125_134_특집_강은아_김광#4D4B32

Similar documents
hwp


untitled

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

00....

<30352DB1E2C8B9C6AFC1FD2028C8ABB1E2C7F D36362E687770>

jaeryomading review.pdf

975_983 특집-한규철, 정원호

(

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

제 출 문 경상북도 경산시 농업기술센터 귀하 본 보고서를 6차산업수익모델시범사업 농산물가공품개발 연구용역 과제의 최종보고서로 제출합니다 년 11 월 19 일 주관연구기관명 : 영남대학교 총괄연구책임자 : 한 기 동 연 구 원 : 김 상 욱 이 수 형 이 상

表紙(化学)

???춍??숏

A 617

김범수

DBPIA-NURIMEDIA

433대지05박창용

Treatment and Role of Hormaonal Replaement Therapy

Lumbar spine

hwp

歯_ _ 2001년도 회원사명단.doc

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

63-69±è´ë¿µ

13_1_학회소식_rev5_ hwp

DBPIA-NURIMEDIA

03이경미(237~248)ok

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

139~144 ¿À°ø¾àħ



지원연구분야 ( 코드 ) LC0202 과제번호 창의과제프로그램공개가능여부과제성격 ( 기초, 응용, 개발 ) 응용실용화대상여부실용화공개 ( 공개, 비공개 ) ( 국문 ) 연구과제명 과제책임자 세부과제 ( 영문 ) 구분 소속위암연구과직위책임연구원

Can032.hwp

Rheu-suppl hwp

노인정신의학회보14-1호

-



저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

<30352EB0A3BAB4B8AE2E687770>

May 10~ Hotel Inter-Burgo Exco, Daegu Plenary lectures From metabolic syndrome to diabetes Meta-inflammation responsible for the progression fr

45-51 ¹Ú¼ø¸¸

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

< FC1F8B9E6B1B3C0B02E687770>

À±½Â¿í Ãâ·Â

lastreprt(....).hwp

Kbcs002.hwp



03-서연옥.hwp

歯여성정책포럼.PDF

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

Contents 이사장 인사말 04 병원장 인사말 05 연혁 06 진료과 소개 08 젊고 건강한 삶을 되찾기 위한 새로운 시작! MH연세병원에서 만날 수 있습니다. 주요센터 소개 14 치과 소개 32 의료장비 소개 34 편의시설 38

歯5-2-13(전미희외).PDF


12권2호내지합침

main.hwp

09권오설_ok.hwp

대한한의학원전학회지26권4호-교정본(1125).hwp

박선영무선충전-내지

Mol_Imaging

12-17 총설.qxp

09È«¼®¿µ 5~152s


2016 SPRING VOL. 45 intelligenceinformation identity FOCUS 04 DAN TALK ZOOM IN HUMAN Team Manual House NEW

The Window of Multiple Sclerosis

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

心臟疾病細胞治療之臨床試驗簡介

hwp

<303520B1E2BABBBBE7BEF7BAB8B0EDBCAD2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

???? 1

10 (10.1) (10.2),,

09-감마선(dh)

내지무인화_

Chapter 11 Rate of Reaction

DBPIA-NURIMEDIA

(5차 편집).hwp

02¿ÀÇö¹Ì(5~493s

<BCF6BDC D31385FB0EDBCD3B5B5B7CEC8DEB0D4C5B8BFEEB5B5C0D4B1B8BBF3BFACB1B85FB1C7BFB5C0CE2E687770>

, Next Step of Hangul font As an Example of San Serif Han San Seok Geum ho, Jang Sooyoung. IT.. Noto Sans(Adobe, Han-San). IT...., Muti Script, Multi

<303720C7CFC1A4BCF86F6B2E687770>

인문사회과학기술융합학회

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

½Éº´È¿ Ãâ·Â

목 차 회사현황 1. 회사개요 2. 회사연혁 3. 회사업무영역/업무현황 4. 등록면허보유현황 5. 상훈현황 6. 기술자보유현황 7. 시스템보유현황 주요기술자별 약력 1. 대표이사 2. 임원짂 조직 및 용도별 수행실적 1. 조직 2. 용도별 수행실적


232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

Print

페링야간뇨소책자-내지-16

<B1B3B9DFBFF83330B1C7C1A631C8A35FC6EDC1FDBABB5FC7D5BABB362E687770>

개최요강

歯3-한국.PDF

ÀÇÇа�ÁÂc00Ì»óÀÏ˘

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

< FB5B5BAF1B6F32C20B8F1C2F D34292E687770>

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

이 발명을 지원한 국가연구개발사업 과제고유번호 KGM 부처명 교육과학기술부 연구관리전문기관 연구사업명 전북분원운영사업 연구과제명 저탄소 녹생성장을 위한 바이오매스/에너지 개발 주관기관 한국생명공학연구원 연구기간 2009년 01월 01일 ~ 2009년 12월

