TUNNEL & UNDERGROUND SPACE Vol.29, No.2, 2019, pp ISSN: (Print) ISSN: (Online) ORI

Similar documents
이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론

인문사회과학기술융합학회

<333820B1E8C8AFBFEB2D5A B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)


CAN-fly Quick Manual

°í¼®ÁÖ Ãâ·Â

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

DBPIA-NURIMEDIA

10 이지훈KICS hwp

Microsoft Word - 1-차우창.doc

- 2 -

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

DBPIA-NURIMEDIA

09권오설_ok.hwp

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

<313920C0CCB1E2BFF82E687770>

Æ÷Àå82š

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

04_이근원_21~27.hwp

DBPIA-NURIMEDIA

03-서연옥.hwp

Microsoft PowerPoint ppt

박선영무선충전-내지

DBPIA-NURIMEDIA

untitled

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

Microsoft Word - How to make a ZigBee Network_kr

Microsoft Word - FS_ZigBee_Manual_V1.3.docx

ISO17025.PDF

디지털포렌식학회 논문양식

<3034B1E2B9DD32302DBAB8B0EDBCAD2D DC0FCC6C4C0DABFF BAB0C3A53420C8A8B3D7C6AEBFF6C5A9292E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

04서종철fig.6(121~131)ok

14.531~539(08-037).fm

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

Microsoft Word _whitepaper_latency_throughput_v1.0.1_for_

< C6AFC1FD28B1C7C7F5C1DF292E687770>

강의지침서 작성 양식

1 : (Sunmin Lee et al.: Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)., [1][2]. GPS(Global P

(JBE Vol. 23, No. 6, November 2018) (Special Paper) 23 6, (JBE Vol. 23, No. 6, November 2018) ISSN 2

철도원 7,8 월

I

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

untitled

<31325FB1E8B0E6BCBA2E687770>

03 장태헌.hwp

06_ÀÌÀçÈÆ¿Ü0926

Æ÷Àå½Ã¼³94š

Preliminary spec(K93,K62_Chip_081118).xls

Coriolis.hwp

untitled

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

PowerChute Personal Edition v3.1.0 에이전트 사용 설명서

DBPIA-NURIMEDIA

03-16-김용일.indd

DBPIA-NURIMEDIA

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

09È«¼®¿µ 5~152s

½Éº´È¿ Ãâ·Â

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

<4D F736F F F696E74202D FB5A5C0CCC5CDC5EBBDC5B0FA20B3D7C6AEBFF6C5A9205BC8A3C8AF20B8F0B5E55D>

< FC1A4BAB8B9FDC7D D325FC3D6C1BEBABB2E687770>

08김현휘_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

歯AG-MX70P한글매뉴얼.PDF

±èÇö¿í Ãâ·Â

À̵¿·Îº¿ÀÇ ÀÎÅͳݱâ¹Ý ¿ø°ÝÁ¦¾î½Ã ½Ã°£Áö¿¬¿¡_.hwp

DBPIA-NURIMEDIA

<BCBCC1BEB4EB BFE4B6F72E706466>


04 최진규.hwp

08SW

1_12-53(김동희)_.hwp

???? 1

목 차 Ⅰ. 정보기술의 환경 변화 Ⅱ. 차량-IT Convergence Ⅲ. 차량 센서 연계 서비스 Ⅳ. 차량-IT 융합 발전방향

11¹Ú´ö±Ô

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 28(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 27(5),

<B8F1C2F72E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),


歯Cablexpert제안서.PDF

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

Microsoft Word - KSR2014S042

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

¼º¿øÁø Ãâ·Â-1

3. 클라우드 컴퓨팅 상호 운용성 기반의 서비스 평가 방법론 개발.hwp

Transcription:

