2013 년도한국철도학회추계학술대회논문집 KSR2013A018 600km/h 급초고속열차용공심형 LSM 의권선방식에따른특성연구 A Study on the Stator-Mover Structure of Linear Synchronous Motor for 600km/h Very High Speed Train 박찬배 *, 이준호 *, 이병송 *, 김재희 *, 정신명 *, 이수길 * Chan-Bae Park *, Jun-Ho Lee *, Byung-Song Lee *, Jae-Hee Kim *, Shin-Myung Jung *, Su-Kil Lee * Abstract Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybridtype system is based on wheel-rail method, but it enables to overcome the speed limitation by adhesion because it is operated by a non-contact method using a linear motor as a propulsion system and reduce the overall construction costs by its compatibility with the conventional railway systems. Therefore, design models of each coreless-typed Linear Synchronous Motor (LSM) with various distributed and concentrated windings for 600 km/h very high speed train maintaining the conventional wheel-rail method is derived, and a comparative analysis on electromagnetic characteristics of each model is finally conducted in this paper. Keywords : Very high speed train, Linear synchronous motor, Coreless, Superconductivity, Wheel-rail 초록최근세계화가가속화되면서이에따른고속교통수단에대한요구도증가되고있지만, 고속교통수단의일환인 500km/h 이상의초고속자기부상열차실용화가늦어지면서이에대한대안으로기존의휠 - 레일방식과자기부상추진방식의장점만을혼합한하이브리드철도시스템에대한관심이커지고있다. 이러한하이브리드철도시스템은휠 - 레일방식에기초하지만, 추진시스템으로기존의회전형전동기가아닌선형전동기를이용하기때문에. 비점착구동이가능하여기존의휠 - 레일추진방식에의한속도한계를극복할수있다. 따라서본논문에서는휠 - 레일지지방식과선형전동기추진방식을가지는초고속열차용공심형 LSM(Linear Synchronous Motor) 의다양한분포 / 집중권선방식의변화에따른전자기적특성변화를 FEM 을이용하여분석하였다. 주요어 : 초고속열차, 선형동기전동기, LSM, 공심형, 휠 - 레일, 권선 1. 서론최근세계화가가속화되면서이에따른고속교통수단에대한요구도증가되고있다. 교통측면에서속도는경쟁력을갖추기위한중요한요소중하나이며, 가까운미래에세계경제의중심이될동북아시아지역에서는더욱중요하다 [1]. Fig. 1은세계 Top 5 의초고속철도개발현황을보여준다 [2,3]. Fig. 1에서보는바와같이, 지금까지개발된가장빠른열차는일본의자기부상열차 (581km/h) 이다. 자기부상열차는 1960년대부터연구개발이이루어진이래, 독일과일본의경우는실용화수준에도달하였으며, 시험선로에서의대부분의 교신저자 : 한국철도기술연구원고속철도연구본부 (cbpark@krri.re.kr) * 한국철도기술연구원고속철도연구본부
시험이이루어졌다. 독일의 Transrapid는 2003년 12월, 중국상하이에 430km/h급상용노선을건설하여세계유일의상용시스템이되었으며, 일본이동경-오사카라인에 500km/h급이상의자기부상열차실용화노선을준비하고있지만, 막대한건설비용문제를아직해결하지못한상황이다 [4,5]. 기술적, 경제적문제를포함한다양한이유를근거로 500km/h급이상의초고속자기부상열차에대한실용화가늦어지면서이에대한대안으로기존의휠-레일방식과자기부상추진방식의장점만을혼합한하이브리드철도시스템에대한관심이커지고있다. 이러한하이브리드철도시스템은휠-레일방식에기초하지만, 추진시스템으로기존의회전형전동기가아닌선형전동기를이용하기때문에비점착구동이가능하여기존의휠-레일추진방식에의한속도한계를극복할수있다. 따라서본논문에서는휠-레일지지방식과선형전동기추진방식을가지는초고속열차용공심형 LSM(Linear Synchronous Motor) 의다양한분포 / 집중권선방식의변화에따른전자기적특성변화를 FEM을이용하여분석하였다. Fig. 1 Top 5 records of high speed train in the world 2. 공심형 LSM의설계모델도출 2.1 공심형 LSM 설계개념본논문에서다루는 600km/h급초고속열차의기본개념은다음과같다. 1) 추진시스템은 LSM, 2) 가이드웨이시스템은휠-레일방식으로설정하였다. 추진시스템용 LSM의경우, 지상의레일사이에 LSM의 3상전기자가설치되며, 차상에계자용전자석이설치되는구조를갖으며, Fig.2에기본개념을나타내었다. 600km/h급초고속열차추진용 LSM의경우, 차상의전자석을초전도전자석으로고려하고있기때문에지상의레일사이에설치될 LSM의 3상전기자는공심형 (Coreless) 구조가적합할것으로판단된다 [6,7].
