3 : S-JND HEVC (Regular Paper) 21 6, 2016 11 (JBE Vol. 21, No. 6, November 2016) http://dx.doi.org/10.5909/jbe.2016.21.6.929 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) S-JND HEVC a), a), a), a) A Perceptual Rate Control Algorithm with S-JND Model for HEVC Encoder JaeRyun Kim a), Yong-Jo Ahn a), Woong Lim a), and Donggyu Sim a) S-JND. S-JND (Saliency-Just Noticeable Difference). CTU (Coding Tree Unit) S-JND threshold. CTU threshold,. HM 16.9, CTC (Common Test Condition) RA (Random Access), Low-delay B Low-delay P Class B Class C., 2.3% BD-PSNR 0.07dB 0.06%. DSCQS (Double Stimulus Continuous Quality Scale), 0.03 MOS (Mean Opinion Score). Abstract This paper proposes the rate control algorithm based on the S-JND (Saliency-Just Noticeable Difference) model for considering perceptual visual quality. The proposed rate control algorithm employs the S-JND model to simultaneously reflect human visual sensitivity and human visual attention for considering characteristics of human visual system. During allocating bits for CTU (Coding Tree Unit) level in a rate control, the bit allocation model calculates the S-JND threshold of each CTU in a picture. The threshold of each CTU is used for adaptively allocating a proper number of bits; thus, the proposed bit allocation model can improve perceptual visual quality. For performance evaluation of the proposed algorithm, the proposed algorithm was implemented on HM 16.9 and tested for sequences in Class B and Class C under the CTC (Common Test Condition) RA (Random Access), Low-delay B and Low-delay P case. Experimental results show that the proposed method reduces the bit-rate of 2.3%, and improves BD-PSNR of 0.07dB and bit-rate accuracy of 0.06% on average. We achieved MOS improvement of 0.03 with the proposed method, compared with the conventional method based on DSCQS (Double Stimulus Continuous Quality Scale). Keyword : HEVC, S-JND, Rate control, Perceptual quality Copyright 2016 Korean Institute of Broadcast and Media Engineers. All rights reserved. This is an Open-Access article distributed under the terms of the Creative Commons BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited and not altered.
(JBE Vol. 21, No. 6, November 2016). Full HD 4K 8K. ISO/IEC MPEG (Moving Picture Experts Group) ITU-T VCEG (Video Coding Experts Group) JCT-VC (Joint Collabo- rative Team on Video Coding). JCT- VC H.264/AVC (Advanced Video Coding) 50%, 40% HEVC (High Effi- ciency Video Coding) version 1 [1][2][3][4]. Apple iphone 6 iphone 6 Plus HEVC FaceTime, HEVC 4K UHD TV HEVC. HEVC [5]. HEVC (Rate control) [6].. HEVC, (RDO: Rate-Distortion Optimization) [7]. a) (Dept. of Computer Engineering, Kwangwoon University) Corresponding Author : (Donggyu Sim) E-mail: dgsim@kw.ac.kr Tel: +82-2-940-5470 ORCID: http://orcid.org/0000-0002-2794-9932 2014 ( ) (NRF-2014R1A2A1A11052210) 2016. Manuscript received August 4, 2016; Revised September 13, 2016; Accepted September 20, 2016.,.,.,,. HEVC HM (HEVC reference Model). PSNR (Peak Signal to Noise Ratio), MSE (Mean Squared Error), HM PSNR., HM, [8][9][10][11]. S-JND (Saliency-Just Noticeable Difference) [8]. S-JND. S-JND CTU S-JND threshold, threshold CTU., CTU CTU CTU. CTU HEVC.. 2 HEVC, 3
3 : S-JND HEVC. 4. 5.. HEVC.. HEVC HM [12].. [13]. HM PSNR. HM. 1 HM.,.,,,.,. QP (Quantization Parameter). QP.,.., 1. HM Fig. 1. Rate control algorithm of HM
(JBE Vol. 21, No. 6, November 2016) H.264/AVC JM (Joint Model) HEVC HM [6][14]. HEVC. [15] URQ (Unified Rate-Quantization) QP [16]. HM [12] R-λ, λ QP [17]. R-λ GOP (Group Of Pictures), (Frame), CTU (Coding Tree Unit). GOP. GOP, CTU. CTU λ QP., R-λ (1).,,. λ (Lagrangian multiplier), HM.. R-λ (2).,. MSE. (2) λ., λ, (3). α β, (3) λ. λ (4) CTU QP. ln R-λ λ QP CTU, α β.. S-JND, HEVC HM PSNR... S-JND. S-JND, S-JND. HEVC.