TUNNEL & UNDERGROUND SPACE Vol.29, No.2, 2019, pp.108-123 https://doi.org/10.7474/tus.2019.29.2.108 ISSN: 1225-1275(Print) ISSN: 2287-1748(Online) ORIGINAL ARTICLE 지그비기술을이용한지하광산내실시간환경모니터링시스템현장적용연구 박요한 1, 이학경 1, 서만근 2, 김진 1* 1 인하대학교에너지자원공학과, 2 고려시멘트 A Study on the Application of Real-time Environment Monitoring System in Underground Mines using Zigbee Technology Yo Han Park 1, Hak Kyung Lee 1, Man Keun Seo 2, and Jin Kim 1* 1 Department of Energy Resources Engineering, Inha University 2 Korea cement Co. *Corresponding author: jinkim@inha.ac.kr ABSTRACT Received: March 5, 2019 Revised: March 20, 2019 Accepted: March 21, 2019 In recent years, as safety management in underground mines has become more important in the worldwide, mine safety management technologies combining information communication technology such as real-time worker position tracking, monitoring system and equipment remote control have been developed. Wireless communication system is mainly applied to these technologies for the flexibility of network configuration. There are some cases the monitoring system was installed in domestic underground mines, but, it is necessary to develop the technology more suitable for domestic mining standard. In this study, we developed the real-time environmental monitoring system using ZigBee technology and examined the result of application to domestic limestone mine. Furthermore, applicability of the developed environment monitoring system to VentSim TM LiveView was checked. This study is expected to contribute to the related studies like the optimization of the ventilation system in underground mines. Keywords: Zigbee, Real-time monitoring system, Wireless sensor network, Mine safety management, Underground mine 초록 최근전세계적으로지하광산내안전관리의중요성이부각됨에따라실시간작업자위치추적, 모니터링시스템, 원격제어등정보통신기술을접목한광산안전관리기술개발이한창진행중이다. 이러한기술들은네트워크구축의유연성을위해주로무선통신방식이적용되고있으며, 국내에서도지하광산내무선통신네트워크를통한모니터링시스템을구축한사례들이있지만국내기준에맞는기술개발이필요한실정이다. 따라서본연구에서는지그비기술을활용하여실시간환경모니터링시스템을개발하고국내석회석광산에적용한결과를고찰하였다. 나아가개발된환경모니터링시스템을실시간통기모니터링인터페이스인 VentSim TM LiveView 와연동하여활용성을검토하였다. 본연구는향후통기설비제어등광산통기시스템최적화에관한연구에도움이될것으로기대된다. 핵심어 : 지그비, 실시간모니터링시스템, 무선센서네트워크, 광산안전관리, 지하광산 C The Korean Society for Rock Mechanics and Rock Engineering 2019. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

A Study on the Application of Real-time Environment Monitoring System in Underground Mines using Zigbee Technology 109 1. 서론 최근산업의선진화로인해작업환경내안전확보의중요성이대두되고있지만국내광산재해사고는끊임없이발생하고있다. 2018년 3분기를기준으로 9개월간광업종사자중재해자수는 1,588명에달하며이는전년동기에비해재해자수가 76명이증가하였고 (2017년동기기준재해자수 1,512명 ), 광업분야재해율은 2018년 3분기기준 13.90% 로, 전산업평균 (0.40%) 보다약 35 배, 건설업 (0.71%) 보다 19배이상높은실정이다 (Ministry of Employment and Labor, 2018). 국내지하광산은심부화및노후화가진행된광산이많아과채굴로인한채굴적붕락및낙반사고등의위험을가지고있으며시야확보문제, 차량및장비이동구간과작업자이동구간의미분리문제로인해노천광산보다안전문제에취약하다. 또한, 지하광산에서는작업시간내디젤차량및장비들의이동으로인해발생하는배기가스, 발파작업후발생하는발파후가스와같은오염물질이계속적으로발생하지만심부화및갱내통기시스템불량으로인해유해가스농도가기준치이상으로측정되고있다. 2012년강원태백시장성광업소에서유독가스를흡입하여 8명의사상자를발생하는등산업위생측면이매우저하되고있으며, 2017년강원도삼척시도계경동탄광에서가스폭발사고로 6명의사상자가발생한것과같이메탄가스 (CH 4 ) 가발생하는석탄광산의경우폭발사고로큰인명피해의우려가있으므로지하광산갱내공기질은필수적으로관리되어야한다. 국내에서는이러한흐름에따라지하광산갱내공기질관리를위한통기시스템최적화및효율화연구가많이진행되어왔지만 (Kwon et al., 2015; Kwon et al., 2016; Kim et al., 2007; Lee et al., 2018(a); Song et al., 2016;), 상시변화하는갱내환경에서광산작업자가항시운영에대처할수있는현장실무측면에서의연구는진행되지못했다. 그이유는실시간데이터를수집하기가어렵기때문이며, 만약작업자들이장비의위치와수, 가스등작업환경및통기설비와관련한자료를실시간으로파악할수있다면작업환경의효과적인개선이가능할것이고나아가심각한사고를미연에방지할수있을것이다 (Lee et al., 2018(b)). 이러한문제들로인해최근전세계적으로정보통신기술을접목한광산안전관리관련기술개발과연구가한창진행중에있다. 정보통신기술로는유선통신과무선통신이존재하는데유선통신의경우케이블등부자재설치비용이센서모듈자체비용보다많이차지하고또한, 통신네트워크를구축하는데유연성이제한되어있어네트워크설비및유지관리가더어려운단점이있다 (Queiroz, 2017). 따라서최근전세계적으로갱내모니터링에무선통신기술을이용한무선센서네트워크 (Wireless Sensor Network, WSN) 가많이활용되고있으며관련한연구가활발히진행되고있다. 국내의경우, 지하광산을대상으로한환경모니터링관련연구는진행된바없지만광업분야에서정보통신기술도입의필요성에대해언급하고있으며 (Choi, 2017), 지하철등과같은지하시설물에무선센서네트워크를활용한모니터링시스템연구가진행된바있다 (Oh et al., 2011; Kwon et al., 2009; Min et al., 2012). 국외의경우, 각종무선통신기술을실제지하광산환경에서적용한연구가상당히진행되었으며 (Moridi et al., 2018; Kennedy et al., 2014; Dohare et al., 2016), Fig. 1에나타나는기업에서개발된기술을상용화한광산스마트통기시스템 (Smart Mine Ventilation System) 을공급하고있다. 국내에서도지하광산내에무선통신네트워크 (Wi-Fi 및 UWB) 를공급하여구축한사례들이있지만현재개발된무선통신기술중에서지그비 (Zigbee) 기술이갱내모니터링시스템에적용하는데좀더장점이많은기술로알려져있어 (Moridi et al., 2014), 다른무선통신기술들과비교분석을통해광산현장에맞는통신기술모델화가필요할것으로판단된다. 또한, 현재갱내무선통신네트워크가구축된국내지하광산에서는온습도및이산화탄소 (CO 2 ) 정도만모니터링이되고있는실정이므로광산안전기술기준에맞는유해가스모니터링시스템및실시간수집데이터연동통기시스템개발로보다안전한갱내작업환경을구축하는것이필요하다.

