Overview Ensemble Model Director of TEAMLAB Sungchul Choi

Similar documents
Overview Decision Tree Director of TEAMLAB Sungchul Choi

Probability Overview Naive Bayes Classifier Director of TEAMLAB Sungchul Choi

Tree 기반의 방법

김기남_ATDC2016_160620_[키노트].key

adfasdfasfdasfasfadf

슬라이드 1

Manufacturing6

PowerPoint 프레젠테이션

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

23_Time-Series-Prediction

홍익3월웹진PDF

홍익노사5월웹진용

Lab - Gradient descent Copyright 2018 by Introduction [PDF 파일다운로드 ]() 이번랩은우리가강의를통해들은 Gradient descent 을활용하여 LinearRegression

methods.hwp

An Effective Sentence-Extraction Technique Using Contextual Information and Statistical Approaches for Text Summarization

PowerPoint 프레젠테이션

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

사회통계포럼

Secure Programming Lecture1 : Introduction


슬라이드 1

Artificial Intelligence: Assignment 6 Seung-Hoon Na December 15, Sarsa와 Q-learning Windy Gridworld Windy Gridworld의 원문은 다음 Sutton 교재의 연습문제

유니티 변수-함수.key

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

ETL_project_best_practice1.ppt

15인플레이션01-목차1~9

chap 5: Trees

Artificial Intelligence: Assignment 5 Seung-Hoon Na December 15, Numpy: Tutorial 다음 자료를 참조하여 numpy기본을 공부하시오.

정보기술응용학회 발표

PowerPoint Presentation

untitled

Lecture12_Bayesian_Decision_Thoery

Microsoft PowerPoint - PL_03-04.pptx

2002년 2학기 자료구조

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

Microsoft Word - [2017SMA][T8]OOPT_Stage_1000 ver2.docx

thesis

C# Programming Guide - Types

다운로드된 lab_normal_equation.zip 파일을작업폴더로이동한후압축해제후작업하시길바랍니다. 압축해제하면폴더가 linux_mac 과 windows 로나눠져있습니다. 자신의 OS에맞는폴더로이동해서코드를수정해주시기바랍니다. linear_model.py 코드 구조

텀블러514

목 차

장기계획-내지4차

Mobile Service > IAP > Android SDK [ ] IAP SDK TOAST SDK. IAP SDK. Android Studio IDE Android SDK Version (API Level 10). Name Reference V

public key private key Encryption Algorithm Decryption Algorithm 1

Microsoft PowerPoint - 알고리즘_5주차_1차시.pptx

확률과통계 강의자료-1.hwp

Algorithm_Trading_Simple

SchoolNet튜토리얼.PDF

DIY 챗봇 - LangCon

Robust Segmentation for Sensor Data in Semiconductor Manufacturing 한국 BI 데이터마이닝학회 2012 춘계학술대회 박은정, 박주성, 양지원, 조성준 Seoul National University Industrial

Microsoft Word - [2017SMA][T8]OOPT_Stage_1000_ docx

02 C h a p t e r Java

JUNIT 실습및발표

딥러닝 첫걸음

SOSCON-MXNET_1014

금오공대 컴퓨터공학전공 강의자료

UML

<C7A5C1F620BEE7BDC4>

EA0015: 컴파일러

Evolutionary Optimization of a Collection of Variable-Length Subpatterns for Pattern Classification ( ) ( ) Robert Ian McKay ( )

PowerPoint 프레젠테이션

HW5 Exercise 1 (60pts) M interpreter with a simple type system M. M. M.., M (simple type system). M, M. M., M.

슬라이드 1

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

1 : HEVC (Jeonghwan Heo et al.: Fast Partition Decision Using Rotation Forest for Intra-Frame Coding in HEVC Screen Content Coding Extension) (Regular

SLA QoS


PowerPoint 프레젠테이션

1-1-basic-43p

4. #include <stdio.h> #include <stdlib.h> int main() { functiona(); } void functiona() { printf("hihi\n"); } warning: conflicting types for functiona

chap 5: Trees

초보자를 위한 C# 21일 완성

탐색적데이터분석 (Exploratory Data Analysis) 데이터가지닌주요특성 / 개괄을 ( 우선적으로 ) 탐구함으로써 데이터분석을시도하려는형태 모델링이나가설을세우고이를검증하기보다데이터자체 가우리에게말하려고하는것을알아내는것의중요성을강 조하며시각화플롯을많이활용 J

16

°Ÿ»4º¨Ö

Microsoft Word - KSR2014S042

Ç¥Áö

산선생의 집입니다. 환영해요

비트와바이트 비트와바이트 비트 (Bit) : 2진수값하나 (0 또는 1) 를저장할수있는최소메모리공간 1비트 2비트 3비트... n비트 2^1 = 2개 2^2 = 4개 2^3 = 8개... 2^n 개 1 바이트는 8 비트 2 2

05-class.key

2 : (Juhyeok Mun et al.: Visual Object Tracking by Using Multiple Random Walkers) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ht

2 : (EunJu Lee et al.: Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest). (Advanced Driver Assistant System, ADA

Microsoft PowerPoint - 3ÀÏ°_º¯¼ö¿Í »ó¼ö.ppt


DBPIA-NURIMEDIA

07 자바의 다양한 클래스.key

02( ) SAV12-19.hwp

기본자료형만으로이루어진인자를받아서함수를결과값으로반환하는고차함수 기본자료형과함수를인자와결과값에모두이용하는고차함수 다음절에서는여러가지예를통해서고차함수가어떤경우에유용한지를설명한다. 2 고차함수의 예??장에서대상체만바뀌고중간과정은동일한계산이반복될때함수를이용하면전체연산식을간 단

融合先验信息到三维重建 组会报 告[2]

歯4차학술대회원고(장지연).PDF

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

_KrlGF발표자료_AI

DBPIA-NURIMEDIA

Microsoft PowerPoint - additional01.ppt [호환 모드]

01-OOPConcepts(2).PDF

Delving Deeper into Convolutional Networks for Learning Video Representations - Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arXiv:

(, sta*s*cal disclosure control) - (Risk) and (U*lity) (Synthe*c Data) 4. 5.

Microsoft PowerPoint - 07-Data Manipulation.pptx


Transcription:

Overview Ensemble Model Director of TEAMLAB Sungchul Choi

Ensemble Model - 하나의모델이아니라여러개모델의투표로 Y값예측 - Regression 문제에서는평균값을예측함 - meta-classifier - stacking (meta-ensemble) 등으로발전 - 학습은오래걸리나성능이매우좋음 - Kaggle 의대세기법 (structed dataset)

Keywords - Vallila ensemble - Boosting - Bagging - Adaptive boosting (AdaBoost) - XGBoost - Light GBM

Human knowledge belongs to the world.

Voting classifier Ensemble Model Director of TEAMLAB Sungchul Choi

Voting classifier - 가장기본적인 Ensemble classifier - 여러개의 Model 의투표를통해최종선택을실시 - Majority voting or Vallila Ensemble 모델이라고부름

Test Instance Classifier 1 Classifier 2 Classifier 3 Classifier 4 True True True True True

sklearn.ensemble.votingclassifier Hard voting 의합 Sotf 확률의합

http://slideplayer.com/slide/9261331/

Template clf1 = LogisticRegression(random_state=1) clf2 = DecisionTreeClassifier(random_state=1) clf3 = GaussianNB() eclf = VotingClassifier( estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')

Human knowledge belongs to the world.

Bagging Ensemble Model Director of TEAMLAB Sungchul Choi

Sampling? - 단순히같은데이터셋으로만드는 Classifier? - 같은 dataset으로만든여러개의 tree? - Dataset 은모데이터의 Sampling의불과! - 다양한 sampling dataset으로다양한 classifier 를만들자 - Sampling à 다양한데이터셋에강한 robust classifier

Bootstrapping - 학습데이터에서임의의복원추출 à Subset 학습데이터 n 개를추출하는것 https://goo.gl/u7j95z

Bootstrap? - 신발에서혼자신을수있게끔돕는끈 - 일반적으로외부 Input 없이처음시작하는일을지칭 - 컴퓨터를처음동작할때 memory - 데이터를외부추가없이추출하는것