Transcription:

Focused Issue of This Month Multifunctional Nanoparticles for Molecular Imaging Eunah Kang, Ph.DKwangmeyung Kim, Ph.DIck Chan Kwon, Ph.D iomedical Research Center, Korea Institute of Science & Technology E - mail : ekang@kist.re.krkim@kist.re.krikwon@kist.re.kr J Korean Med ssoc 2009; 52(2): 125-134 bstract Molecular imaging is a bioimaging that can detect biochemically and genetically relevant events in molecular level in cells and tissues via quantitative imaging signal. Molecular imaging provides potential advantages to examine early diagnosis of specific diseases, to screen new candidates of a drug, to monitor therapeutic effects in real time, and to communicate with both diagnosis and therapeutics. These diverse advantages of molecular imaging can be allowed by development of nanoplatform technology. The nanoplatform-based probes for molecular imaging is widely investigated to grant multimodal molecular imaging and drug delivery together with medical imagings, which includes the issues of biocompatibility, targeting moiety, proteasespecific peptide substrate, quenching/dequenching system etc. In this paper, nanoplatformbased probes are reviewed in aspects of cancer targeting for diagnosis and therapy and multimodal molecular imaging with inorganic/organic hybrid nanoparticles. Keywords: ioimaging; Multimodality; Nanoparticles; ctivatable; Targeting; iodistribution 125

Kang EKim KMKwon IC 126

Multifunctional Nanoparticles for Molecular Imaging Figure 1. Hydrophobically modified chitosan (HGC) nanoparticles targeting for atherosclerosis via homing peptide, () Schematic picture of atherosclerotic homing peptide conjugated HGC, () NIR fluorescence imaging that HGCs were localized on atherosclerotic regions in vivo, (C) histological morphology of atherosclerotic region of aorta vessel. Modified with permission from Ref. 5. Copyright 2008 Elsevier C.V. C 127

Kang EKim KMKwon IC Figure 2. Nanostructure of polymersome, () schematic nanostructure of polymersome and dye loading within hydrophobic bilayer, () NIR fluorescence imaging in vivo via polymersome probe. Modified with permission from ref. 6. Cpolyright 2005 PNS. glycol chitosan shell Tumor Whole body Tumor to background ratio(tr) 1 h 6 h 12 h 24 h 36 h 48 h 72 h Time (hour) White light C MIR Liver Lung Kidney Intensity(NC) 2.11e+004 1.58e+004 1.05e+004 5.26e+003 Spleen Heart Tumor Figure 3. HGC nanoparticle for cancer imaging, () schematic picture of Cy 5.5 labeled HGC, () NIR fluorescence imaging in vivo for tumor targeting using Cy 5.5 labeled HGC nanoparticles, (C) Quantitative analysis of fluorescence signal for tumor to background signal ratio, (D) biodistribution in organs ex vivo. Modifiedwith permission from ref. 7. Copyright 2008 Elsevier.V. 0 D 128

Multifunctional Nanoparticles for Molecular Imaging Figure 4. ph sensitive micelle with cell penetrating peptide TT, () schematic picture to show the structural change of micelle at ph variance. TT moieties are faced outward at weak acid of tumor site. () NIR fluorescence imaging in vivo of tumor targeting via ph sensitive micelle with TT moieties. Modified with permission from ref. 12. Copyright 2008 Elsevier.V. Figure 5. Protease-specific nanoparticle probe, () Schematic picture of poly (L-Lysine) nanoparticles, () Schematric picture of selective degradation of polymer main backbone by protease, (C) NIR fluorescence bioimaging that was emitted by the cleavage of lysine substrates. Modified with permission from ref. 21. Copyright 1999, Nature Publishing Group. C 129

Kang EKim KMKwon IC Table 1. Target protease and peptide substrates for specific cancers and diseases Target protease Disease Peptide substrate Cathepsin reast cancer K/K Lymph nodes Lung cancer Rheumatoid arthritis therosclerosis Cathepsin D reast cancer PICF/FRL MMP-2 Fibrosarcoma PLG/VRG MMP-9 Myocardial infarction SGKGPRQ/IT MMP-2/-9 therosclerosis GGPRQ/ITG Macrophage MMP-7 Fibrosarcoma GVPLS/LTMGC Thrombin Cardiovascular F(PiP)R/S FXIIIa Cardiovascular NQ/EQVS Caspase -1 poptosis WEHD/DEVD Caspase-3 Urokinase Cancer GR/SN plasminogen activator (P) HIV protease HSV GV/SQNY/PIVG DPP -IV GP/GP * This table was modified with permission (33). 130