3 : S-JND HEVC 1. S-JND (Saliency-Just Noticeable Difference) S-JND [8]. S-JND. [14]..., (Luminance adaptation).,. JND (Just Noticeable Difference) [18][19]. JND 2. 2. luminance JND value JND threshold,. 2., (Region of interest)..,, (Attention)., (Motion sensitivity). Saliency. S-JND JND Saliency. S-JND (5). JND threshold 2 luminance JND value 0 255. Saliency 0 1. JND threshold Saliency. S-JND JND Saliency JND threshold S-JND threshold, (5). Saliency JND threshold, offset (5) α. α 0.5. S-JND threshold 0 1. 2. S-JND 2. JND Fig. 2. A graph of JND threshold depending on average background luminance HEVC. 3
(JBE Vol. 21, No. 6, November 2016). HM, S-JND. S-JND threshold, S-JND threshold. 4. 4, CTU. 3. S-JND Fig. 3. Proposed rate control algorithm based on S-JND model 4. Fig. 4. Overall flowchart of the proposed rate control algorithm
3 : S-JND HEVC S-JND CTU CTU S-JND threshold. S-JND threshold CTU CTU. (6), CTU CTU S-JND threshold S-JND threshold. CTU S-JND threshold, S-JND threshold. CTU (7). CTU, S-JND threshold CTU S-JND threshold., CTU S-JND threshold S-JND threshold. (7) CTU CTU (8) (9). (8) CTU., (9) CTU. (9) CTU CTU (10)., CTU CTU., HM 10%. 10% 10%. CTU, R-λ λ. λ (4) QP. CTU.. HEVC HM 16.9. HEVC CTC (Common Test Condition) [20] RA (Random Access), Low-delay B, Low-delay P, CTC Class B Class C.
(JBE Vol. 21, No. 6, November 2016) 1. HEVC Table 1. Information about HEVC test sequences used for performance evaluation of proposed algorithm Class Resolution Sequence name Number of frame Frame rate (fps) Bit-depth Random Access B 1920 1080 C 832 480 Kimono 240 24 ParkScene 240 24 Cactus 500 50 BasketballDrive 500 50 BQTerrace 600 60 RaceHorses 300 30 BQMall 600 60 PartyScene 500 50 BasketballDrill 500 50 8 Main 1 Class B Class C. 2 1. CTC RA, R1, R2, R3, R4... 3 1 RA. 3 Anchor HM 16.9, Proposed HM 16.9. BD-rate,. BD-rate 2.3%., 3 0.06%. BD-PSNR [21]. PSNR. 3 2. Table 2. Target bitrate and bitrate point for each test sequence Class (Resolution) Class B (1920 1080) Class C (832 480) Sequence name Kimono ParkScene Cactus BasketballDrive BQTerrace RaceHorses BQMall PartyScene BasketballDrill Target bitrate point 4868 R1 2228 R2 1080 R3 535 R4 7789 R1 3414 R2 1561 R3 712 R4 18374 R1 5882 R2 2724 R3 1357 R4 17616 R1 6147 R2 2836 R3 1435 R4 39754 R1 7377 R2 2321 R3 987 R4 5986.300 R1 2533.344 R2 1184.400 R3 581.495 R4 4558.842 R1 2131.627 R2 1069.082 R3 564.931 R4 8540.952 R1 3891.048 R2 1833.244 R3 867.296 R4 4318.326 R1 2080.679 R2 1020.184 R3 541.115 R4