110 Yo Han Park, Hak Kyung Lee, Man Keun Seo, and Jin Kim (a) Maestro Digital Mine (b) Howden (C) ABB Group Fig. 1. Smart mine ventilation system companies 따라서본연구에서는지그비를이용하여지하광산내실시간환경모니터링시스템을국내석회석광산에구축하고적용한결과 를고찰하며, 나아가전세계적으로널리상용되고있는 3D 광산통기소프트웨어인 VentSim TM 내실시간모니터링모듈인 LiveView 과본연구에서개발된모니터링시스템을연동해보고이에대한활용성을검토하고자한다. 2. 연구방법 2.1 지그비 (Zigbee) 기술지그비 (Zigbee) 는 ZigZag의 Zig와경제적인통신을의미하는벌 (Bee) 의합성어로제한된전력과완화된전송률만이필요한상황에서경제성을갖춘저속, 저전력, 저비용개인무선통신망 (Wireless Personal Area Network, WPAN) 의종류중하나로무선센서네트워크, 자동제어등주요응용분야를목표로하고개발이추진된표준기술이다. 지그비프로토콜은다음 Fig. 2와같으며지그비얼라이언스 (Zigbee Alliance) 에서 IEEE 802.15.4 WPAN의 PHY 계층과 MAC 계층표준기술을기반으로상위프로토콜 Fig. 2. Zigbee protocol stack