<latexit sha1_base64="ls/bhagtftw9d55b+nxhbzwb2vk=">aaaci3icbvblswmxgmzwv62vvy9egkwoh5anciogfl14rgaf0n2wbdbbhmyfjfmxlptfvphxvhhqihcp/hftdg/aohayzmxh8o0bcyavzx0zhzxvtfwn4mzpa3tnd8/cp2jjkbgenknei9fxsaschbspmok0ewuka5fttju6nfrtryoki8ihny6pe+bbyhxgsnjs37xcvtswkvfrty8wsvgwetnpnaoukd3pxrfopkfupb20irk+wbzq1gxwmacclegort+c2f5ekocginaszrdzsxjslbqjngylo5e0xmseb7sraygdkp10tmmgt7tiqt8s+oqkzttfeykopbwhrk4gwa3lojcv//o6ifivnzsfcajosoyp+qmhkoltwqdhbcwkjzxbrdd9v0igwbejdk0lxqjaxhmztm5qykqh+/ny/savowiowdgoaaquqb3cgqzoagkewst4bx/gi/fmtizpebrg5doh4a+m7x/zmkkg</latexit> <latexit sha1_base64="ls/bhagtftw9d55b+nxhbzwb2vk=">aaaci3icbvblswmxgmzwv62vvy9egkwoh5anciogfl14rgaf0n2wbdbbhmyfjfmxlptfvphxvhhqihcp/hftdg/aohayzmxh8o0bcyavzx0zhzxvtfwn4mzpa3tnd8/cp2jjkbgenknei9fxsaschbspmok0ewuka5fttju6nfrtryoki8ihny6pe+bbyhxgsnjs37xcvtswkvfrty8wsvgwetnpnaoukd3pxrfopkfupb20irk+wbzq1gxwmacclegort+c2f5ekocginaszrdzsxjslbqjngylo5e0xmseb7sraygdkp10tmmgt7tiqt8s+oqkzttfeykopbwhrk4gwa3lojcv//o6ifivnzsfcajosoyp+qmhkoltwqdhbcwkjzxbrdd9v0igwbejdk0lxqjaxhmztm5qykqh+/ny/savowiowdgoaaquqb3cgqzoagkewst4bx/gi/fmtizpebrg5doh4a+m7x/zmkkg</latexit> <latexit sha1_base64="ls/bhagtftw9d55b+nxhbzwb2vk=">aaaci3icbvblswmxgmzwv62vvy9egkwoh5anciogfl14rgaf0n2wbdbbhmyfjfmxlptfvphxvhhqihcp/hftdg/aohayzmxh8o0bcyavzx0zhzxvtfwn4mzpa3tnd8/cp2jjkbgenknei9fxsaschbspmok0ewuka5fttju6nfrtryoki8ihny6pe+bbyhxgsnjs37xcvtswkvfrty8wsvgwetnpnaoukd3pxrfopkfupb20irk+wbzq1gxwmacclegort+c2f5ekocginaszrdzsxjslbqjngylo5e0xmseb7sraygdkp10tmmgt7tiqt8s+oqkzttfeykopbwhrk4gwa3lojcv//o6ifivnzsfcajosoyp+qmhkoltwqdhbcwkjzxbrdd9v0igwbejdk0lxqjaxhmztm5qykqh+/ny/savowiowdgoaaquqb3cgqzoagkewst4bx/gi/fmtizpebrg5doh4a+m7x/zmkkg</latexit> <latexit sha1_base64="ls/bhagtftw9d55b+nxhbzwb2vk=">aaaci3icbvblswmxgmzwv62vvy9egkwoh5anciogfl14rgaf0n2wbdbbhmyfjfmxlptfvphxvhhqihcp/hftdg/aohayzmxh8o0bcyavzx0zhzxvtfwn4mzpa3tnd8/cp2jjkbgenknei9fxsaschbspmok0ewuka5fttju6nfrtryoki8ihny6pe+bbyhxgsnjs37xcvtswkvfrty8wsvgwetnpnaoukd3pxrfopkfupb20irk+wbzq1gxwmacclegort+c2f5ekocginaszrdzsxjslbqjngylo5e0xmseb7sraygdkp10tmmgt7tiqt8s+oqkzttfeykopbwhrk4gwa3lojcv//o6ifivnzsfcajosoyp+qmhkoltwqdhbcwkjzxbrdd9v0igwbejdk0lxqjaxhmztm5qykqh+/ny/savowiowdgoaaquqb3cgqzoagkewst4bx/gi/fmtizpebrg5doh4a+m7x/zmkkg</latexit> <latexit sha1_base64="6wryusouxvndbt7ffpn4dra30pi=">aaab8nicbvbns8naej3ur1q/qh69bivgqsqi6lhoxwmfwwttkjvnpl262q27e6ge/awvhhtx6q/x5r9x2+agrq8ghu/nmdmvtau36hnftmvtfwnzq7pd29nd2z+ohx51jco0zr2qhnk9kbgmugqd5chyl9wmjkfgj+hkduy/pjftujipoe1zkjcr5dgnbk3uh8sa0nwv8qgy1hte05vdxsv+srpqoj2sfw0irboesascgnp3vrsdngjkvlcinsgmswmdkbhrwypjwkyqz08u3dorrg6stc2j7lz9pzgtxjhpetrohodylhsz8t+vn2f8hercphkysrel4ky4qnzz/27enamoppyqqrm91avjylnam1lnhuavv7xkuhdn32v695en1k0zrxvo4btowycramedtkedfbq8wyu8oei8oo/ox6k14pqzx/ahzucphtqrzq==</latexit> <latexit sha1_base64="6wryusouxvndbt7ffpn4dra30pi=">aaab8nicbvbns8naej3ur1q/qh69bivgqsqi6lhoxwmfwwttkjvnpl262q27e6ge/awvhhtx6q/x5r9x2+agrq8ghu/nmdmvtau36hnftmvtfwnzq7pd29nd2z+ohx51jco0zr2qhnk9kbgmugqd5chyl9wmjkfgj+hkduy/pjftujipoe1zkjcr5dgnbk3uh8sa0nwv8qgy1hte05vdxsv+srpqoj2sfw0irboesascgnp3vrsdngjkvlcinsgmswmdkbhrwypjwkyqz08u3dorrg6stc2j7lz9pzgtxjhpetrohodylhsz8t+vn2f8hercphkysrel4ky4qnzz/27enamoppyqqrm91avjylnam1lnhuavv7xkuhdn32v695en1k0zrxvo4btowycramedtkedfbq8wyu8oei8oo/ox6k14pqzx/ahzucphtqrzq==</latexit> <latexit sha1_base64="6wryusouxvndbt7ffpn4dra30pi=">aaab8nicbvbns8naej3ur1q/qh69bivgqsqi6lhoxwmfwwttkjvnpl262q27e6ge/awvhhtx6q/x5r9x2+agrq8ghu/nmdmvtau36hnftmvtfwnzq7pd29nd2z+ohx51jco0zr2qhnk9kbgmugqd5chyl9wmjkfgj+hkduy/pjftujipoe1zkjcr5dgnbk3uh8sa0nwv8qgy1hte05vdxsv+srpqoj2sfw0irboesascgnp3vrsdngjkvlcinsgmswmdkbhrwypjwkyqz08u3dorrg6stc2j7lz9pzgtxjhpetrohodylhsz8t+vn2f8hercphkysrel4ky4qnzz/27enamoppyqqrm91avjylnam1lnhuavv7xkuhdn32v695en1k0zrxvo4btowycramedtkedfbq8wyu8oei8oo/ox6k14pqzx/ahzucphtqrzq==</latexit> <latexit sha1_base64="6wryusouxvndbt7ffpn4dra30pi=">aaab8nicbvbns8naej3ur1q/qh69bivgqsqi6lhoxwmfwwttkjvnpl262q27e6ge/awvhhtx6q/x5r9x2+agrq8ghu/nmdmvtau36hnftmvtfwnzq7pd29nd2z+ohx51jco0zr2qhnk9kbgmugqd5chyl9wmjkfgj+hkduy/pjftujipoe1zkjcr5dgnbk3uh8sa0nwv8qgy1hte05vdxsv+srpqoj2sfw0irboesascgnp3vrsdngjkvlcinsgmswmdkbhrwypjwkyqz08u3dorrg6stc2j7lz9pzgtxjhpetrohodylhsz8t+vn2f8hercphkysrel4ky4qnzz/27enamoppyqqrm91avjylnam1lnhuavv7xkuhdn32v695en1k0zrxvo4btowycramedtkedfbq8wyu8oei8oo/ox6k14pqzx/ahzucphtqrzq==</latexit> <latexit sha1_base64="gli0+x/t6jrjfjrwtueyoxsynzk=">aaab9hicbvbns8naej3ur1q/qh69lbbbiyurgh6lxjxwsb/qhrlzbnqlm03c3rrkyo/w4kerr/4yb/4bt20o2vpg4pheddpz/erwbvz32ymtrw9sbpw3kzu7e/sh1cojto5trvmlxijwxz9ojrhklconyn1emrl5gnx88d3m70yy0jywj2aamc8iq8ldtomxkocv+qeinmn5fusdas2tu3ogvyiluomczuh1qx/eni2ynfqqrxvytyyxewu4fsyv9fpneklhzmh6lkosme1l86nzdgavaiwxsiunmqu/jzisat2nfnszetpsy95m/m/rpsa88tiuk9qwsrelwlqge6nzaijgilejppyqqri9fdersskym1pfhocxx14l7cs6duv44arwuc3ikmmjnmi5yligbtxde1pa4qme4rxeninz4rw7h4vwklpmhmmfoj8/ye6r1w==</latexit> <latexit sha1_base64="gli0+x/t6jrjfjrwtueyoxsynzk=">aaab9hicbvbns8naej3ur1q/qh69lbbbiyurgh6lxjxwsb/qhrlzbnqlm03c3rrkyo/w4kerr/4yb/4bt20o2vpg4pheddpz/erwbvz32ymtrw9sbpw3kzu7e/sh1cojto5trvmlxijwxz9ojrhklconyn1emrl5gnx88d3m70yy0jywj2aamc8iq8ldtomxkocv+qeinmn5fusdas2tu3ogvyiluomczuh1qx/eni2ynfqqrxvytyyxewu4fsyv9fpneklhzmh6lkosme1l86nzdgavaiwxsiunmqu/jzisat2nfnszetpsy95m/m/rpsa88tiuk9qwsrelwlqge6nzaijgilejppyqqri9fdersskym1pfhocxx14l7cs6duv44arwuc3ikmmjnmi5yligbtxde1pa4qme4rxeninz4rw7h4vwklpmhmmfoj8/ye6r1w==</latexit> <latexit sha1_base64="gli0+x/t6jrjfjrwtueyoxsynzk=">aaab9hicbvbns8naej3ur1q/qh69lbbbiyurgh6lxjxwsb/qhrlzbnqlm03c3rrkyo/w4kerr/4yb/4bt20o2vpg4pheddpz/erwbvz32ymtrw9sbpw3kzu7e/sh1cojto5trvmlxijwxz9ojrhklconyn1emrl5gnx88d3m70yy0jywj2aamc8iq8ldtomxkocv+qeinmn5fusdas2tu3ogvyiluomczuh1qx/eni2ynfqqrxvytyyxewu4fsyv9fpneklhzmh6lkosme1l86nzdgavaiwxsiunmqu/jzisat2nfnszetpsy95m/m/rpsa88tiuk9qwsrelwlqge6nzaijgilejppyqqri9fdersskym1pfhocxx14l7cs6duv44arwuc3ikmmjnmi5yligbtxde1pa4qme4rxeninz4rw7h4vwklpmhmmfoj8/ye6r1w==</latexit> <latexit sha1_base64="gli0+x/t6jrjfjrwtueyoxsynzk=">aaab9hicbvbns8naej3ur1q/qh69lbbbiyurgh6lxjxwsb/qhrlzbnqlm03c3rrkyo/w4kerr/4yb/4bt20o2vpg4pheddpz/erwbvz32ymtrw9sbpw3kzu7e/sh1cojto5trvmlxijwxz9ojrhklconyn1emrl5gnx88d3m70yy0jywj2aamc8iq8ldtomxkocv+qeinmn5fusdas2tu3ogvyiluomczuh1qx/eni2ynfqqrxvytyyxewu4fsyv9fpneklhzmh6lkosme1l86nzdgavaiwxsiunmqu/jzisat2nfnszetpsy95m/m/rpsa88tiuk9qwsrelwlqge6nzaijgilejppyqqri9fdersskym1pfhocxx14l7cs6duv44arwuc3ikmmjnmi5yligbtxde1pa4qme4rxeninz4rw7h4vwklpmhmmfoj8/ye6r1w==</latexit>.632 bootstrap - 일반적으로전체데이터 S에서 n번데이터를추출할때 - 각데이터가나타날확률이 0.632 라는것에서유래 1 d 1 1 d 1 Y (1 1 d )=1 (1 1 d )d 1 e 1 https://stats.stackexchange.com/questions/96739/what-is-the-632-rule-in-bootstrapping

Bagging - Bootstrap Aggregation - Bootstrap 의 subset sample 로모델 n개를학습 à 앙상블 - 기존앙상블과달리하나의모델에다양한데이터대입 - High variance(overfitting 이심함 ) 모델이적합 - Regressor( 평균 or median), Classifier 모두존재

http://manish-m.com/wpcontent/uploads/2012/11/baggingcropped.png

Out of bag error - OOB error estimation - Bagging 실행시, bag에미포함데이터로성능측정 - Validation set 을처리하는방법과유사 - Bagging 성능측적을위한좋은지표

sklearn.ensemble.baggingclassifier base_estimator : object or None, optional (default=none) n_estimators : int, optional (default=10) max_samples : int or float, optional (default=1.0) max_features : int or float, optional (default=1.0) bootstrap : boolean, optional (default=true) bootstrap_features : boolean, optional (default=false) oob_score : bool warm_start : bool, optional (default=false) n_jobs : int, optional (default=1)

sklearn.ensemble.baggingregressor base_estimator : object or None, optional (default=none) n_estimators : int, optional (default=10) max_samples : int or float, optional (default=1.0) max_features : int or float, optional (default=1.0) bootstrap : boolean, optional (default=true) bootstrap_features : boolean, optional (default=false) oob_score : bool warm_start : bool, optional (default=false) n_jobs : int, optional (default=1)

Template clf = DecisionTreeClassifier(random_state=1) eclf = BaggingClassifier(clf, oob_score=true) params ={ "n_estimators" : [10,20,30,40,50,55], "max_samples" : [0.5,0.6,0.7,0.8,0.9,1] } grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5)

Human knowledge belongs to the world.