Multifunctional Nanoparticles for Molecular Imaging Figure 6. MMP specific peptide probes () Schematic picture of cleavage mechanism between MMP and MMP specific peptide substrate that was quenched by Cy5.5/ HQ system, () Sensitive fluorescence emission by MMP cleavage dependence in vitro characterization, (C) NIR fluorescence bioimaging that was activated by MMP in tumor site via MMP activatable probe. Modified with permission from 19. Copyright 2008, merican Chemical Society. C 131

Kang EKim KMKwon IC C Figure 7. Inorganic MMP activatable gold nanoprobe () schematic picture of gold nanoprobe that is activated by cleavage of MMP specific peptide substrate, () in vitro characterization of MMP dependence of MMP activatable gold nanoparticles, (C) NIR fluorescence imaging, Fluorescence intensity is emitted in only tumor site by MMP cleavage of peptide substrate that was conjugated on gold nanoparticle. Quenched fluorescence probe by gold nanoparticles was emitted as Cy 5.5 was departed from gold nanoparticles. Modified with permission from ref. 18. Copyright 2008 WILEY-VCH Verlag GmbH & Co. C Figure 8. Multifunctional quantum dots with dual imaging modality, () schematic picture of multifunctional quantum dot nanoparticles with multimodality. Multifunctional nanocomplex;paramagnetic lipid for MRI and quantum doe for fluorescence, RGD peptide for targeting, PEG for biocompatibility, () MRI image administered with multifunctional quantum dots, (C) Fluorescence bioimaging. Modified with permission from ref. 29. Copyright 2008 Springer. 132

Multifunctional Nanoparticles for Molecular Imaging 11. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003; 422: 37-44. 12. Park K, Kim JH, Nam YS, Lee S, Nam HY, Kim K, Park JH, Kim IS, Choi K, Kim SY, Kwon IC. Effect of polymer molecular weight on the tumor targeting characteristics of selfassembled glycol chitosan nanoparticles. J Control Release 2007; 122: 305-314. 13. Thapa N, Hong HY, Sangeetha P, Kim IS, Yoo J, Rhee K, Oh GT, Kwon IC, Lee H. Identification of a peptide ligand recognizing dysfunctional endothelial cells for targeting atherosclerosis. J Control Release 2008; 131: 27-33. 14. Hong HY, Lee HY, Kwak W, Yoo J, Na MH, So IS, Kwon TH, Park HS, Huh S, Oh GT, Kwon IC, Kim IS, Lee H. Phage Display Selection of Peptides that Home to therosclerotic Plaques: IL-4 Receptor as a Candidate Target in therosclerosis. J Cell Mol Med 2007. 15. Park K, Hong HY, Moon HJ, Lee H, Kim IS, Kwon IC, Rhee K. new atherosclerotic lesion probe based on hydrophobically modified chitosan nanoparticles functionalized by the atherosclerotic plaque targeted peptides. J Control Release 2008; 128: 217-223. 16. Ghoroghchian PP, Frail PR, Susumu K, lessington D, rannan K, ates FS, Chance, Hammer D, Therien MJ. Near-infrared-emissive polymersomes: self-assembled soft matter for in vivo optical imaging. Proc Natl cad Sci U S 2005; 102: 2922-2927. 17. Hwang HY, Kim IS, Kwon IC, Kim YH. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release 2008; 128: 23-31. 18. Cho YW, Park S, Han TH, Son DH, Park JS, Oh SJ, Moon DH, Cho KJ, hn CH, yun Y, Kim IS, Kwon IC, Kim SY. In vivo tumor targeting and radionuclide imaging with selfassembled nanoparticles: mechanisms, key factors, and their implications. iomaterials 2007; 28: 1236-1247. 19. Min KH, Park K, Kim YS, ae SM, Lee S, Jo HG, Park RW, Kim IS, Jeong SY, Kim K, Kwon IC. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release 2008; 127: 208-218. 10. Kim JH, Kim YS, Park K, Lee S, Nam HY, Min KH, Jo HG, Park JH, Choi K, Jeong SY, Park RW, Kim IS, Kim K, Kwon IC. ntitumor efficacy of cisplatin-loaded glycol chitosan nanopar-ticles in tumor-bearing mice. J Control Release 2008; 127: 41-49. 11. Yin H, Lee ES, Kim D, Lee KH, Oh KT, ae YH. Physicochemical characteristics of ph-sensitive poly (L-histidine)-b-poly (ethylene glycol)/poly (L-lactide)-b-poly (ethylene glycol) mixed micelles. J Control Release 2008; 126: 130-138. 12. Lee ES, Gao Z, Kim D, Park K, Kwon IC, ae YH. Super phsensitive multifunctional polymeric micelle for tumor ph (e) specific TT exposure and multidrug resistance. J Control Release 2008; 129: 228-236. 13. Pham W, Pantazopoulos P, Moore. Imaging Farnesyl Protein Transferase Using a Topologically ctivated Probe. J m Chem Sco 2006; 128: 11736-11737. 14. Ntziachristos V, Schellenberger E, Ripoll J, Yessayan D, Graves E, ogdanov, Josephson L, Weissleder R. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl cad Sci U S 2004; 101: 12294-12299. 15. Jaffer F, Kim DE, Quinti L, Tung CH, ikawa E, Pande N, Kohler RH, Shi GP, Libby P, Weissleder R. Optical Visualization of Cathepsin K ctivity in therosclerosis With a Novel, Protease-ctivatable Fluorescence Sensor. Circulation 2007; 115: 2292-2298. 16. Fischer R, achle D, Fotin-Mleczek M, Jung G, Kalbacher H, 133