A Study on the Application of Real-time Environment Monitoring System in Underground Mines using Zigbee Technology 111 계층 (NWK 계층, 응용계층 ) 을적용환경에따라개발표준화하였다. 지그비와같이개인무선통신망에속하며무선센서네트워크를구축하는데활용되고있는기술은대표적으로 IEEE 802.15.2 기반의 UWB(Ultra Wide Band) 와 IEEE 802.15.1 기반의 Bluetooth 기술이있다. 또한, 근거리무선통신망 (Wireless Local Area Network, WLAN) 에속하지만마찬가지로무선센서네트워크에많이활용되고있는기술은 IEEE 802.11 기반의 Wi-fi가있으며 Table 1에위와같은기술각각의특징을비교정리하였다. 개인무선통신망에속해있는통신방식들을비교해보았을때, 지그비는데이터전송속도가 0.25 Mbps로상대적으로느리지만긴연장의통신거리를지원하며광범위한네트워크용량을가지고, 또한네트워크를구축하는데비교적으로용이하다는장점이있다. Wi-fi 방식은개인무선통신망방식들에비해전력소비가상당히많이발생하는데이런경우배터리교체가잦아지기때문에저속의연결만을요구하는적용분야에서는비실용적이라고볼수있다 (Choi et al., 2012). Table 1. Comparison of common underground WSNs (modified from Moridi et al, 2014) Parameters WPAN WLAN UWB Bluetooth Zigbee Wi-fi Communication distance (m) <10 10 50-500 50-100 Frequency range (GHz) 3.1-10.6 2.4 2.4 2.4 or 5 Data rate (Mbps) 100-500 1 0.25 11 Network capacity (nodes) 10-500 7 65,536 32 Power consumption (mw) 30 1-100 20-40 500-1000 Complexity Mid-High High Low High Usage in Domestic Mine O X X O 지하광산내무선센서네트워크를활용한환경모니터링시스템을구축하는경우, 비교적적은양의데이터전송만을요구하며긴연장의광산갱도에설치를위해서는통신거리가길고광범위한네트워크를구축할수있어야한다. 이러한부분을고려해볼때지그비는다른통신방식보다여러방면으로갱내모니터링시스템구축에적합하다고판단되어본연구에서활용되는통신기술방식으로선정하였다. 본연구에서는 Digi 사의 XBee PRO S2B 모델을사용했으며모듈특성은 Table 2와같이나타내었다. XBee PRO S2B는 XBee Series 2 모델중하나로이전모델 (XBee Series 1) 에서지원하는 Master-Slave 구성방식으로스타형토폴로지 (Star topology) 로만센서네트워크를구축할수있던방식과는다르게각노드 (Node) 를코디네이터 (Coordinator), 라우터 (Router) 및앤드디바이스 (End-device) 로설정하여통신거리를확대할수있는메쉬형토폴로지 (Mesh topology) 를구성할수있다는장점이있다. 또한, 송신출력을높인 PRO 모델의경우일반모델보다긴통신거리를확보할수있다. 2.2 하드웨어구성본연구에서사용되는하드웨어는코디네이터, 라우터그리고앤드디바이스총세종류로구성된다. 우선코디네이터는지그비네트워크마다단하나만존재하는네트워크관리자로서, 구성되는전체네트워크에서의중심점에위치해하부라우터및앤드디바이스에서송신하는데이터의최종목적지가되며네트워크정보를저장하고원하는센서노드에명령을전달하는역할을한다. 지

112 Yo Han Park, Hak Kyung Lee, Man Keun Seo, and Jin Kim Table 2. XBee PRO S2B specification (Digi, 2018(a)) Performance Power requirements General Networking & Security Specification RF data rate Receiver sensitivity Indoor/urban range Outdoor RF LOS range Transmit power output 0.25 Mbps -102 dbm Up to 60 m Up to 1.5 km 10 mw (+10 dbm) Supply voltage 2.7-3.6 V Transmit current 117 ma (@3.3 V) Receive current 47 ma (@3.3 V) Idle current 15 ma Power-down current 3.5μA (@25 C) Frequency band ISM 2.4 GHz Operating temperature -40 to 85 C Number of channels 15 Supported network Topologies Point-to-point, point-to-multipoint, peer-to-peer, and mesh Fig. 3. The Exterior of Zigbee coordinator (left) and Zigbee router node (right) 그비코디네이터모듈은 Fig. 3( 좌 ) 에나타낸것과같이 XBee Explorer Dongle과결합하여 USB 포트를통해 PC 내모니터링프로그램과시리얼 (Serial) 통신으로데이터를송수신한다. 지그비네트워크에서라우터의역할은지그비노드간에데이터송수신을중계하여전체네트워크의통신거리를연장하는역할을한다. 또한마이크로컨트롤러 (Micro Controller Unit, MCU) 와측정센서로모듈을구성하여코디네이터로데이터를송신할수있는어플리케이션역할도수행한다. 본연구에서사용되는지그비라우터모듈은 Fig. 3( 우 ) 와같이 Arduino UNO R3 Board에포함된 ATmega328 마이크로컨트롤러가사용되었고 Arduino XBee Shield를적층하여지그비라우터와결합해모듈을구성하였다. 전체네트워크구성중말단에위치하는앤드디바이스는상단노드인코디네이터나라우터와통신을하며앤드디바이스간통신은불가능하다. 실질적인환경데이터를수집하는역할을하며앤드디바이스모듈구성은 Fig. 4와같다. 부착된센서들을작동시키는마이크로컨트롤러는 Arduino MEGA2560 Board에포함된 ATmega2560을사용하였고라우터와마찬가지로 XBee shield위에지그비앤드디바이스와결합하여사용하였다. 지그비앤드디바이스모듈에서사용된센서는광산안전기술기준 (KORES, 2018)