Random Forest Ensemble Model Director of TEAMLAB Sungchul Choi

Random Forest - Bagging + Randomized decision tree - Variance 가높은 decision tree들의 ensemble - 여러개의나무 à Forest - 가장간단하면서높은성능을자랑하는대표적인모델 - Regressor 와 Classifier 모두지원

Random Forest https://www.researchgate.net/figure/classification-process-based-on-the-random-forest-algorithm-2_fig1_324517994

Random Forest - correlation 낮은 m 개의 subset data 로학습 - Tree 의구성은 binary 로구성 - Split 시검토대상 feature 를 random 하게 n 개선정 - 전체 feature 를 p 라할때, n = p 이면 bagging tree - Feature 의재사용이가능, n은 p 또는 p 3 - Variance 가높은트리 à last node 1 ~ 5

sklearn.ensemble.randomforestclassifier

sklearn.ensemble.randomforestregressor

Human knowledge belongs to the world.

Adaptive Boosting Ensemble Model Director of TEAMLAB Sungchul Choi

Boosting - 간단하면서도성능이매우높은앙상블기법 - 학습 Round 를진행하면서모델을생성 à 모델에의해각 Instance의 weight 를업데이트 - Instance weight가높은 instance 를중심으로모델을생성 - 해당모델들로앙상블모델을만듦 (meta-classifier) - 잘못분류된데이터를더잘분류해보자

Adaboost - Adapative Boosting - 매라운드마다 instance 의 weight 값을계산 - 틀리는 instance 의 weight up à weight 기준 resampling - Instance weight 합이클수록, model 의 weight 를줄임 - 기본분류기에입력값을변화시켜새로운분류기를만듦 - high-depth tree, NN에는적합치않음

<latexit sha1_base64="0soxrtgxz+enpkhqt9gqu2gtimu=">aaacz3icbvhrshwxfm1mbwthw7e1incxq0vlcrlmfkf9ear9ql4pucrslemme2cnzjlt5i64doth+uz7x/oxza4j6g4vbe7opecmoulljs2f4b3nv1h6+er18ptgzfxtu7xw+w9ntqimwj4ovgeuum5rsy09kqtwojti81thexr1c9o/v0zjzafpavziiocjltmpodkqad0edcaj3ivfsd65setoduxdabcnojk6fm6ynbg9qahfica8ovpmmafncsphf8txtbqtimknv+d0mephmzpptcnuoctybfed2qyp46r1fw8luewosshubt8ksxru3jaucidbxfksubjii+w7qhmodldpcpraz8cmisumw5pgxj511dy3dpyntplzurtzvsn5v16/ouz7oja6rai1edgoqxrqadpqysgncljjb7gw0t0vxcu3xjd7mscfem0/ergcfe1gytc62wsf/gjiwgaf2dbrsih9ywfskb2zhhpsjxd4695h76+/5m/4mw9s32s86+xz+vv/abqusoq=</latexit> <latexit sha1_base64="0soxrtgxz+enpkhqt9gqu2gtimu=">aaacz3icbvhrshwxfm1mbwthw7e1incxq0vlcrlmfkf9ear9ql4pucrslemme2cnzjlt5i64doth+uz7x/oxza4j6g4vbe7opecmoulljs2f4b3nv1h6+er18ptgzfxtu7xw+w9ntqimwj4ovgeuum5rsy09kqtwojti81thexr1c9o/v0zjzafpavziiocjltmpodkqad0edcaj3ivfsd65setoduxdabcnojk6fm6ynbg9qahfica8ovpmmafncsphf8txtbqtimknv+d0mephmzpptcnuoctybfed2qyp46r1fw8luewosshubt8ksxru3jaucidbxfksubjii+w7qhmodldpcpraz8cmisumw5pgxj511dy3dpyntplzurtzvsn5v16/ouz7oja6rai1edgoqxrqadpqysgncljjb7gw0t0vxcu3xjd7mscfem0/ergcfe1gytc62wsf/gjiwgaf2dbrsih9ywfskb2zhhpsjxd4695h76+/5m/4mw9s32s86+xz+vv/abqusoq=</latexit> <latexit sha1_base64="0soxrtgxz+enpkhqt9gqu2gtimu=">aaacz3icbvhrshwxfm1mbwthw7e1incxq0vlcrlmfkf9ear9ql4pucrslemme2cnzjlt5i64doth+uz7x/oxza4j6g4vbe7opecmoulljs2f4b3nv1h6+er18ptgzfxtu7xw+w9ntqimwj4ovgeuum5rsy09kqtwojti81thexr1c9o/v0zjzafpavziiocjltmpodkqad0edcaj3ivfsd65setoduxdabcnojk6fm6ynbg9qahfica8ovpmmafncsphf8txtbqtimknv+d0mephmzpptcnuoctybfed2qyp46r1fw8luewosshubt8ksxru3jaucidbxfksubjii+w7qhmodldpcpraz8cmisumw5pgxj511dy3dpyntplzurtzvsn5v16/ouz7oja6rai1edgoqxrqadpqysgncljjb7gw0t0vxcu3xjd7mscfem0/ergcfe1gytc62wsf/gjiwgaf2dbrsih9ywfskb2zhhpsjxd4695h76+/5m/4mw9s32s86+xz+vv/abqusoq=</latexit> <latexit sha1_base64="0soxrtgxz+enpkhqt9gqu2gtimu=">aaacz3icbvhrshwxfm1mbwthw7e1incxq0vlcrlmfkf9ear9ql4pucrslemme2cnzjlt5i64doth+uz7x/oxza4j6g4vbe7opecmoulljs2f4b3nv1h6+er18ptgzfxtu7xw+w9ntqimwj4ovgeuum5rsy09kqtwojti81thexr1c9o/v0zjzafpavziiocjltmpodkqad0edcaj3ivfsd65setoduxdabcnojk6fm6ynbg9qahfica8ovpmmafncsphf8txtbqtimknv+d0mephmzpptcnuoctybfed2qyp46r1fw8luewosshubt8ksxru3jaucidbxfksubjii+w7qhmodldpcpraz8cmisumw5pgxj511dy3dpyntplzurtzvsn5v16/ouz7oja6rai1edgoqxrqadpqysgncljjb7gw0t0vxcu3xjd7mscfem0/ergcfe1gytc62wsf/gjiwgaf2dbrsih9ywfskb2zhhpsjxd4695h76+/5m/4mw9s32s86+xz+vv/abqusoq=</latexit> Adaboost 값샘플의 weight 를 1/N 로초기화 M 은모델의갯수 N 은데이터의갯수 Weight 값을기준으로분류기생성 (resampling) 해당분류기의에러계산 I(y i,g m (x i )) = ( 0 if y i = G m (x i ) 1 if y i 6= G m (x i ) 해당분류기의분류기가중치생성 Instance 의 weight 업데이트

Adaboost 값샘플의 weight 를 1/N 로초기화 M 은모델의갯수 N 은데이터의갯수 Weight 값을기준으로분류기생성 (resampling) 해당분류기의에러계산 분류기의 weight

값샘플의 weight를 1/d로초기화 k는모델의갯수 D는데이터의갯수데이터샘플링 Error 가 0.5 이상은해당모델을버림 Update 방법이다름 Alpha 값이 weight

Adaboost https://infinitescript.com/wordpress/wpcontent/uploads/2016/09/adaboost.jpg

Adaboost with stump - Adaboost의 classifier를 1-depth tree를 사용하는 기법

Bagging vs. Boosting

Bagging vs. Boosting - 병렬화여부의차이 - bagging은 variance 가높은 base estimator 를 - boosting 은 bias가높은 base estimator 를사용 - boosting 은비용이매우높은알고리즘 - bagging은기본적으로데이터의 subset à boosting 보다좋은성능을내기는어려움

sklearn.ensemble.adaboostclassifier

sklearn.ensemble.adaboostregressor

Adaboost - 가장인기있는 boosting 알고리즘 + 높은성능 - 비슷한결과를내는 base-estimator à bagging 가유사함 - Weak classifier 의성능을극적으로향상 à 계속틀리는 instance 를맞추는순간 model 중요도 up - 특정문제에대해서는데이터와기본학습자가중요

Human knowledge belongs to the world.