Kang EKim KMKwon IC rock R. targeted protease substrate for a quantitative determination of protease activities in the endolysosomal pathway. Chembiochem 2006; 7: 1428-1434. 17. remer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 2001; 7: 743-748. 18. Lee S, Cha EJ, Park K, Lee SY, Hong JK, Sun IC, Kim SY, Choi K, Kwon IC, Kim K, hn CH. near-infrared-fluorescencequenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. ngew Chem Int Ed Engl 2008; 47: 2804-2807. 19. Lee S, Park K, Lee SY, Ryu JH, Park JW, hn HJ, Kwon IC, Youn IC, Kim K, Choi K. Dark quenched matrix metalloproteinase fluorogenic probe for imaging osteoarthritis development in vivo. ioconjug Chem 2008; 19: 1743-1747. 20. Lee S, Park K, Kim K, Choi K, Kwon IC. ctivatable imaging probes with amplified fluorescent signals. Chem Commun (Camb) 2008: 4250-4260. 21. Weissleder R, Tung CH, Mahmood U, ogdanov, Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat iotechnol 1999; 17: 375-378. 22. Wunder, Tung CH, Muller-Ladner U, Weissleder R, Mahmood U. In vivo imaging of protease activity in arthritis: a novel approach for monitoring treatment response. rthritis Rheum 2004; 50: 2459-2465. 23. Law, Weissleder R, Tung C-H. Mechanism-ased Fluorescent Reporter for Protein Kinase Detection. ChemioChem 2005; 6: 1361-1367. 24. Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R. n X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 2006; 5: 118-122. 25. Perez JM, Josephson L, O Loughlin T, Högemann D, Weissleder R. Magnetic relaxation switches capable of sensing molecular interactions. Nat iotechnol 2002; 20: 816-820. 26. von zur Muhlen C, von Elverfeldt D, Moeller J, Choudhury RP, Paul D, Hagemeyer CE, Olschewski M, ecker, Neudorfer I, assler N, Schwarz M, ode C, Peter K. Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis. Circulation 2008; 118: 258-267. 27. Gao X, Yang L, Petros J, Marshall FF, Simons JW, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr Opin iotechnol 2005; 16: 63-72. 28. Kamaly N, Kalber T, hmad, Oliver MH, So PW, Herlihy H, ell JD, Jorgensen MR, Miller D. imodal paramagnetic and fluorescent liposomes for cellular and tumor magnetic resonance imaging. ioconjug Chem 2008; 19: 118-129. 29. Mulder WJ, Castermans K, van eijnum JR, Oude Egbrink MG, Chin PT, Fayad Z, Lowik CW, Kaijzel EL, Que I, Storm G, Strijkers GJ, Griffioen W, Nicolay K. Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots. ngiogenesis 2008. 30. Gerstl F, Windischberger C, Mitterhauser M, Wadsak W, Holik, Kletter K, Moser E, Kasper S, Lanzenberger R. Multimodal imaging of human early visual cortex by combining functional and molecular measurements with fmri and PET. Neuroimage 2008; 41: 204-211. 31. Choi JH, Nguyen FT, arone PW, Heller D, Moll E, Patel D, oppart S, Strano MS. Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett 2007; 7: 861-867. 32. Cheon J, Lee JH. Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology. cc Chem Res 2008. 33. Nam HY, Park JH, Kwon IC. Polymer for ioimaging. Polymer Sci Technol 2008; 19: 130-137. Peer Reviewers Commentary 134