A Study on the Application of Real-time Environment Monitoring System in Underground Mines using Zigbee Technology 113 Fig. 4. The exterior (left) and The block diagram (right) of wireless sensor node (Zigbee End-device) 을참고하여선정하였고센서성능및특성에대해서 Table 3과같이정리하였다. 사용된측정센서로는유해가스종류인일산화탄소 (CO), 이산화탄소 (CO 2 ), 일산화질소 (NO), 이산화질소 (NO 2 ) 그리고이산화황 (SO 2 ) 센서를사용하였고추가적으로온도및습도센서를모듈에포함시켰다. 센서선정기준으로는우선유해가스허용기준농도이상을측정이가능한것으로선정하였는데, 현재국내안전기술기준에는 8시간기준허용농도인 TLV-TWA 만이기준으로선정되어있으므로 Table 4와같이국외에서적용하고있는단시간노출농도 (TLV-STEL) 와최고허용농도 (TLV-C) 기준치를참고하였다. 또한갱내에는지하수유입으로인한높은습도조건을가지기때문에센서작동시허용습도가최대한높은센서로선정하였다. Table 3. Data sheet of sensors in Zigbee End-device Module Parameters Alphasense SEN0220 DHT22 NO 2 CO NO SO 2 CO 2 Temp & Hum Working voltage (V) 3.4~6.4 (AFE circuit) 4.5~5.5 3.5~5.5 Working Temperature ( C) -30~40-30~50-30~50-30~50 0~50 - Working Humidity (RH%) 15~85 15~90 15~85 15~90 0~95 - Output method Analog voltage signal UART Serial data Measuring range 0~50 PPM 0~2,000 PPM 0~50 PPM 0~100 PPM 0~5% Temp: -40~80 C Hum: 0~99.9RH% Resolution part per billion (ppb) Scale 1PPM Temp: 0.1 C Hum: 0.1RH% Table 4. Exposure limit of mine gases (modified from Lee et al, 2018) Gas Exposure Limit in Domestic Mine(KORES, 2018) CO CO 2 NO NO 2 SO 2 TLV-TWA (PPM) 30 1% 25 3 2 Gas Exposure Limit in International Mine CO CO 2 NO NO 2 SO 2 TLV-TWA (PPM) 5 (b), 50 (c) 0.5% (a,b,c) 3 (a), 25 (b,c) 3 (a,c) 2 (a,c) TLV-STEL (PPM) 400 (a,b,c) 0.5% (a,c), 1.5% (b) - - 5 (a,c) TLV-C (PPM) - - 5 (a), 35 (b) 5 (a,c), 50 (b) 5 (b) (a) Hartman et al.(2012); (b) Vutukuri & Lama (1986); (c) Mcpherson (1993)