Gradient boosting Ensemble Model Director of TEAMLAB Sungchul Choi

Gradient Boosting - Adaboost 와같은 boosting 기법의일종 - Regression, Classification 등모두사용 - Sequential + Additive Model - 이전모델의 Residual 를가지고 weak learner 를강화함 - residual 을예측하는형태의모델 - classification은 K-L Divergence 를사용

http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/

http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/

http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/

예측모델의값으로 0 으로초기화, r 은 y 의원래값 Subsampling 또는 Constraints 를가진트리모델로 r 과 X 를 fitting 새로운모델 = 이전모델 + learning_rate * 위에서적합된모델 현재의 residual - learning_rate * 적합된모델

from sklearn.tree import DecisionTreeRegressor tree_reg1 = DecisionTreeRegressor(max_depth=2) tree_reg1.fit(x, y) r1 = y - tree_reg1.predict(x) tree_reg2 = DecisionTreeRegressor(max_depth=2) tree_reg2.fit(x, r1) r2 = r1 - tree_reg2.predict(x) tree_reg3 = DecisionTreeRegressor(max_depth=2) tree_reg3.fit(x, r2) y_pred = sum(tree.predict(x_new) for tree in (tree_reg1, tree_reg2, tree_reg3))

<latexit sha1_base64="htgqdnhuyxei49dxfjup/3fn8is=">aaac53icbvlpa9swfjbdbuu8x2l33eu0tcsmbssmtkugbjcdo1jaqpwawzytevk20vnomp4heumhy+y6f2m3/tolcukw1u0dwcf33ve99yrfurqgfp+/425spnn6bou59+llq9dvots7ryyrnonjlslmn0tucckuh4mayu9yzwkasx4clb7w+eofxburqr+wzpk0ptmleseowcrsxaurnwlvgtsmqmboovxwotgte36/wvsj7aebd5cmazojse8sfh08wm3r+9tkszpssevc4qrenygnyfdgzd+imzatn1i7baziw3ixitupwm3iet/4comivbn+wfxcrot5yafrd/xv4ieankclmjgmo//slkxiuqimqtet4ucwlakgwssvvkawpkdsqwd8yqgiktftcvvofd6ztiyttnujak/yu4qspsys08hwphtmpp2rycdykwksz9nsqlwarti6uvjidbmuhx3hqnmgcmkbzvrywtgbu00z2k9rxwjpr/wqha0hxb+q7x+7b1+a69hc79au6igcpqed9a0dojfituyco5fol1e4f+5v98+61huazvt0l9y/1+qn4zc=</latexit> <latexit sha1_base64="htgqdnhuyxei49dxfjup/3fn8is=">aaac53icbvlpa9swfjbdbuu8x2l33eu0tcsmbssmtkugbjcdo1jaqpwawzytevk20vnomp4heumhy+y6f2m3/tolcukw1u0dwcf33ve99yrfurqgfp+/425spnn6bou59+llq9dvots7ryyrnonjlslmn0tucckuh4mayu9yzwkasx4clb7w+eofxburqr+wzpk0ptmleseowcrsxaurnwlvgtsmqmboovxwotgte36/wvsj7aebd5cmazojse8sfh08wm3r+9tkszpssevc4qrenygnyfdgzd+imzatn1i7baziw3ixitupwm3iet/4comivbn+wfxcrot5yafrd/xv4ieankclmjgmo//slkxiuqimqtet4ucwlakgwssvvkawpkdsqwd8yqgiktftcvvofd6ztiyttnujak/yu4qspsys08hwphtmpp2rycdykwksz9nsqlwarti6uvjidbmuhx3hqnmgcmkbzvrywtgbu00z2k9rxwjpr/wqha0hxb+q7x+7b1+a69hc79au6igcpqed9a0dojfituyco5fol1e4f+5v98+61huazvt0l9y/1+qn4zc=</latexit> <latexit sha1_base64="htgqdnhuyxei49dxfjup/3fn8is=">aaac53icbvlpa9swfjbdbuu8x2l33eu0tcsmbssmtkugbjcdo1jaqpwawzytevk20vnomp4heumhy+y6f2m3/tolcukw1u0dwcf33ve99yrfurqgfp+/425spnn6bou59+llq9dvots7ryyrnonjlslmn0tucckuh4mayu9yzwkasx4clb7w+eofxburqr+wzpk0ptmleseowcrsxaurnwlvgtsmqmboovxwotgte36/wvsj7aebd5cmazojse8sfh08wm3r+9tkszpssevc4qrenygnyfdgzd+imzatn1i7baziw3ixitupwm3iet/4comivbn+wfxcrot5yafrd/xv4ieankclmjgmo//slkxiuqimqtet4ucwlakgwssvvkawpkdsqwd8yqgiktftcvvofd6ztiyttnujak/yu4qspsys08hwphtmpp2rycdykwksz9nsqlwarti6uvjidbmuhx3hqnmgcmkbzvrywtgbu00z2k9rxwjpr/wqha0hxb+q7x+7b1+a69hc79au6igcpqed9a0dojfituyco5fol1e4f+5v98+61huazvt0l9y/1+qn4zc=</latexit> <latexit sha1_base64="htgqdnhuyxei49dxfjup/3fn8is=">aaac53icbvlpa9swfjbdbuu8x2l33eu0tcsmbssmtkugbjcdo1jaqpwawzytevk20vnomp4heumhy+y6f2m3/tolcukw1u0dwcf33ve99yrfurqgfp+/425spnn6bou59+llq9dvots7ryyrnonjlslmn0tucckuh4mayu9yzwkasx4clb7w+eofxburqr+wzpk0ptmleseowcrsxaurnwlvgtsmqmboovxwotgte36/wvsj7aebd5cmazojse8sfh08wm3r+9tkszpssevc4qrenygnyfdgzd+imzatn1i7baziw3ixitupwm3iet/4comivbn+wfxcrot5yafrd/xv4ieankclmjgmo//slkxiuqimqtet4ucwlakgwssvvkawpkdsqwd8yqgiktftcvvofd6ztiyttnujak/yu4qspsys08hwphtmpp2rycdykwksz9nsqlwarti6uvjidbmuhx3hqnmgcmkbzvrywtgbu00z2k9rxwjpr/wqha0hxb+q7x+7b1+a69hc79au6igcpqed9a0dojfituyco5fol1e4f+5v98+61huazvt0l9y/1+qn4zc=</latexit> <latexit sha1_base64="xeocsord3gqj4fxztn59yh5zdxk=">aaace3icbzdlsgmxfiyz9vbhw9wlm2arwrflrgtdfipu3agv7axawjjppg3nxejosmsw7+dgv3hjqhg3btz5nqaxhbb+epjyn3nizu+egiuwrg8jtbs8srqwxjc3nre2dzk7ezuvrjkykg1eibsouuxwn1wbg2cnudlioylvnchvuf5/yflxwl+ducjahun53owugly6mwpzjjc8wancs0vejx6u7oqeskupyce5yt6ps/ogmsxojmsvrynwitgzykkzkp3mv6sb0mhjplbblgravgjtmejgvldebewkhyqosi81nfrey6odt3zk8jf2utgnpd4+4in7eyimnlijz9gdhog+mq+nzf9qzqjci3bm/tac5tppq24kmar4hbducskoijegqixxf8w0tyshogmch2dpr7witdoibrxt27ns+xiwrxodoeouqzy6r2v0jsqoiih6rm/ofb0zt8al8w58tfttxmxmh/2r8fkd92abda==</latexit> <latexit sha1_base64="xeocsord3gqj4fxztn59yh5zdxk=">aaace3icbzdlsgmxfiyz9vbhw9wlm2arwrflrgtdfipu3agv7axawjjppg3nxejosmsw7+dgv3hjqhg3btz5nqaxhbb+epjyn3nizu+egiuwrg8jtbs8srqwxjc3nre2dzk7ezuvrjkykg1eibsouuxwn1wbg2cnudlioylvnchvuf5/yflxwl+ducjahun53owugly6mwpzjjc8wancs0vejx6u7oqeskupyce5yt6ps/ogmsxojmsvrynwitgzykkzkp3mv6sb0mhjplbblgravgjtmejgvldebewkhyqosi81nfrey6odt3zk8jf2utgnpd4+4in7eyimnlijz9gdhog+mq+nzf9qzqjci3bm/tac5tppq24kmar4hbducskoijegqixxf8w0tyshogmch2dpr7witdoibrxt27ns+xiwrxodoeouqzy6r2v0jsqoiih6rm/ofb0zt8al8w58tfttxmxmh/2r8fkd92abda==</latexit> <latexit sha1_base64="xeocsord3gqj4fxztn59yh5zdxk=">aaace3icbzdlsgmxfiyz9vbhw9wlm2arwrflrgtdfipu3agv7axawjjppg3nxejosmsw7+dgv3hjqhg3btz5nqaxhbb+epjyn3nizu+egiuwrg8jtbs8srqwxjc3nre2dzk7ezuvrjkykg1eibsouuxwn1wbg2cnudlioylvnchvuf5/yflxwl+ducjahun53owugly6mwpzjjc8wancs0vejx6u7oqeskupyce5yt6ps/ogmsxojmsvrynwitgzykkzkp3mv6sb0mhjplbblgravgjtmejgvldebewkhyqosi81nfrey6odt3zk8jf2utgnpd4+4in7eyimnlijz9gdhog+mq+nzf9qzqjci3bm/tac5tppq24kmar4hbducskoijegqixxf8w0tyshogmch2dpr7witdoibrxt27ns+xiwrxodoeouqzy6r2v0jsqoiih6rm/ofb0zt8al8w58tfttxmxmh/2r8fkd92abda==</latexit> <latexit sha1_base64="xeocsord3gqj4fxztn59yh5zdxk=">aaace3icbzdlsgmxfiyz9vbhw9wlm2arwrflrgtdfipu3agv7axawjjppg3nxejosmsw7+dgv3hjqhg3btz5nqaxhbb+epjyn3nizu+egiuwrg8jtbs8srqwxjc3nre2dzk7ezuvrjkykg1eibsouuxwn1wbg2cnudlioylvnchvuf5/yflxwl+ducjahun53owugly6mwpzjjc8wancs0vejx6u7oqeskupyce5yt6ps/ogmsxojmsvrynwitgzykkzkp3mv6sb0mhjplbblgravgjtmejgvldebewkhyqosi81nfrey6odt3zk8jf2utgnpd4+4in7eyimnlijz9gdhog+mq+nzf9qzqjci3bm/tac5tppq24kmar4hbducskoijegqixxf8w0tyshogmch2dpr7witdoibrxt27ns+xiwrxodoeouqzy6r2v0jsqoiih6rm/ofb0zt8al8w58tfttxmxmh/2r8fkd92abda==</latexit> ŷ (0) i =0 ŷ (1) i = f 1 (x i )=ŷ (0) i + f 1 (x i ) ŷ (2) i = f 1 (x i )+f 2 (x i )=ŷ (1) i + f 2 (x i )... tx ŷ (t) i = k=1 (t 1) f k (x i )=ŷ i + f t (x) M(x, y from sklearn.tree import DecisionTreeRegressor tree_reg1 = DecisionTreeRegressor(max_depth=2) tree_reg1.fit(x, y) r1 = y - tree_reg1.predict(x) tree_reg2 = DecisionTreeRegressor(max_depth=2) tree_reg2.fit(x, r1) tx k=1 f k 1 (x)) = f t (x) r2 = r1 - tree_reg2.predict(x) tree_reg3 = DecisionTreeRegressor(max_depth=2) tree_reg3.fit(x, r2) y_pred = sum(tree.predict(x_new) for tree in (tree_reg1, tree_reg2, tree_reg3))