3 : S-JND HEVC 3. RA Table 3. Comparing encoding performance with random access structure between conventional and proposed algorithm Class (Resolution) Class B (1920 1080) Class C (832 480) Sequence Kimono ParkScene Cactus Basketball Drive BQTerrace RaceHorses BQMall PartyScene Basketball Drill point Anchor Proposed BDrate (%) R1 4870.731 41.30 4870.964 41.36 BD- PSNR Bit accuracy (%) Time saving (sec) 0.00 0.31 R2 2229.002 39.29 2229.253 39.41-0.01 0.58-2.8 0.09 R3 1084.210 36.86 1080.869 36.95 0.31 0.56 R4 546.635 34.35 544.622 34.34 0.38 0.84 R1 7791.762 39.76 7793.068 39.83-0.02 1.73 R2 3415.296 37.23 3415.386 37.29 0.00 1.08-1.6 0.05 R3 1563.022 34.44 1561.780 34.51 0.08 0.98 R4 733.051 31.83 732.153 31.85 0.13 0.80 R1 18377.995 38.37 18377.898 38.49 0.00 1.25 R2 5884.658 36.58 5885.053 36.65-0.01 0.35-3.1 0.07 R3 2731.012 34.43 2725.914 34.50 0.19 0.64 R4 1378.942 32.15 1379.548 32.16-0.04 0.61 R1 17625.075 39.09 17622.879 39.18 0.01 2.05 R2 6150.673 37.21 6150.642 37.27 0.00 0.89-2.8 0.06 R3 2838.098 35.19 2838.250 35.27-0.01 0.69 R4 1438.735 33.06 1436.774 33.10 0.14 0.80 R1 39756.460 37.32 39756.320 37.43 0.00 11.36 R2 7379.351 35.15 7379.659 35.22 0.00 1.00-4.0 0.07 R3 2338.570 33.44 2337.101 33.48 0.06 0.44 R4 1019.151 31.58 1018.178 31.63 0.10 2.83 R1 5991.964 39.71 5989.850 39.79 0.04 0.38 R2 2535.598 36.56 2535.666 36.61 0.00 0.34-1.3 0.05 R3 1185.374 33.55 1185.709 33.60-0.03 0.84 R4 582.461 30.74 582.430 30.79 0.01 0.74 R1 4562.198 40.40 4562.749 40.51-0.01 0.97 R2 2133.998 37.88 2134.446 37.95-0.02 0.61-1.7 0.07 R3 1073.685 35.12 1071.069 35.16 0.24 1.06 R4 572.772 32.57 571.696 32.59 0.19 0.78 R1 8545.317 38.96 8543.400 39.04 0.02 0.16 R2 3893.509 35.39 3893.352 35.47 0.00 0.13-1.9 0.08 R3 1835.061 32.23 1835.070 32.32 0.00 0.00 R4 877.962 29.46 876.154 29.51 0.21 0.45 R1 4320.522 41.13 4320.939 41.18-0.01-0.23 R2 2082.645 38.21 2083.087 38.28-0.02-0.32-1.7 0.07 R3 1021.834 35.21 1021.874 35.30 0.00 0.63 R4 544.372 32.71 543.821 32.77 0.10 0.61 Average 4747.55 35.79 4746.88 35.86-2.32 0.07 0.06 1.03 0.07dB,. S-JND threshold. S-JND threshold QP, S-JND threshold QP.