Fig. 2 Concept of the structure of the coreless-typed LSM for 600km/h VHST 2.2 공심형 LSM 설계모델도출본논문에서는 600km/h급초고속열차용공심형 LSM 설계모델도출을위한요구견인력곡선을도출하여 Fig. 3에정리하였으며, 설계사양은 Table 1에정리하였다. 공심형 LSM의설계에있어서각모델의공통적인설계사양은공심형 LSM의정격속도와최고속도는각각 342/660km/h, 추진시요구되는총출력은 26MW이며, 기동견인력과최고속도견인력은각각 276/152kN이다. 또한공심형 LSM의공극은 70mm이며, 지상전기자와차상의계자극피치는 1200mm이다. Fig. 4는본논문에서도출된공심형 LSM 모델의 FEM 해석을위한단면모델들을보여준다. Fig. 4에서보는바와같이, (a) 는지상전기자 3상코일이분포권모델, (B) 는집중권 1 Layer 모델, (c) 와 (d) 는집중권 2 Layer 모델이다. 여기서모든모델의지상전기자 3상코일은전절권이며, (a) 와 (b) 는지상전기자코일 Span이 400mm, (c) 는 600mm, (d) 는 800mm이다. Fig. 3 Required traction force and running resistance curves of 600km/h VHST
Table 1 DESIGN RESULTS OF CORELESS-TYPED LSM FOR 600KM/H VHST Content Quantity Unit Content Quantity Unit Total Output Power (12 Module) 26.24 MW Input Current (342/660kmph) 2417 / 1279 A Thrust Force (342/660kmph) 276 / 143 kn Airgap / Pole Pitch 0.07 / 1.2 m Frequency (342/660kmph) 39.6 /76.4 Hz Magnet Pole Number per Module 4 poles Input Phase Voltage (342/660kmph) 15041 / 20386 Vrms Magnet MMF 800 katurns (a) Distributed winding (b) Concentrated winding 1 (c) Concentrated winding 2 (d) Concentrated winding 3 Fig. 4 methods of the ground coil for the coreless-typed LSM 3. 공심형 LSM 의권선방식에따른특성분석 본논문에서는 600km/h급초고속열차추진용으로설계된지상전기자권선방식에따른다양한공심형 LSM 모델각각의전자기적특성분석을위하여 FEM Tool을이용하였다. Table 2 는부하각 20도에서의각공심형 LSM 모델의전자기적특성분석결과를보여준다. Table 2에서보는바와같이, 추력특성은분포권모델이집중권모델에비해서우수함을알수있다. 집중권모델중에서모델2의경우는추력이분포권모델과유사하나추력리플이분포권모델에비해상당히커서문제가있을것으로판단된다. Fig.5는집중권모델2의정격속도 (342km/h) 에서의발생추력및수직력특성곡선을보여준다. 집중권모델2의경우는 3상지상전기자권선의 A, B, C상이공간적으로 120도의등간격위상차가있는대칭구조가아닌 A 상과 C상사이의위상이다른비대칭구조이다. 이경우 Fig. 5에서보는바와같이, 추력및수직력에고조파가실려서리플이커지는문제가발생하게됨을확인할수있다. Fig. 6는극당요구추력 5.75kN을만족하는조건에서의분포권모델과집중권모델1의정격속도 (342km/h) 에서의발생추력및수직력특성곡선을보여준다. 또한극당요구추력 5.75kN을만족하는조건에서의분포권모델과집중권모델1의지상전기자 3상코일의입력전류및발생추력특성을 Table 3에정리하였다. Fig. 6와 Table 3에서보는바와같이, 집중권모델 1 의추력리플이분포권모델에비해 3~4배정도크며, 동일추력을발생시키기위한요구입
력전류도집중권모델 1 이분포권모델과비교하여 80% 이상더큰것을확인할수있다. 결국 집중권모델을공심형 LSM 에적용하기위해서는추가적인최적화노력이필요할것으로보인 다. Table 2 Analysis results of electromagnetic characteristics on each coreless LSM model 342km/h 660km/h CONTENTS Distributed Model Concentrated Model 1 Concentrated Model 2 Concentrated Model 3 Thrust Force [kn/pole] 3.74 2.58 3.77 2.72 Thrust Force Ripple [kn ptp /Pole] 1.10 3.95 6.57 3.74 Normal Force [[kn/pole] -0.43 0.94 1.53 4.44 Normal Force Ripple [kn ptp /Pole] 1.15 4.04 5.68 3.45 Thrust Force [kn/pole] 1.98 1.39 2.00 1.26 Thrust Force Ripple [kn ptp /Pole] 0.63 2.43 3.68 2.05 Normal Force [[kn] -0.39 0.24 0.64 2.13 Normal Force Ripple [kn ptp /Pole] 0.68 2.68 3.50 2.00 Fig. 5 Force property of the concentrated winding model 2 (@342km/h) (a) Distributed winding model (b) Concentrated winding model 1 Fig. 6 Force property of the distributed winding model and concentrated winding model 1 (@342km/h, 5.75kN)