<latexit sha1_base64="xeocsord3gqj4fxztn59yh5zdxk=">aaace3icbzdlsgmxfiyz9vbhw9wlm2arwrflrgtdfipu3agv7axawjjppg3nxejosmsw7+dgv3hjqhg3btz5nqaxhbb+epjyn3nizu+egiuwrg8jtbs8srqwxjc3nre2dzk7ezuvrjkykg1eibsouuxwn1wbg2cnudlioylvnchvuf5/yflxwl+ducjahun53owugly6mwpzjjc8wancs0vejx6u7oqeskupyce5yt6ps/ogmsxojmsvrynwitgzykkzkp3mv6sb0mhjplbblgravgjtmejgvldebewkhyqosi81nfrey6odt3zk8jf2utgnpd4+4in7eyimnlijz9gdhog+mq+nzf9qzqjci3bm/tac5tppq24kmar4hbducskoijegqixxf8w0tyshogmch2dpr7witdoibrxt27ns+xiwrxodoeouqzy6r2v0jsqoiih6rm/ofb0zt8al8w58tfttxmxmh/2r8fkd92abda==</latexit> <latexit sha1_base64="xeocsord3gqj4fxztn59yh5zdxk=">aaace3icbzdlsgmxfiyz9vbhw9wlm2arwrflrgtdfipu3agv7axawjjppg3nxejosmsw7+dgv3hjqhg3btz5nqaxhbb+epjyn3nizu+egiuwrg8jtbs8srqwxjc3nre2dzk7ezuvrjkykg1eibsouuxwn1wbg2cnudlioylvnchvuf5/yflxwl+ducjahun53owugly6mwpzjjc8wancs0vejx6u7oqeskupyce5yt6ps/ogmsxojmsvrynwitgzykkzkp3mv6sb0mhjplbblgravgjtmejgvldebewkhyqosi81nfrey6odt3zk8jf2utgnpd4+4in7eyimnlijz9gdhog+mq+nzf9qzqjci3bm/tac5tppq24kmar4hbducskoijegqixxf8w0tyshogmch2dpr7witdoibrxt27ns+xiwrxodoeouqzy6r2v0jsqoiih6rm/ofb0zt8al8w58tfttxmxmh/2r8fkd92abda==</latexit> <latexit sha1_base64="xeocsord3gqj4fxztn59yh5zdxk=">aaace3icbzdlsgmxfiyz9vbhw9wlm2arwrflrgtdfipu3agv7axawjjppg3nxejosmsw7+dgv3hjqhg3btz5nqaxhbb+epjyn3nizu+egiuwrg8jtbs8srqwxjc3nre2dzk7ezuvrjkykg1eibsouuxwn1wbg2cnudlioylvnchvuf5/yflxwl+ducjahun53owugly6mwpzjjc8wancs0vejx6u7oqeskupyce5yt6ps/ogmsxojmsvrynwitgzykkzkp3mv6sb0mhjplbblgravgjtmejgvldebewkhyqosi81nfrey6odt3zk8jf2utgnpd4+4in7eyimnlijz9gdhog+mq+nzf9qzqjci3bm/tac5tppq24kmar4hbducskoijegqixxf8w0tyshogmch2dpr7witdoibrxt27ns+xiwrxodoeouqzy6r2v0jsqoiih6rm/ofb0zt8al8w58tfttxmxmh/2r8fkd92abda==</latexit> <latexit sha1_base64="xeocsord3gqj4fxztn59yh5zdxk=">aaace3icbzdlsgmxfiyz9vbhw9wlm2arwrflrgtdfipu3agv7axawjjppg3nxejosmsw7+dgv3hjqhg3btz5nqaxhbb+epjyn3nizu+egiuwrg8jtbs8srqwxjc3nre2dzk7ezuvrjkykg1eibsouuxwn1wbg2cnudlioylvnchvuf5/yflxwl+ducjahun53owugly6mwpzjjc8wancs0vejx6u7oqeskupyce5yt6ps/ogmsxojmsvrynwitgzykkzkp3mv6sb0mhjplbblgravgjtmejgvldebewkhyqosi81nfrey6odt3zk8jf2utgnpd4+4in7eyimnlijz9gdhog+mq+nzf9qzqjci3bm/tac5tppq24kmar4hbducskoijegqixxf8w0tyshogmch2dpr7witdoibrxt27ns+xiwrxodoeouqzy6r2v0jsqoiih6rm/ofb0zt8al8w58tfttxmxmh/2r8fkd92abda==</latexit> <latexit sha1_base64="htgqdnhuyxei49dxfjup/3fn8is=">aaac53icbvlpa9swfjbdbuu8x2l33eu0tcsmbssmtkugbjcdo1jaqpwawzytevk20vnomp4heumhy+y6f2m3/tolcukw1u0dwcf33ve99yrfurqgfp+/425spnn6bou59+llq9dvots7ryyrnonjlslmn0tucckuh4mayu9yzwkasx4clb7w+eofxburqr+wzpk0ptmleseowcrsxaurnwlvgtsmqmboovxwotgte36/wvsj7aebd5cmazojse8sfh08wm3r+9tkszpssevc4qrenygnyfdgzd+imzatn1i7baziw3ixitupwm3iet/4comivbn+wfxcrot5yafrd/xv4ieankclmjgmo//slkxiuqimqtet4ucwlakgwssvvkawpkdsqwd8yqgiktftcvvofd6ztiyttnujak/yu4qspsys08hwphtmpp2rycdykwksz9nsqlwarti6uvjidbmuhx3hqnmgcmkbzvrywtgbu00z2k9rxwjpr/wqha0hxb+q7x+7b1+a69hc79au6igcpqed9a0dojfituyco5fol1e4f+5v98+61huazvt0l9y/1+qn4zc=</latexit> <latexit sha1_base64="htgqdnhuyxei49dxfjup/3fn8is=">aaac53icbvlpa9swfjbdbuu8x2l33eu0tcsmbssmtkugbjcdo1jaqpwawzytevk20vnomp4heumhy+y6f2m3/tolcukw1u0dwcf33ve99yrfurqgfp+/425spnn6bou59+llq9dvots7ryyrnonjlslmn0tucckuh4mayu9yzwkasx4clb7w+eofxburqr+wzpk0ptmleseowcrsxaurnwlvgtsmqmboovxwotgte36/wvsj7aebd5cmazojse8sfh08wm3r+9tkszpssevc4qrenygnyfdgzd+imzatn1i7baziw3ixitupwm3iet/4comivbn+wfxcrot5yafrd/xv4ieankclmjgmo//slkxiuqimqtet4ucwlakgwssvvkawpkdsqwd8yqgiktftcvvofd6ztiyttnujak/yu4qspsys08hwphtmpp2rycdykwksz9nsqlwarti6uvjidbmuhx3hqnmgcmkbzvrywtgbu00z2k9rxwjpr/wqha0hxb+q7x+7b1+a69hc79au6igcpqed9a0dojfituyco5fol1e4f+5v98+61huazvt0l9y/1+qn4zc=</latexit> <latexit sha1_base64="htgqdnhuyxei49dxfjup/3fn8is=">aaac53icbvlpa9swfjbdbuu8x2l33eu0tcsmbssmtkugbjcdo1jaqpwawzytevk20vnomp4heumhy+y6f2m3/tolcukw1u0dwcf33ve99yrfurqgfp+/425spnn6bou59+llq9dvots7ryyrnonjlslmn0tucckuh4mayu9yzwkasx4clb7w+eofxburqr+wzpk0ptmleseowcrsxaurnwlvgtsmqmboovxwotgte36/wvsj7aebd5cmazojse8sfh08wm3r+9tkszpssevc4qrenygnyfdgzd+imzatn1i7baziw3ixitupwm3iet/4comivbn+wfxcrot5yafrd/xv4ieankclmjgmo//slkxiuqimqtet4ucwlakgwssvvkawpkdsqwd8yqgiktftcvvofd6ztiyttnujak/yu4qspsys08hwphtmpp2rycdykwksz9nsqlwarti6uvjidbmuhx3hqnmgcmkbzvrywtgbu00z2k9rxwjpr/wqha0hxb+q7x+7b1+a69hc79au6igcpqed9a0dojfituyco5fol1e4f+5v98+61huazvt0l9y/1+qn4zc=</latexit> <latexit sha1_base64="htgqdnhuyxei49dxfjup/3fn8is=">aaac53icbvlpa9swfjbdbuu8x2l33eu0tcsmbssmtkugbjcdo1jaqpwawzytevk20vnomp4heumhy+y6f2m3/tolcukw1u0dwcf33ve99yrfurqgfp+/425spnn6bou59+llq9dvots7ryyrnonjlslmn0tucckuh4mayu9yzwkasx4clb7w+eofxburqr+wzpk0ptmleseowcrsxaurnwlvgtsmqmboovxwotgte36/wvsj7aebd5cmazojse8sfh08wm3r+9tkszpssevc4qrenygnyfdgzd+imzatn1i7baziw3ixitupwm3iet/4comivbn+wfxcrot5yafrd/xv4ieankclmjgmo//slkxiuqimqtet4ucwlakgwssvvkawpkdsqwd8yqgiktftcvvofd6ztiyttnujak/yu4qspsys08hwphtmpp2rycdykwksz9nsqlwarti6uvjidbmuhx3hqnmgcmkbzvrywtgbu00z2k9rxwjpr/wqha0hxb+q7x+7b1+a69hc79au6igcpqed9a0dojfituyco5fol1e4f+5v98+61huazvt0l9y/1+qn4zc=</latexit> (x, y tx k=1 f k 1 (x)) = f t (x) ŷ (t) i = tx k=1 (t 1) f k (x i )=ŷ i + f t (x)

