segment frame format antenna training convolutional coding FEC UEP Uses Reed-Solomon FEC Transmission rate: 864 Mbps (non-coherent OOK), optionally 1728 and 3456 Mbps (non-coherent 4-level ASK) -87- KRnet 2008
15. A unified superframe structure MAC superframe structure Superframe N Superframe N+1 (256 Medium Access Slots) Start timing of Superframe N Start timing of Superframe N+1 BPST (Time = 0)... Time Medium Access Slot (MAS) Beacon Period (Variable Length) Beacon Period (Variable Length) Type A: Type B: Type C: Beacon SCBT DBPSK SCBT* No Beacon DRP SCBT / OFDM / OOK/4ASK DBPSK / DQPSK / UEP-QPSK / Dual AMI / OOK/4ASK OOK /4ASK * Transmit Only -88- KRnet 2008
16. Neighbor discovery Devices discover each other through transmission of beacons and polling frame in the Discovery Channel. Transmitters of beacons or polling frames in the Discovery Channel use CSMA/CA with random backoff so that all devices have a fair and quick channel access to discover other devices. Based on the device types, devices follow different procedures using their own mandatory PHY modes: Type A devices can discover each other via transmission and reception of omni-directional mode-d0 beacons in a peer-to-peer manner Type B and Type C devices can discover the devices of their own types via directional mode-b0 and mode-c0 beacons, respectively. Neighbour discovery among heterogeneous devices is achieved through the transmission of polling frame on a master-slave basis. -89- KRnet 2008
17. Beacon transmission (1/2) Devices, except Type C devices operating in the slave mode, send beacons to all the neighbours to exchange coordination information such as reservation of channel time or time synchronization. Unlike omni-directional beacon transmission in ECMA-368, beacons are transmitted using directional antennas to support simultaneous connections (thus, maximizing the spatial reuse). Devices transmit beacons in unique beacons slots within the beacon period of each superframe using the enhanced ECMA-368 Beacon Protocol. -90- KRnet 2008
17. Beacon transmission (2/2) As beacons are transmitted using directional antennas, a device might send more than one beacon as a single directional beacon might not be heard by all devices that the device needs to communicate with. Moreover, a Type B device needs to send a Type A beacon along with each transmitted Type B beacon (referred to as dual beacon) so that Type A devices will not interfere with Type B devices. -91- KRnet 2008
18. Spatial reuse (1/3) 3.4 Spatial reuse Data Transfer Point to Point long range, symmetric rate Multimedia Source Point to multi-point long range, asymmetric rate Multimedia Sinks Point to multi-point long range, asymmetric rate sync & go very short range symmetric rate omni-directional antenna possible Data Transfer Point to Point long range, symmetric rate -92- KRnet 2008
18. Spatial reuse (2/3) The 60 GHz MAC needs to manage the timefrequency-spatial space Frequency Traditional MAC managed only the timefrequency plane Time Space -93- KRnet 2008
18. Spatial reuse (3/3) 60 GHz is using Modified ECMA-368 MAC Distributed MAC Modified to accommodate Directional Antennas Distributed MAC allows distributed coexistence each node strives to avoid interference inherent support for spatial reuse Distributed MAC circumvents the central controller issue mixed device types with different range capabilities makes central control problematic Inherited from Ecma-368 distributed control via device beaconing frame format (DRP) security Modification necessary to support spatial reuse needed to add antenna training protocol -94- KRnet 2008
19. Coexistence and interoperability TA TB TC Max ~3 meters, max~3.2 Gbps Max 1 meter Max ~3.2 Gbps Limited EIRP TC (TC-TC only allowed on unoccupied channel under DAA operation) Max ~10 meters, max ~6.4 Gbps (TB defers to TA when operating with mixed devices) TB TC Max ~1 meter Max ~3.2 Gbps TA TC (TC uses TA/TB device to act as DRP proxy) (TC operates in master/slave mode only) TA = Type A Device TB = Type B Device TC = Type C Device Max ~1 meter Max ~3.2 Gbps -95- KRnet 2008
20. Other features The MAC protocol also supports Transmit power control Out of band control channel Dynamic relay transmission for blocked links -96- KRnet 2008
21. HDMI PAL HDMI Source ANT Video TMDS Channel0 Video Wireless HDMI transmitter Audio Control/ Status HDMI Transmitter TMDS Channel1 TMDS Channel2 TMDS Clock Channel TMDS HDMI decoding Receiver Audio Control/ Status EDID ROM A/V/Control packetization 60 GHz Wireless Transmission Display Data Channel (DDC) CE Control(CEC) HDMI Sink Video TMDS Channel0 Video Wireless HDMI receiver 60 GHz Wireless Receiving A/V/Control packetization Audio Control / Status TMDS encoder/ transmitter TMDS Channel1 TMDS Channel2 TMDS Clock Channel HDMI Receiver Audio Control / Status EDID ROM Display Data Channel(DDC) CE Control(CEC) -97- KRnet 2008
22. Status and plan 2007 2008 May June July Aug Sept Oct Nov Dec Jan Feb Dec SD PHY Comment resolution and Text Editing Coex/Interop Control & Protocol SD PLCP/MLCP AD PHY & PLCP/MLCP Estimated GA approval date Type C Device Ant Training (contribution submitted in Sept), Relay Node Device -98- KRnet 2008
IV. 결론 57~64GHz 대역에대한새로운주파수자원을개척하여 HDTV 급신호를케이블, 위성방송셋톱박스, 게임콘솔, DVD 플레이어, 캠코더및이동식멀티미디어장비와무선으로연결시키는무선전송기술임. 표준기술주도권을쟁탈하기위하여 Intel, Philips, Motorola, IBM, SiBeam, NICT, Sony 등 30 여개세계적인대기업들이국제표준화 (IEEE802, ETSI/BRAN, ECMA/ISO) 기구에서협력및경쟁을벌이고있는상황. 국내기업이세계시장을장악하고있는 LCD, PDP 및차세대 DVD 플레이어등에적용될 Wireless HD-SDI (High Definition Serial Data Interface)/ DVI (Digital Visual Interface) 에적용될것임. IEEE802.15.3c 에서는 50 여개회사, 학교및기관에서 PHY/MAC 표준 ( 안 ) 제안서발표및참여하였음. IEEE802.15.3c PHY 표준제안은 SC, HIS, AV 3 개전송방식으로나누어져규격작업하고있음. Ecma International TC48 를중심으로활발히일어나고있는표준규격은 Text Editing 작업마무리단계에있음. -99- KRnet 2008
감사합니다.