114 Yo Han Park, Hak Kyung Lee, Man Keun Seo, and Jin Kim 2.3 소프트웨어구성본연구에서구성한세종류의하드웨어를각각의역할에맞게잘작동하기위해필요한소프트웨어로는각노드에포함된지그비모듈을설정하는 X-CTU와아두이노에연결된센서들을작동할수있게하는마이크로컨트롤러설정이가능한아두이노통합개발환경 (Integrated Development Environment, IDE) 이있다 (Fig. 5). X-CTU는마찬가지로 XBee 모듈생산업체인 Digi사에서개발한무료플랫폼으로쉽게사용할수있는그래픽인터페이스를통해네트워킹, 주소지정, 네트워크보안등 XBee 모듈구성을설정하고테스트하며관리할수있다 (Digi, 2018(b)). 네트워크구성을위해서는우선모듈의펌웨어 (Firmware) 를설정하는데, 각지그비노드에맞게코디네이터, 라우터, 앤드디바이스로구성하고코디네이터에설정된 PAN ID와 Channel와같은지그비모듈은모두자동으로네트워크에접속하게된다. 데이터전송모드또한설정이가능하며, XBee 모듈에서는 AT 모드와 API 모드두가지콘솔모드를지원한다. AT 모드는데이터자체를주고받으며단순한송수신이가능하고 API 모드는게이트웨이로전송하는데이터를패킷 (Packet) 화하여데이터자체이외에소스주소, 수신신호강도 (Received Signal Strength Indication, RSSI) 및체크섬 (Checksum) 등과같은정보와함께패킷형태로전송할수있다. API 모드는지그비노드간에송수신이활발한통신의경우사용하는데장점을가지고있지만본연구에서는앤드디바이스에서보내는환경센서데이터를갱외부코디네이터로수신하는통신네트워크만을구축하여송수신연결라인이제한적이므로 AT모드로지그비모듈을설정하였다. 아두이노통합개발환경역시, 아두이노사에서무료공개한오픈소스소프트웨어로 JAVA 기반의코드스케치작업과컴파일, 그리고아두이노보드에업로드까지순차적으로쉽게작업할수있다. 본연구에서사용된센서들의특징에맞는코드를입력하였고순서대로온도, 습도, CO 2, NO 2, CO, NO 그리고 SO 2 데이터를 2초간격으로출력하도록설정하였다. Fig. 5. X-CTU software (left) and Arduino IDE software (right) 위와같은하드웨어와소프트웨어로구성된지그비센서네트워크에서실시간데이터를전송받아처리하는모니터링프로그램 을제작하였다 (Fig. 6). 이모니터링프로그램은 C# 언어를기반으로만든시각인터페이스 (Visual Interface) 프로그램으로각앤

A Study on the Application of Real-time Environment Monitoring System in Underground Mines using Zigbee Technology 115 드디바이스에서송신하는데이터를코디네이터와연결된 COM 포트를통해연속적으로수신하며, 앤드디바이스의고유주소에따라 Gas sensor module #1과 Gas sensor module #2로나누어저장된다. 지그비앤드디바이스의고유주소를인식하게되면전송되는데이터를 List 배열로저장하여프로그램상단의표와그래프를통해실시간으로나타내었다. 또한, 프로그램에저장된전체데이터중최댓값과평균값계산도구와 CSV 파일및 TEXT 파일형태로저장할수있는저장기능도구를추가하여추후데이터분석에활용할수있도록하였고, 추후 VentSim TM LiveView 소프트웨어와의연동을위해수집된데이터가각센서에해당하는 string 배열에최신값으로갱신되어 LiveView 소프트웨어형식에맞추어 CSV파일형태로자동업데이트가되는기능 (Create Ventlive file) 도추가하였다. Fig. 6. Integrated environment monitoring interface 2.4 연구대상광산개발된갱내환경모니터링시스템을현장구축하기위해전라남도장성군소재 G광산을대상으로현장실험을수행하였다. Fig. 7 은 VentSim TM 소프트웨어를활용하여나타낸 G광산의통기계통도로, G광산의주요입배기구간은광산갱도입구, 3편까지연결되어있는수갱그리고주선풍기 (Main fan) 가설치되어 9편까지연결되어있는주통기수갱이있으며, 현재 12편 (-188 ML) 까지개발이되었고 13편및 14편이개발중에있다. 본연구에서환경모니터링시스템을구축한테스트베드는 7편 (-105 ML) 으로선정하였고 7편입구에서갱도입구까지약 1.5 km의연장으로램프구간을통해이어진다. 7편내부에 2개의지그비앤드디바이스센서노드를설치하고, 갱외부로이어지는램프구간에지그비라우터노드의설치최적위치를선정하여갱외부지그비게이트웨이에서제작된모니터링프로그램으로 7편에서수집된환경데이터가램프구간의라우터노드들을통해안정적인통신네트워크가구축되었는지여부를파악하였다.