<latexit sha1_base64="xeocsord3gqj4fxztn59yh5zdxk=">aaace3icbzdlsgmxfiyz9vbhw9wlm2arwrflrgtdfipu3agv7axawjjppg3nxejosmsw7+dgv3hjqhg3btz5nqaxhbb+epjyn3nizu+egiuwrg8jtbs8srqwxjc3nre2dzk7ezuvrjkykg1eibsouuxwn1wbg2cnudlioylvnchvuf5/yflxwl+ducjahun53owugly6mwpzjjc8wancs0vejx6u7oqeskupyce5yt6ps/ogmsxojmsvrynwitgzykkzkp3mv6sb0mhjplbblgravgjtmejgvldebewkhyqosi81nfrey6odt3zk8jf2utgnpd4+4in7eyimnlijz9gdhog+mq+nzf9qzqjci3bm/tac5tppq24kmar4hbducskoijegqixxf8w0tyshogmch2dpr7witdoibrxt27ns+xiwrxodoeouqzy6r2v0jsqoiih6rm/ofb0zt8al8w58tfttxmxmh/2r8fkd92abda==</latexit> <latexit sha1_base64="xeocsord3gqj4fxztn59yh5zdxk=">aaace3icbzdlsgmxfiyz9vbhw9wlm2arwrflrgtdfipu3agv7axawjjppg3nxejosmsw7+dgv3hjqhg3btz5nqaxhbb+epjyn3nizu+egiuwrg8jtbs8srqwxjc3nre2dzk7ezuvrjkykg1eibsouuxwn1wbg2cnudlioylvnchvuf5/yflxwl+ducjahun53owugly6mwpzjjc8wancs0vejx6u7oqeskupyce5yt6ps/ogmsxojmsvrynwitgzykkzkp3mv6sb0mhjplbblgravgjtmejgvldebewkhyqosi81nfrey6odt3zk8jf2utgnpd4+4in7eyimnlijz9gdhog+mq+nzf9qzqjci3bm/tac5tppq24kmar4hbducskoijegqixxf8w0tyshogmch2dpr7witdoibrxt27ns+xiwrxodoeouqzy6r2v0jsqoiih6rm/ofb0zt8al8w58tfttxmxmh/2r8fkd92abda==</latexit> <latexit sha1_base64="xeocsord3gqj4fxztn59yh5zdxk=">aaace3icbzdlsgmxfiyz9vbhw9wlm2arwrflrgtdfipu3agv7axawjjppg3nxejosmsw7+dgv3hjqhg3btz5nqaxhbb+epjyn3nizu+egiuwrg8jtbs8srqwxjc3nre2dzk7ezuvrjkykg1eibsouuxwn1wbg2cnudlioylvnchvuf5/yflxwl+ducjahun53owugly6mwpzjjc8wancs0vejx6u7oqeskupyce5yt6ps/ogmsxojmsvrynwitgzykkzkp3mv6sb0mhjplbblgravgjtmejgvldebewkhyqosi81nfrey6odt3zk8jf2utgnpd4+4in7eyimnlijz9gdhog+mq+nzf9qzqjci3bm/tac5tppq24kmar4hbducskoijegqixxf8w0tyshogmch2dpr7witdoibrxt27ns+xiwrxodoeouqzy6r2v0jsqoiih6rm/ofb0zt8al8w58tfttxmxmh/2r8fkd92abda==</latexit> <latexit sha1_base64="xeocsord3gqj4fxztn59yh5zdxk=">aaace3icbzdlsgmxfiyz9vbhw9wlm2arwrflrgtdfipu3agv7axawjjppg3nxejosmsw7+dgv3hjqhg3btz5nqaxhbb+epjyn3nizu+egiuwrg8jtbs8srqwxjc3nre2dzk7ezuvrjkykg1eibsouuxwn1wbg2cnudlioylvnchvuf5/yflxwl+ducjahun53owugly6mwpzjjc8wancs0vejx6u7oqeskupyce5yt6ps/ogmsxojmsvrynwitgzykkzkp3mv6sb0mhjplbblgravgjtmejgvldebewkhyqosi81nfrey6odt3zk8jf2utgnpd4+4in7eyimnlijz9gdhog+mq+nzf9qzqjci3bm/tac5tppq24kmar4hbducskoijegqixxf8w0tyshogmch2dpr7witdoibrxt27ns+xiwrxodoeouqzy6r2v0jsqoiih6rm/ofb0zt8al8w58tfttxmxmh/2r8fkd92abda==</latexit> <latexit sha1_base64="mohea0psyihayoqooao9sn+xe7i=">aaacvxichvfds8mwfe3rd/2a+uhlccgtdlrduarrfesgdwpob+ucazzqne1lkqql9e+kl/4b03vo3qqvhbzouefemxsvylqq2/4wzlhxicmp6rlrdm5+ybg0thwtw1hg0sahc0xtq5iwyklducvimxiebr4jn97tsa7fpbmhacivvbkrdoduofuprkptndl7bjyvjfvwtpk6uqkpooslhnnkarcl6rawpbumuq61aeu5lupgp6mnfcy3qkjrxga9+8z5vjaoo6chyvxhyg89rfj0+jphc9v/dbostqlsv+1ewfhg9eez9ooiu3pzuygoa8ivzkjklmnhqp3mvtejmexgkkqip6f70tkqo4didtrbfgbxndoffij04qr22j+ofavsjognmwokhuswlpn/aa1y+xvtlpiovotjopefm6hcmh8l7fjbsgkjbgglqmef+ahp5sj94fksnoenj4lrwtwxq87ltvnoul+oabak1kafogaxhiezcaeaabv7xp1bjufz0cqmm3mrahp9zwr4febljy8vzhq=</latexit> <latexit sha1_base64="mohea0psyihayoqooao9sn+xe7i=">aaacvxichvfds8mwfe3rd/2a+uhlccgtdlrduarrfesgdwpob+ucazzqne1lkqql9e+kl/4b03vo3qqvhbzouefemxsvylqq2/4wzlhxicmp6rlrdm5+ybg0thwtw1hg0sahc0xtq5iwyklducvimxiebr4jn97tsa7fpbmhacivvbkrdoduofuprkptndl7bjyvjfvwtpk6uqkpooslhnnkarcl6rawpbumuq61aeu5lupgp6mnfcy3qkjrxga9+8z5vjaoo6chyvxhyg89rfj0+jphc9v/dbostqlsv+1ewfhg9eez9ooiu3pzuygoa8ivzkjklmnhqp3mvtejmexgkkqip6f70tkqo4didtrbfgbxndoffij04qr22j+ofavsjognmwokhuswlpn/aa1y+xvtlpiovotjopefm6hcmh8l7fjbsgkjbgglqmef+ahp5sj94fksnoenj4lrwtwxq87ltvnoul+oabak1kafogaxhiezcaeaabv7xp1bjufz0cqmm3mrahp9zwr4febljy8vzhq=</latexit> <latexit sha1_base64="mohea0psyihayoqooao9sn+xe7i=">aaacvxichvfds8mwfe3rd/2a+uhlccgtdlrduarrfesgdwpob+ucazzqne1lkqql9e+kl/4b03vo3qqvhbzouefemxsvylqq2/4wzlhxicmp6rlrdm5+ybg0thwtw1hg0sahc0xtq5iwyklducvimxiebr4jn97tsa7fpbmhacivvbkrdoduofuprkptndl7bjyvjfvwtpk6uqkpooslhnnkarcl6rawpbumuq61aeu5lupgp6mnfcy3qkjrxga9+8z5vjaoo6chyvxhyg89rfj0+jphc9v/dbostqlsv+1ewfhg9eez9ooiu3pzuygoa8ivzkjklmnhqp3mvtejmexgkkqip6f70tkqo4didtrbfgbxndoffij04qr22j+ofavsjognmwokhuswlpn/aa1y+xvtlpiovotjopefm6hcmh8l7fjbsgkjbgglqmef+ahp5sj94fksnoenj4lrwtwxq87ltvnoul+oabak1kafogaxhiezcaeaabv7xp1bjufz0cqmm3mrahp9zwr4febljy8vzhq=</latexit> <latexit sha1_base64="mohea0psyihayoqooao9sn+xe7i=">aaacvxichvfds8mwfe3rd/2a+uhlccgtdlrduarrfesgdwpob+ucazzqne1lkqql9e+kl/4b03vo3qqvhbzouefemxsvylqq2/4wzlhxicmp6rlrdm5+ybg0thwtw1hg0sahc0xtq5iwyklducvimxiebr4jn97tsa7fpbmhacivvbkrdoduofuprkptndl7bjyvjfvwtpk6uqkpooslhnnkarcl6rawpbumuq61aeu5lupgp6mnfcy3qkjrxga9+8z5vjaoo6chyvxhyg89rfj0+jphc9v/dbostqlsv+1ewfhg9eez9ooiu3pzuygoa8ivzkjklmnhqp3mvtejmexgkkqip6f70tkqo4didtrbfgbxndoffij04qr22j+ofavsjognmwokhuswlpn/aa1y+xvtlpiovotjopefm6hcmh8l7fjbsgkjbgglqmef+ahp5sj94fksnoenj4lrwtwxq87ltvnoul+oabak1kafogaxhiezcaeaabv7xp1bjufz0cqmm3mrahp9zwr4febljy8vzhq=</latexit> <latexit sha1_base64="htgqdnhuyxei49dxfjup/3fn8is=">aaac53icbvlpa9swfjbdbuu8x2l33eu0tcsmbssmtkugbjcdo1jaqpwawzytevk20vnomp4heumhy+y6f2m3/tolcukw1u0dwcf33ve99yrfurqgfp+/425spnn6bou59+llq9dvots7ryyrnonjlslmn0tucckuh4mayu9yzwkasx4clb7w+eofxburqr+wzpk0ptmleseowcrsxaurnwlvgtsmqmboovxwotgte36/wvsj7aebd5cmazojse8sfh08wm3r+9tkszpssevc4qrenygnyfdgzd+imzatn1i7baziw3ixitupwm3iet/4comivbn+wfxcrot5yafrd/xv4ieankclmjgmo//slkxiuqimqtet4ucwlakgwssvvkawpkdsqwd8yqgiktftcvvofd6ztiyttnujak/yu4qspsys08hwphtmpp2rycdykwksz9nsqlwarti6uvjidbmuhx3hqnmgcmkbzvrywtgbu00z2k9rxwjpr/wqha0hxb+q7x+7b1+a69hc79au6igcpqed9a0dojfituyco5fol1e4f+5v98+61huazvt0l9y/1+qn4zc=</latexit> <latexit sha1_base64="htgqdnhuyxei49dxfjup/3fn8is=">aaac53icbvlpa9swfjbdbuu8x2l33eu0tcsmbssmtkugbjcdo1jaqpwawzytevk20vnomp4heumhy+y6f2m3/tolcukw1u0dwcf33ve99yrfurqgfp+/425spnn6bou59+llq9dvots7ryyrnonjlslmn0tucckuh4mayu9yzwkasx4clb7w+eofxburqr+wzpk0ptmleseowcrsxaurnwlvgtsmqmboovxwotgte36/wvsj7aebd5cmazojse8sfh08wm3r+9tkszpssevc4qrenygnyfdgzd+imzatn1i7baziw3ixitupwm3iet/4comivbn+wfxcrot5yafrd/xv4ieankclmjgmo//slkxiuqimqtet4ucwlakgwssvvkawpkdsqwd8yqgiktftcvvofd6ztiyttnujak/yu4qspsys08hwphtmpp2rycdykwksz9nsqlwarti6uvjidbmuhx3hqnmgcmkbzvrywtgbu00z2k9rxwjpr/wqha0hxb+q7x+7b1+a69hc79au6igcpqed9a0dojfituyco5fol1e4f+5v98+61huazvt0l9y/1+qn4zc=</latexit> <latexit sha1_base64="htgqdnhuyxei49dxfjup/3fn8is=">aaac53icbvlpa9swfjbdbuu8x2l33eu0tcsmbssmtkugbjcdo1jaqpwawzytevk20vnomp4heumhy+y6f2m3/tolcukw1u0dwcf33ve99yrfurqgfp+/425spnn6bou59+llq9dvots7ryyrnonjlslmn0tucckuh4mayu9yzwkasx4clb7w+eofxburqr+wzpk0ptmleseowcrsxaurnwlvgtsmqmboovxwotgte36/wvsj7aebd5cmazojse8sfh08wm3r+9tkszpssevc4qrenygnyfdgzd+imzatn1i7baziw3ixitupwm3iet/4comivbn+wfxcrot5yafrd/xv4ieankclmjgmo//slkxiuqimqtet4ucwlakgwssvvkawpkdsqwd8yqgiktftcvvofd6ztiyttnujak/yu4qspsys08hwphtmpp2rycdykwksz9nsqlwarti6uvjidbmuhx3hqnmgcmkbzvrywtgbu00z2k9rxwjpr/wqha0hxb+q7x+7b1+a69hc79au6igcpqed9a0dojfituyco5fol1e4f+5v98+61huazvt0l9y/1+qn4zc=</latexit> <latexit sha1_base64="htgqdnhuyxei49dxfjup/3fn8is=">aaac53icbvlpa9swfjbdbuu8x2l33eu0tcsmbssmtkugbjcdo1jaqpwawzytevk20vnomp4heumhy+y6f2m3/tolcukw1u0dwcf33ve99yrfurqgfp+/425spnn6bou59+llq9dvots7ryyrnonjlslmn0tucckuh4mayu9yzwkasx4clb7w+eofxburqr+wzpk0ptmleseowcrsxaurnwlvgtsmqmboovxwotgte36/wvsj7aebd5cmazojse8sfh08wm3r+9tkszpssevc4qrenygnyfdgzd+imzatn1i7baziw3ixitupwm3iet/4comivbn+wfxcrot5yafrd/xv4ieankclmjgmo//slkxiuqimqtet4ucwlakgwssvvkawpkdsqwd8yqgiktftcvvofd6ztiyttnujak/yu4qspsys08hwphtmpp2rycdykwksz9nsqlwarti6uvjidbmuhx3hqnmgcmkbzvrywtgbu00z2k9rxwjpr/wqha0hxb+q7x+7b1+a69hc79au6igcpqed9a0dojfituyco5fol1e4f+5v98+61huazvt0l9y/1+qn4zc=</latexit> M(x, y tx k=1 f k 1 (x)) = f t (x) ŷ (t) i = tx k=1 (t 1) f k (x i )=ŷ i + f t (x) L(y, F(x)) = (y F (x))2 2 J = X L(y, F(x)) @J @F (x) = @ P L(y, F(x)) @F (x) @J y F (x) = @F (x) = F (x) y