(JBE Vol. 21, No. 6, November 2016), 1.03.. 4 1 Low-delay B. Low-delay B, BD-rate 0.26%, BD-PSNR 0.02dB, 0.33%,,. 4. LD-B Table 4. Comparing encoding performance with low-delay B structure between conventional and proposed algorithm Class (Resolution) Class B (1920 1080) Class C (832 480) Sequence Kimono ParkScene Cactus Basketball Drive BQTerrace RaceHorses BQMall PartyScene Basketball Drill point Anchor Proposed BDrate (%) R1 4868.928 41.37 4772.434 41.20 BD- PSNR Bit accuracy (%) -1.94 R2 2228.956 39.16 2186.431 38.93-1.82 4.6-0.15 R3 1080.806 36.58 1052.568 36.32-2.47 R4 535.835 34.00 527.339 33.81-1.28 R1 7789.592 39.47 7698.106 39.38-1.16 R2 3414.829 36.79 3379.701 36.69-0.98 2.2-0.07 R3 1561.726 34.25 1549.672 34.16-0.68 R4 712.663 31.85 710.585 31.72-0.11 R1 18375.875 38.41 18344.074 38.52-0.15 R2 5883.712 36.56 5870.494 36.57-0.17-0.8 0.02 R3 2725.665 34.67 2714.246 34.63-0.30 R4 1358.674 32.49 1354.366 32.50-0.07 R1 17617.450 39.09 17561.899 39.14-0.30 R2 6149.276 37.12 6124.870 37.08-0.32 1.3-0.03 R3 2837.709 35.01 2824.076 34.92-0.36 R4 1436.700 32.74 1432.074 32.64-0.09 R1 39755.839 37.43 39732.914 37.57-0.05 R2 7379.126 35.12 7378.500 35.24 0.01-6.7 0.12 R3 2322.950 33.21 2318.576 33.32-0.02 R4 988.927 31.30 988.155 31.42 0.08 R1 5986.909 40.02 5984.382 40.12-0.02 R2 2534.104 36.64 2533.074 36.71 0.02-1.3 0.05 R3 1185.287 33.60 1184.804 33.62 0.04 R4 582.396 30.80 582.136 30.82 0.04 R1 4561.182 39.98 4560.808 40.14 R2 2133.868 37.37 2133.598 37.43 0.01-1.1 0.05 R3 1071.080 34.66 1071.045 34.67 0.00 0.01 R4 566.914 32.03 566.867 31.99 0.01 R1 8543.046 37.94 8542.318 37.98 R2 3892.904 34.02 3892.630 34.06 0.01 2.8-0.13 R3 1834.968 30.79 1834.827 30.39 0.01 0.01 R4 868.958 28.12 868.835 28.07 0.01 R1 4320.174 40.46 4319.314 40.39 R2 2082.437 37.36 2082.085 37.27 0.02 1.3-0.05 R3 1021.836 34.64 1021.689 34.61 0.01 0.02 R4 542.737 32.45 542.677 32.48 0.01 Average 4743.17 35.49 4728.95 35.46 0.26-0.02-0.33
3 : S-JND HEVC 5. LD-P Table 5. Comparing encoding performance with low-delay P structure between conventional and proposed algorithm Class (Resolution) Class B (1920 1080) Class C (832 480) Sequence Kimono ParkScene Cactus Basketball Drive BQTerrace RaceHorses BQMall PartyScene Basketball Drill point Anchor Proposed BDrate (%) BD- PSNR Bit accuracy (%) -1.54 R1 4868.970 41.13 4792.277 40.99 R2 2229.010 38.96 2192.767 38.75-1.54 4.1-0.14 R3 1080.825 36.32 1054.671 36.10-2.27 R4 535.840 33.70 526.980 33.53-1.34 R1 7789.815 39.23 7725.545 39.19-0.80 R2 3414.845 36.66 3384.114 36.59-0.85 1.6-0.05 R3 1561.731 34.19 1546.477 34.11-0.88 R4 712.674 31.81 709.534 31.70-0.25 R1 18375.878 38.18 18349.381 38.31-0.12 R2 5883.864 36.38 5873.044 36.41-0.12-1.7 0.04 R3 2725.755 34.52 2715.188 34.51-0.26 