116 Yo Han Park, Hak Kyung Lee, Man Keun Seo, and Jin Kim Fig. 7. Ventilation network in Mine G 2.5 지그비노드위치결정테스트베드로선정된 7편 (-105ML) 을기준으로 G광산내지그비통신네트워크를구축하기위해 Table 5와같은기준으로갱내에노드들의통신환경을검토하였다. 지하광산내지그비노드사이에서 -80 dbm의수신신호감도 (RSSI) 값을가질때가장안정적이라는실험연구결과 (Kawamura et al., 2014) 를참고하여 G광산에서반복실험을한결과, -85 dbm을기준감도로설정하여노드위치를선정해도안정적으로데이터전송이이루어지는것을확인하였다. 따라서본실험에서수신신호감도 (RSSI) -85 dbm 을기준으로실험을진행하였고, 또한안정적인데이터전송성공을위해패킷전달성공률 (Packet Delivery Ratio, PDR) 을 90% 이상으로기준을잡았다. 이와같은기준을바탕으로통신거리측정을실시하였고, 통신거리측정기준은 55 byte 크기 (Payload) 의패킷 100개, 수신타임아웃 (Rx timeout) 은 1초그리고송신간격 (Tx interval) 은 4초로측정하여설계기준만족여부로지그비노드위치를결정하였다. Table 5. WSN topology configuration criteria RSSI (-dbm) Basic metrics Range test configuration Zigbee node position Packet Delivery Ratio (%) Packet payload Number of Packets <85 >90 55 bytes 100 Rx timeout / Tx interval 1000 ms / 4000 ms Horizontal 0.1~1.0 m from the wall Vertical On a tirpod with 1.2 m height

A Study on the Application of Real-time Environment Monitoring System in Underground Mines using Zigbee Technology 117 지그비노드위치는 Fig 8 과같이높이 1.2 m 의삼각대에위에고정시켜위치를설정하였고, 해당램프구간은차량및장비의이 동이많기때문에갱도벽면에밀착하여설치하였지만, 대부분의갱도벽면양옆으로수로가설치되어있어벽면기준으로 0.1 m 에 서최대 1.0 m 떨어진거리에설치하여실험을진행하였다. Fig. 8. Position of Zigbee node installation for WSN 3. 연구결과 3.1 통신토폴로지구성앞서언급한 Table 5와같은조건으로통신네트워크를구축한결과다음 Fig. 9와같은토폴로지로구성되었다. 이는갱외부에위치한코디네이터와직접연결되어있는하부노드가하나이며다수의라우터로말단노드까지연결되는멀티홉 (Multi-hop) 통신방식에해당한다. 본실험에서사용된노드수는총 20개로, 코디네이터 1개, 라우터 17개그리고 7편테스트베드에설치되어있는앤드디바이스센서모듈 2개로구성되었다. 차량및장비이동이많은램프구간의특성으로인해갱도벽면양옆으로만설치할수밖에없는제한점이있고, 또한램프구간특성상구배및굴곡이있기때문에가시선 (Line of Sight, LOS) 를우선으로가장긴통신구간이나오는노드위치를선정하였다. 하지만급한굴곡이있는경우에는가시선확보가힘들며, 노드설치개수가많아져통신네트워크구축이비효율적이게되므로이러한구간은비가시선 (Non Line of Sight, NLOS) 를유지하며최대거리로노드위치를선정하였다. 그결과, 램프구간에서사용된라우터노드는총 16개이며가시선으로위치한노드연결구간은총 10개로이중에서 3개는설치위치가서로양쪽으로교차되어설치되었고, 비가시선로위치한노드연결구간은총 5개로설치되었다 (Table 6). 통신거리는가시선으로연결된구간이비가시선으로연결된구간에비해약 2~3배더긴연장범위를보였지만가시선으로위치한연결구간간의통신거리의차이가크게나타났는데이는램프구간마다갱도구배와수평굴곡등갱도구조의기하학적인차이로나타나는것으로판단된다.