<latexit sha1_base64="xeocsord3gqj4fxztn59yh5zdxk=">aaace3icbzdlsgmxfiyz9vbhw9wlm2arwrflrgtdfipu3agv7axawjjppg3nxejosmsw7+dgv3hjqhg3btz5nqaxhbb+epjyn3nizu+egiuwrg8jtbs8srqwxjc3nre2dzk7ezuvrjkykg1eibsouuxwn1wbg2cnudlioylvnchvuf5/yflxwl+ducjahun53owugly6mwpzjjc8wancs0vejx6u7oqeskupyce5yt6ps/ogmsxojmsvrynwitgzykkzkp3mv6sb0mhjplbblgravgjtmejgvldebewkhyqosi81nfrey6odt3zk8jf2utgnpd4+4in7eyimnlijz9gdhog+mq+nzf9qzqjci3bm/tac5tppq24kmar4hbducskoijegqixxf8w0tyshogmch2dpr7witdoibrxt27ns+xiwrxodoeouqzy6r2v0jsqoiih6rm/ofb0zt8al8w58tfttxmxmh/2r8fkd92abda==</latexit> <latexit sha1_base64="xeocsord3gqj4fxztn59yh5zdxk=">aaace3icbzdlsgmxfiyz9vbhw9wlm2arwrflrgtdfipu3agv7axawjjppg3nxejosmsw7+dgv3hjqhg3btz5nqaxhbb+epjyn3nizu+egiuwrg8jtbs8srqwxjc3nre2dzk7ezuvrjkykg1eibsouuxwn1wbg2cnudlioylvnchvuf5/yflxwl+ducjahun53owugly6mwpzjjc8wancs0vejx6u7oqeskupyce5yt6ps/ogmsxojmsvrynwitgzykkzkp3mv6sb0mhjplbblgravgjtmejgvldebewkhyqosi81nfrey6odt3zk8jf2utgnpd4+4in7eyimnlijz9gdhog+mq+nzf9qzqjci3bm/tac5tppq24kmar4hbducskoijegqixxf8w0tyshogmch2dpr7witdoibrxt27ns+xiwrxodoeouqzy6r2v0jsqoiih6rm/ofb0zt8al8w58tfttxmxmh/2r8fkd92abda==</latexit> <latexit sha1_base64="xeocsord3gqj4fxztn59yh5zdxk=">aaace3icbzdlsgmxfiyz9vbhw9wlm2arwrflrgtdfipu3agv7axawjjppg3nxejosmsw7+dgv3hjqhg3btz5nqaxhbb+epjyn3nizu+egiuwrg8jtbs8srqwxjc3nre2dzk7ezuvrjkykg1eibsouuxwn1wbg2cnudlioylvnchvuf5/yflxwl+ducjahun53owugly6mwpzjjc8wancs0vejx6u7oqeskupyce5yt6ps/ogmsxojmsvrynwitgzykkzkp3mv6sb0mhjplbblgravgjtmejgvldebewkhyqosi81nfrey6odt3zk8jf2utgnpd4+4in7eyimnlijz9gdhog+mq+nzf9qzqjci3bm/tac5tppq24kmar4hbducskoijegqixxf8w0tyshogmch2dpr7witdoibrxt27ns+xiwrxodoeouqzy6r2v0jsqoiih6rm/ofb0zt8al8w58tfttxmxmh/2r8fkd92abda==</latexit> <latexit sha1_base64="xeocsord3gqj4fxztn59yh5zdxk=">aaace3icbzdlsgmxfiyz9vbhw9wlm2arwrflrgtdfipu3agv7axawjjppg3nxejosmsw7+dgv3hjqhg3btz5nqaxhbb+epjyn3nizu+egiuwrg8jtbs8srqwxjc3nre2dzk7ezuvrjkykg1eibsouuxwn1wbg2cnudlioylvnchvuf5/yflxwl+ducjahun53owugly6mwpzjjc8wancs0vejx6u7oqeskupyce5yt6ps/ogmsxojmsvrynwitgzykkzkp3mv6sb0mhjplbblgravgjtmejgvldebewkhyqosi81nfrey6odt3zk8jf2utgnpd4+4in7eyimnlijz9gdhog+mq+nzf9qzqjci3bm/tac5tppq24kmar4hbducskoijegqixxf8w0tyshogmch2dpr7witdoibrxt27ns+xiwrxodoeouqzy6r2v0jsqoiih6rm/ofb0zt8al8w58tfttxmxmh/2r8fkd92abda==</latexit> <latexit sha1_base64="v/ck/lsb3zovnf3nie5nxj7tldg=">aaackhicjvfbs8mwge3rbu6ncz76ehzkhjhafdydw6kg4pocm4o1ldrnnts9kktikp09/h/f/dem22dqfdwqodnfltmfmzaqpgf8aprc4tlysmm1vlze2disbtx6ik45jj0cs5gpxcqioxhpssozgssconbl5nenror44wvhgsbrgxwlxa7ru0r9ipfukln9u3acxmst7nfgtzmfh2ze3a6gxvqpd0hfcablleeef2u1rvdws6t5nxll5whnvok4pijb23zgzwv5u3uq4ftrrssya84tc0rqyio7p/puetfoqxjjzjaqq9nipj0vezajedlkbukqdtatgsoaozaioxsbmsm9pxjqj7k6kyrj9wtfhkihrqgrmkmkn8xpwch+fhum0m/bgy2svjiitwb5kymyhsv2oec5wzknfegyu/vwij+rmkqqhrymmd+/pe/6ry3tajn3j/xu5dsoetgbu6abthakuuag3ieewfpfo9boti5e09v6ux4xsdw1ac02+ab99hosa7mp</latexit> <latexit sha1_base64="v/ck/lsb3zovnf3nie5nxj7tldg=">aaackhicjvfbs8mwge3rbu6ncz76ehzkhjhafdydw6kg4pocm4o1ldrnnts9kktikp09/h/f/dem22dqfdwqodnfltmfmzaqpgf8aprc4tlysmm1vlze2disbtx6ik45jj0cs5gpxcqioxhpssozgssconbl5nenror44wvhgsbrgxwlxa7ru0r9ipfukln9u3acxmst7nfgtzmfh2ze3a6gxvqpd0hfcablleeef2u1rvdws6t5nxll5whnvok4pijb23zgzwv5u3uq4ftrrssya84tc0rqyio7p/puetfoqxjjzjaqq9nipj0vezajedlkbukqdtatgsoaozaioxsbmsm9pxjqj7k6kyrj9wtfhkihrqgrmkmkn8xpwch+fhum0m/bgy2svjiitwb5kymyhsv2oec5wzknfegyu/vwij+rmkqqhrymmd+/pe/6ry3tajn3j/xu5dsoetgbu6abthakuuag3ieewfpfo9boti5e09v6ux4xsdw1ac02+ab99hosa7mp</latexit> <latexit sha1_base64="v/ck/lsb3zovnf3nie5nxj7tldg=">aaackhicjvfbs8mwge3rbu6ncz76ehzkhjhafdydw6kg4pocm4o1ldrnnts9kktikp09/h/f/dem22dqfdwqodnfltmfmzaqpgf8aprc4tlysmm1vlze2disbtx6ik45jj0cs5gpxcqioxhpssozgssconbl5nenror44wvhgsbrgxwlxa7ru0r9ipfukln9u3acxmst7nfgtzmfh2ze3a6gxvqpd0hfcablleeef2u1rvdws6t5nxll5whnvok4pijb23zgzwv5u3uq4ftrrssya84tc0rqyio7p/puetfoqxjjzjaqq9nipj0vezajedlkbukqdtatgsoaozaioxsbmsm9pxjqj7k6kyrj9wtfhkihrqgrmkmkn8xpwch+fhum0m/bgy2svjiitwb5kymyhsv2oec5wzknfegyu/vwij+rmkqqhrymmd+/pe/6ry3tajn3j/xu5dsoetgbu6abthakuuag3ieewfpfo9boti5e09v6ux4xsdw1ac02+ab99hosa7mp</latexit> <latexit sha1_base64="v/ck/lsb3zovnf3nie5nxj7tldg=">aaackhicjvfbs8mwge3rbu6ncz76ehzkhjhafdydw6kg4pocm4o1ldrnnts9kktikp09/h/f/dem22dqfdwqodnfltmfmzaqpgf8aprc4tlysmm1vlze2disbtx6ik45jj0cs5gpxcqioxhpssozgssconbl5nenror44wvhgsbrgxwlxa7ru0r9ipfukln9u3acxmst7nfgtzmfh2ze3a6gxvqpd0hfcablleeef2u1rvdws6t5nxll5whnvok4pijb23zgzwv5u3uq4ftrrssya84tc0rqyio7p/puetfoqxjjzjaqq9nipj0vezajedlkbukqdtatgsoaozaioxsbmsm9pxjqj7k6kyrj9wtfhkihrqgrmkmkn8xpwch+fhum0m/bgy2svjiitwb5kymyhsv2oec5wzknfegyu/vwij+rmkqqhrymmd+/pe/6ry3tajn3j/xu5dsoetgbu6abthakuuag3ieewfpfo9boti5e09v6ux4xsdw1ac02+ab99hosa7mp</latexit> <latexit sha1_base64="htgqdnhuyxei49dxfjup/3fn8is=">aaac53icbvlpa9swfjbdbuu8x2l33eu0tcsmbssmtkugbjcdo1jaqpwawzytevk20vnomp4heumhy+y6f2m3/tolcukw1u0dwcf33ve99yrfurqgfp+/425spnn6bou59+llq9dvots7ryyrnonjlslmn0tucckuh4mayu9yzwkasx4clb7w+eofxburqr+wzpk0ptmleseowcrsxaurnwlvgtsmqmboovxwotgte36/wvsj7aebd5cmazojse8sfh08wm3r+9tkszpssevc4qrenygnyfdgzd+imzatn1i7baziw3ixitupwm3iet/4comivbn+wfxcrot5yafrd/xv4ieankclmjgmo//slkxiuqimqtet4ucwlakgwssvvkawpkdsqwd8yqgiktftcvvofd6ztiyttnujak/yu4qspsys08hwphtmpp2rycdykwksz9nsqlwarti6uvjidbmuhx3hqnmgcmkbzvrywtgbu00z2k9rxwjpr/wqha0hxb+q7x+7b1+a69hc79au6igcpqed9a0dojfituyco5fol1e4f+5v98+61huazvt0l9y/1+qn4zc=</latexit> <latexit sha1_base64="htgqdnhuyxei49dxfjup/3fn8is=">aaac53icbvlpa9swfjbdbuu8x2l33eu0tcsmbssmtkugbjcdo1jaqpwawzytevk20vnomp4heumhy+y6f2m3/tolcukw1u0dwcf33ve99yrfurqgfp+/425spnn6bou59+llq9dvots7ryyrnonjlslmn0tucckuh4mayu9yzwkasx4clb7w+eofxburqr+wzpk0ptmleseowcrsxaurnwlvgtsmqmboovxwotgte36/wvsj7aebd5cmazojse8sfh08wm3r+9tkszpssevc4qrenygnyfdgzd+imzatn1i7baziw3ixitupwm3iet/4comivbn+wfxcrot5yafrd/xv4ieankclmjgmo//slkxiuqimqtet4ucwlakgwssvvkawpkdsqwd8yqgiktftcvvofd6ztiyttnujak/yu4qspsys08hwphtmpp2rycdykwksz9nsqlwarti6uvjidbmuhx3hqnmgcmkbzvrywtgbu00z2k9rxwjpr/wqha0hxb+q7x+7b1+a69hc79au6igcpqed9a0dojfituyco5fol1e4f+5v98+61huazvt0l9y/1+qn4zc=</latexit> <latexit sha1_base64="htgqdnhuyxei49dxfjup/3fn8is=">aaac53icbvlpa9swfjbdbuu8x2l33eu0tcsmbssmtkugbjcdo1jaqpwawzytevk20vnomp4heumhy+y6f2m3/tolcukw1u0dwcf33ve99yrfurqgfp+/425spnn6bou59+llq9dvots7ryyrnonjlslmn0tucckuh4mayu9yzwkasx4clb7w+eofxburqr+wzpk0ptmleseowcrsxaurnwlvgtsmqmboovxwotgte36/wvsj7aebd5cmazojse8sfh08wm3r+9tkszpssevc4qrenygnyfdgzd+imzatn1i7baziw3ixitupwm3iet/4comivbn+wfxcrot5yafrd/xv4ieankclmjgmo//slkxiuqimqtet4ucwlakgwssvvkawpkdsqwd8yqgiktftcvvofd6ztiyttnujak/yu4qspsys08hwphtmpp2rycdykwksz9nsqlwarti6uvjidbmuhx3hqnmgcmkbzvrywtgbu00z2k9rxwjpr/wqha0hxb+q7x+7b1+a69hc79au6igcpqed9a0dojfituyco5fol1e4f+5v98+61huazvt0l9y/1+qn4zc=</latexit> <latexit sha1_base64="htgqdnhuyxei49dxfjup/3fn8is=">aaac53icbvlpa9swfjbdbuu8x2l33eu0tcsmbssmtkugbjcdo1jaqpwawzytevk20vnomp4heumhy+y6f2m3/tolcukw1u0dwcf33ve99yrfurqgfp+/425spnn6bou59+llq9dvots7ryyrnonjlslmn0tucckuh4mayu9yzwkasx4clb7w+eofxburqr+wzpk0ptmleseowcrsxaurnwlvgtsmqmboovxwotgte36/wvsj7aebd5cmazojse8sfh08wm3r+9tkszpssevc4qrenygnyfdgzd+imzatn1i7baziw3ixitupwm3iet/4comivbn+wfxcrot5yafrd/xv4ieankclmjgmo//slkxiuqimqtet4ucwlakgwssvvkawpkdsqwd8yqgiktftcvvofd6ztiyttnujak/yu4qspsys08hwphtmpp2rycdykwksz9nsqlwarti6uvjidbmuhx3hqnmgcmkbzvrywtgbu00z2k9rxwjpr/wqha0hxb+q7x+7b1+a69hc79au6igcpqed9a0dojfituyco5fol1e4f+5v98+61huazvt0l9y/1+qn4zc=</latexit> M(x, y tx k=1 f k 1 (x)) = f t (x) ŷ (t) i = tx k=1 (t 1) f k (x i )=ŷ i + f t (x) F k (x) =F k 1 (x)+ f k = F k 1 (x)+ (y F k 1 (x)) = F k 1 (x)+ ( @J @F k 1 (x) ) @J i := i @ i functional gradient descent gradient descent with functions