R4 1358.675 32.36 1354.343 32.38-0.07 R1 17617.380 38.90 17568.832 38.95-0.26 R2 6149.199 36.90 6131.465 36.88-0.22 0.3-0.01 R3 2837.747 34.73 2827.812 34.69-0.23 R4 1436.645 32.40 1433.113 32.37-0.02 R1 39755.752 36.98 39729.597 37.13-0.06 R2 7379.096 34.66 7372.577 34.77-0.03-7.2 0.12 R3 2323.034 32.81 2318.888 32.92 0.00 R4 988.929 30.93 987.916 31.06 0.10 R1 5986.998 39.71 5984.626 39.81-0.02 R2 2534.135 36.38 2533.074 36.45 0.02-1.5 0.06 R3 1185.311 33.45 1184.810 33.49 0.04 R4 582.413 30.73 582.203 30.75 0.04 R1 4561.134 39.58 4560.784 39.74 0.01 R2 2133.741 36.99 2133.593 37.08 0.01-1.8 0.07 R3 1071.108 34.38 1071.057 34.41 0.00 R4 566.955 31.82 566.875 31.81 0.01 R1 8542.966 37.14 8542.315 37.19 0.01 R2 3892.863 33.55 3892.598 33.63 0.01 3.2-0.13 R3 1835.012 30.59 1834.917 30.13 0.01 R4 868.962 28.05 868.870 28.02 0.01 R1 4320.143 40.11 4319.317 40.05 0.02 R2 2082.425 37.13 2082.066 37.08 0.02 0.6-0.02 R3 1021.822 34.53 1021.711 34.53 0.01 R4 542.738 32.35 542.633 32.42 0.02 Average 4743.18 35.23 4731.00 35.22-0.27-0.01-0.29 5 1 Low-delay P, BD-rate 0.27%, BD-PSNR 0.01dB. 0.29%., 6 JND [22]. RA, [22]., [22] GOP
(JBE Vol. 21, No. 6, November 2016) 6. RA JND Table 6. Comparing encoding performance with random access structure between rate control based on JND and proposed algorithm Class (Resolution) Class B (1920 1080) Sequence Kimono ParkScene Cactus Basketball Drive BQTerrace point JND based RC Proposed BDrate (%) R1 4868.68 41.38 4870.96 41.36 BD- PSNR Bit accuracy (%) -0.05 R2 2227.89 39.56 2229.25 39.41-0.05 7.7-0.24 R3 1066.24 37.21 1080.87 36.95 1.19 R4 535.15 34.82 544.62 34.34-1.77 R1 7795.28 39.91 7793.07 39.83 R2 3415.97 37.49 3415.39 37.29 0.02 9.1-0.29 R3 1561.41 34.89 1561.78 34.51-0.02 R4 716.56 32.31 732.15 31.85-2.19 R1 18379.98 38.36 18377.90 38.49 R2 5882.41 36.79 5885.05 36.65-0.04 9.9-0.21 R3 2722.45 34.93 2725.91 34.50-0.01 R4 1356.80 32.69 1379.55 32.16-1.65 R1 17615.06 39.05 17622.88 39.18 0.03 0.01-0.03 R2 6145.53 37.41 6150.64 37.27-0.04 7.2-0.16 R3 2834.81 35.55 2838.25 35.27-0.04 R4 1435.20 33.48 1436.77 33.10-0.11 R1 39763.40 37.39 39756.32 37.43 R2 7378.09 35.29 7379.66 35.22-0.02 9.3-0.13 R3 2321.79 33.75 2337.10 33.48-0.66 R4 1006.48 32.00 1018.18 31.63-1.19 Average 6451.46 36.21 6456.82 36.00 8.64-0.21-0.33 0.02., [22] JND, S-JND. 7. Table 7. Experimental information for subjective quality assessment Display Samsung 47LG50FD Type and size 47 inch 16:9 Resolution UHD Number of subjects 11 Viweing distance 1m (0.75H). ITU-R BT.500 [23] DSCQS (Double Stimulus Continuous Quality Scale). 4. 8 3 11 MOS (Mean Opinion Score)., Class B CTC RA. 5. MOS, 0.03 MOS., MOS,. 10%., 10%