Table 3 Ground coil current of each coreless LSM model on the rated load MODEL Distributed Model Concentrated Model 1 Ground Coil Current [A] Thrust Force [kn/pole] 342km/h 4000 5.83 660km/h 2040 3.00 342km/h 7300 5.79 660km/h 3800 3.03 4. 결론기존의휠-레일방식에기초하지만, 추진시스템으로기존의회전형전동기가아닌선형전동기를이용하는하이브리드철도시스템의경우비점착구동이가능하여기존의휠-레일추진방식에의한속도한계를극복할수있을것으로본다. 따라서본논문에서는초고속열차용추진시스템에적용될공심형 LSM의다양한분포 / 집중권선방식의변화에따른전자기적특성변화를 FEM을이용하여분석하였다. 추력특성은분포권모델이집중권모델에비해서우수하였으며, 동일추력을발생시키기위한요구입력전류도집중권모델이분포권모델과비교하여 80% 이상더큰것을확인할수있었다. 하지만집중권모델의경우지상코일을모듈화방식으로제작이가능하여비용과유지보수면에서이점이크기때문에집중권모델을공심형 LSM에적용하기위해서는추력특성을개선할수있는추가적인최적화노력이필요할것이다. 참고문헌 [1] C.B. Park, J.H. Lee, B.S. Lee, J.H. Kim, S.K. Lee, S.M. Jung and H.W. Lee (2013) A Study on the Structure of Linear Synchronous Motor for 600km/h Very High Speed Train, Proceedings- International Symposium on Linear Drives for Industry Applications. [2] Hyung-Woo Lee, Chan-Bae Park, Ju Lee (2011) Improvement of thrust force properties of Linear Synchronous Motor for an ultra-high-speed tube train, IEEE Transaction on Magnetics, 47(11), pp.4629-4634. [3] C.B. Park, B.S. Lee, and J. Lee (2010) A study on the applicability of the conventional TTX propulsion system on the high-speed propulsion system for a deep-underground GTX, International Journal of Railway, 3(2), pp.54-59. [4] C.B. Park, H.W. Lee, B.S. Lee, N. P. Kim, and H. J. Park (2010) A study on a design and characteristic analysis of a LSM for a propulsion/levitation of the high-speed tube train, Proceedings-Conference on the Korean Society for Railway. [5] Roger Kemp, Roderick Smith (2007) Technical issues raised by the proposal to introduce a 500km/h magnetically-levitated transport system in the UK, Report prepared for the Department for Transport, pp. 10-13. [6] G. Bohn, G. Steinmetz (1984) The electromagnetic levitation and guidance technology of the Transrapid test facility Emsland, IEEE Transaction on Magnetics, MAG-20(5), pp.1666-1671. [7] T. Fujimoto, M. Aiba, H. Suzuki, T. Umeki and S. Nakamura (2000) Characteristics of electromagnetic force of ground coil for levitation and guidance at the Yamanashi Maglev test line, QR of RTRI, 41(2), pp. 63-67.