Turning parameters - number of tree (estimators) - depth of tree - subsampling - shrinkage parameter λ - Fitting to low variance

loss : { ls, lad, huber, quantile }, optional (default= ls ) learning_rate : float, optional (default=0.1) n_estimators : int (default=100) max_depth : integer, optional (default=3) subsample : float, optional (default=1.0)

loss : { deviance, exponential }, optional (default= deviance ) learning_rate : float, optional (default=0.1) n_estimators : int (default=100) max_depth : integer, optional (default=3) subsample : float, optional (default=1.0)

Gradient Boosting - greedy algorithm - scale에강건한모델 - 다양한 loss function을지원 (huber) - Overfitting problem - Slow model & High computation resource

Human knowledge belongs to the world.

XGBoost & LightGBM Ensemble Model Director of TEAMLAB Sungchul Choi

Gradient boosting packages - GBM 연산량과병렬처리를위한패키지가존재 - 대표적인패키지는 XGBoost 와 LightGBM - XGBoost - extreme Gradient Boosting https://github.com/dmlc/xgboost - LightGBM Light Gradient Boosting Machhine https://github.com/microsoft/lightgbm - 구현알고리즘은일부상이하나목표등은유사한패키지

XGBOOST Light GBM https://github.com/dmlc/xgboost/issues/1950 https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-gbm-vs-xgboost/

XGBoost Light GBM https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

Instllation 1. Git 설치 (https://git-scm.com/) 2. Cmake 설치 (https://cmake.org/, win) 3. Visual studio 2015 (win) 4. Brew (mac) https://xgboost.readthedocs.io/en/latest/build.html https://lightgbm.readthedocs.io/en/latest/installation-guide.html https://youtu.be/addme/edhdwwmpqr-_ne2eykfb91c8e4opdw

Parameters https://github.com/dmlc/xgboost/blob/master/doc/parameter.md http://lightgbm.readthedocs.io/en/latest/parameters.html http://lightgbm.readthedocs.io/en/latest/parameters-tuning.html https://arxiv.org/abs/1505.01866

Human knowledge belongs to the world.

Stacking Ensemble Model Director of TEAMLAB Sungchul Choi

Stacking - Stacked Generalization https://www.sciencedirect.com/science/article/pii/s0893608005800231 - meta ensemble à 여러모델의결과를묶어서예측 - 컴퓨터성능향상과함께최근대중화되고있음 - 키워드 : stacking kaggle stacknet - 복잡성으로인해완벽한파이썬구현체는아직없음

여러개의모델을생성 Stacking Subset 1 로만학습을함 데이터셋을나눔 http://shop.oreilly.com/product/0636920052289.do

Meta model 각모델의결과값이 Meta 모델의 feature 로학습됨 http://shop.oreilly.com/product/0636920052289.do

Stacking X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=self.test_ratio) for estimator in self.base_estimators: estimator.fit(x_train, y_train) meta_train_set = np.array([estimator.predict(x_test) for estimator in self.base_estimators]).t self.meta_estimator.fit(meta_train_set, y_test)

Stacking def predict(self, X, y=none): meta_x = [] for estimator in self.base_estimators: meta_x.append(estimator.predict(x)) meta_x = np.array(meta_x).t return self.meta_estimator.predict(meta_x)

StackNet - Stacking 지원을위한 JAVA 기반구현체 - XGBoost, LightGBM, Scikit-learn등다양한구현체사용 - 복잡한설치, 그러나 Kaggle 등에서높은성능을보여줌 - Neural net과대비하여더좋은성능, 쉬운학습이가능? https://github.com/kaz-anova/stacknet http://blog.kaggle.com/2017/06/15/stacking-made-easy-an-introduction-tostacknet-by-competitions-grandmaster-marios-michailidis-kazanova/

Human knowledge belongs to the world.