3 : S-JND HEVC 5. MOS Fig. 5. MOS comparison result between two encoded sequences of conventional rate control and proposed rate control,.. S-JND. S-JND CTU. HM 16.9 CTC RA Class B Class C, 2.3% BD-PSNR 0.07dB 0.06%. Low-delay B Low-delay P.,, 0.03 MOS.,.. (References) [1] G. J. Sullivan, J. Ohm, W. J. Han and T. Wiegand, Overview of the High Efficiency Video Coding (HEVC) standard, in Circuits and Systems for Video Technology, IEEE Transactions on, vol. 22, no. 12, pp. 1649-1668, Dec. 2012. [2] H. H. Jo, E. K. Ryu, J. H. Nam, D. G. Sim, D. H. Kim and J. H. Song, Parallel method for HEVC deblocking filter based on coding unit depth information, Journal of Broadcast Engineering, vol. 17, no. 5, pp. 742-755, Sep. 2012. [3] Y. J. Ahn, T. J. Hwang, D. K. Lee, S. M. Kim, S. J. Oh and D. G. Sim,
(JBE Vol. 21, No. 6, November 2016) Study of parallelization methods for real-time HEVC encoder implementation, Journal of Broadcast Engineering, vol. 18, no. 6, pp. 835-849, Nov. 2013. [4] Y. J. Ahn and D. G. Sim, Intra block copy analysis to improve coding efficiency for HEVC screen content coding, Journal of Broadcast Engineering, vol. 20, no. 1, pp. 57-67, Jan. 2015. [5] Y. J. Ahn, S. J. Park and D. G. Sim, Implementation and commercialization techniques of HEVC codec, The Journal of Korea Institute of Electronics Engineers, vol. 41, no. 19, pp. 89-97, Oct. 2014. [6] D. G. Sim and H. H. Jo, Understanding of HEVC standard and technology, HongRung Publishing Company, Korea, 2015. [7] Q. Lin and G. Feng, The bit allocation and RDO mode based rate control algorithm, 2010 International Conference on Anti-Counterfeiting Security and Identification in Communication (ASID), pp. 154-157, Jul. 2010. [8] J. Kim, W. Lim, J. Y. Lim and D. G. Sim, A perceptual rate control algorithm based on S-JND model, in Winter Conference on The Korean Institute of Communications and Information Sciences, Jan. 2016. [9] W. Lim, H. Jo and D. Sim, Perceptual coding based on JND model for High Efficiency Video Coding, in International Conference on 3 Dimensional Systems and Applications, Seoul, Korea, 2014. [10] Guan-Lin Wu, Yu-Jie Fu, Sheng-Chieh Huang and Shao-Yi Chien, Perceptual quality-regulable video coding system with region-based rate control scheme, IEEE Transactions on Image Processing, vol. 22, no. 6, Jun. 2013. [11] X. Wang, L. Su, Q. Huang, C. Liu and L. Duan, Motion based perceptual distortion and rate optimization for video coding, 2012 IEEE International Conference on Multimedia and Expo. (ICME), pp. 1061-1066, Jul. 2012. [12] B. Li, H. Li, L. Li and J. Zhang, Rate control by R-lambda model for HEVC, JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/ WG11, JCTVC-K0103, Shanghai, China, Oct. 2012. [13] G. J. Sullivan and R. Wiegand, Rate-distortion optimization for video compression, IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 74-90, Nov. 1998. [14] W. Lim and D. G. Sim, Coding unit-level multi-loop encoding method based on JND for perceptual coding, Journal of the Institute of Electronics and Information Engineers, vol. 52, no. 5, pp. 147-154, May. 2015. [15] H. Choi, J. Nam, J. Yoo, D. Sim and I. V. Bajić, Rate control based on unified RQ model for HEVC, JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JCTVC-H0213, San Jose, CA, Jan. 2012. [16] H. Choi, J. Yoo, J. Nam, D. Sim and I. V. Bajic, Pixel-wise unified rate-quantization model for multi-level rate control, IEEE Journals & Magazines, vol. 7, no. 6, pp. 1112-1123, 2013. [17] B. Lin, H. Li, L. Li and J. Zhang, Lambda domain rate control algorithm for High Efficiency Video Coding, IEEE Transactions on Image Processing, vol. 23, no. 9, pp. 3841-3854, 2014. [18] C. Chou and Y. Li, A perceptually tuned subband image coder based on the measure of Just-Noticeable-Distortion profile, in Circuits and Systems for Video Technology, IEEE Transactions on, vol. 5, no. 6, pp. 467-476, Dec. 1995. [19] Z. Wei and K. N. Ngan, Spatio-temporal Just Noticeable Distortion profile for grey scale image/video in DCT domain, in IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 3, pp. 337-346, Mar. 2009. [20] F. Bossen, Common test conditions and software reference configurations, JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/ WG11, JCT-VC H1100, San Jose, CA, Jan. 2012. [21] G. Bjøntegaard, Calculation of average PSNR differences between RD-curves, ITU-T SG16/Q.6, VCEG-M33, Austin, TX, Apr. 2001. [22] J. Kim, W. Lim and D. G. Sim, Rate control encoding method of HEVC for improving perceptual visual quality, in Summer Conference on The Institute of Electronics and Information Engineers, June. 2016. [23] ITU-R BT.500-11, Methodology for the subjective assessment of the quality of television pictures, Jan. 2012. - 2015 2 : - 2015 3 ~ : - ORCID : http://orcid.org/0000-0002-8735-0542 - :,,
김재련 외 인 모델을 사용한 주관적인 율 제어 알고리즘 기반의 부호화 방법 943 3 : S-JND HEVC 저자소개 안용조 - 년 2월 : 광운대학교 컴퓨터공학과 학사 년 2월 : 광운대학교 컴퓨터공학과 석사 년 8월 : 광운대학교 컴퓨터공학과 박사 : http://orcid.org/0000-0002-0012-0905 주관심분야 : 영상압축, 최적화 및 병렬화 2010 2012 2016 ORCID 임웅 - 년 2월 : 광운대학교 컴퓨터공학과 학사 년 2월 : 광운대학교 컴퓨터공학과 석사 년 2월 : 광운대학교 컴퓨터공학과 박사 년 4월 ~ 현재 : 한국전자통신연구원(ETRI) 방송통신융합연구부문 연구원 : http://orcid.org/0000-0002-1772-0683 주관심분야 : 영상압축, 컴퓨터비전, 영상신호처리 2008 2010 2016 2016 ORCID 심동규 - 년 2월 : 서강대학교 전자공학과 공학사 년 2월 : 서강대학교 전자공학과 공학석사 년 2월 : 서강대학교 전자공학과 공학박사 년 3월 ~ 2000년 8월 : 현대전자 선임연구원 년 9월 ~ 2002년 3월 : 바로비젼 선임연구원 년 4월 ~ 2005년 2월 : University of Washington Senior research engineer 년 3월 ~ 현재 : 광운대학교 컴퓨터공학과 교수 : http://orcid.org/0000-0002-2794-9932 주관심분야 : 영상신호처리, 영상압축, 컴퓨터비전 1993 1995 1999 1999 2000 2002 2005 ORCID