118 Yo Han Park, Hak Kyung Lee, Man Keun Seo, and Jin Kim Fig. 9. WSN (Wireless Sensor Network) topology configuration in Mine G Table 6. Result of range test in rampway of Mine G Number of connection sections Communication distance (m) Non Line of Sight (NLOS) 5 44-52 Line of Sight Straight line 7 90-130 (LOS) Cross line 3 82-155 3.2 현장데이터취득 7편에서부터갱도입구까지구축된지그비통신네트워크를통해지그비게이트웨이에구축된모니터링인터페이스프로그램으로 7편에위치한환경센서의데이터값을수신하였고그결과중일부분의데이터를 Table 7에나타내었다. 측정시간동안 53개의데이터를수신했는데, 2초간격으로센서값을측정하도록마이크로컨트롤러를설정한것과는달리많은값의데이터가들어오지않았다. 이러한이유로는몇가지로예측되는데, 첫번째로는마이크로컨트롤러에서발생하는측정시간오차가발생할수있으며, 앤드디바이스에서송신한데이터가램프구간에위치한라우터노드를거치면서데이터를수신받아재송신할때발생한지연오차가발생할수있고또한작업시간동안램프구간에차량및장비의이동으로인한통신방해가원인이될수있다고판단된다. 3.3 3D 통기시뮬레이션실시간적용 (VentSim TM LiveView) VentSim TM LiveView 모듈은외부데이터소스를 3D 통기네트워크모델에실시간으로연동하여나타낼수있으며, 공기속도, 갱내온도및유해가스농도등의데이터를모델에입력하면데이터수집위치에맞는인터페이스를제공하며, 입력된데이터로유량, 가스및온도시뮬레이션분석이가능하여시뮬레이션결과값을실제데이터와비교할수있는기능또한제공한다 (CHASM, 2015). 각센서마다데이터를저장하는 Database, Excel, CSV 및 TEXT 파일과간단한설정을통해손쉽게구현이되며 LiveView 모듈에연결할파일을선택한후 Mapping 작업을통하여파일내각열에맞춰정렬해주면파일내모든센서에대한정

A Study on the Application of Real-time Environment Monitoring System in Underground Mines using Zigbee Technology 119 Table 7. Data obtained as a result of the measurements in Mine G Gas Sensor Module #1 Gas Sensor Module #2 Time Temp Hum CO 2 NO 2 CO NO SO 2 Temp Hum CO 2 NO 2 CO NO SO 2 ( C) (%) (PPM) ( C) (%) (PPM) 15:19:45 14 87.2 936 0.47 0.56 2.37 3.12 12.5 82.2 571 0.46 0.65 2.48 3.32 15:19:47 13.9 87 936 0.47 0.56 2.6 3.37 12.5 82.2 571 0.65 0.7 2.65 3.55 15:19:50 14 87.1 936 0.5 0.59 2.52 3.37 12.5 82.3 571 0.73 0.65 2.5 3.32 15:19:52 14 87 936 0.48 0.59 2.38 3.14 12.5 82.4 570 0.48 0.63 2.47 3.29 15:19:54 14 86.9 937 0.54 0.61 2.54 3.31 12.5 82.8 569 0.5 0.68 2.64 3.51 15:19:57 14 87 937 0.48 0.56 2.38 3.12 12.5 82.8 568 0.44 0.65 2.5 3.35 15:19:59 14 87 937 0.48 0.56 2.37 3.12 12.5 82.6 568 0.46 0.67 2.51 3.46 15:20:01 14 87.1 937 0.54 0.58 2.52 3.29 12.5 82.5 568 0.48 0.68 2.66 3.56 15:20:04 14 87.1 937 0.5 0.56 2.36 3.11 12.5 82.4 568 0.4 0.65 2.51 3.37 15:20:06 14 87.1 937 0.5 0.54 2.36 3.11 12.5 82.3 568 0.46 0.65 2.52 3.64 15:20:08 14 87.2 937 0.52 0.54 2.51 3.28 12.5 82.2 568 0.48 0.68 2.64 3.56 15:20:11 14 87.2 937 0.48 0.56 2.35 3.11 12.5 82.1 568 0.46 0.67 2.51 3.37 15:20:13 14 87.2 936 0.54 0.59 2.52 3.31 12.5 82.1 567 0.55 0.68 2.65 3.56 15:20:16 14 87.4 936 0.5 0.66 2.36 3.14 12.5 82.3 567 0.73 0.65 2.51 3.35 15:20:18 14 87.2 936 0.48 0.56 2.37 3.11 12.5 82.4 567 0.46 0.65 2.55 3.33 15:20:23 14 87.3 936 0.5 0.54 2.36 3 12.5 82.2 568 0.46 0.65 2.52 3.35 15:20:25 14 87.2 936 0.48 0.54 2.41 3.12 12.5 82.1 568 0.46 0.65 2.51 3.5 15:20:30 14 87.2 937 0.48 0.54 2.35 3.09 12.5 82 567 0.44 0.65 2.52 3.35 15:20:32 14 87.1 936 0.48 0.54 2.35 3.45 12.5 82 567 0.46 0.65 2.5 3.63 15:20:35 14 87.2 937 0.52 0.58 2.51 3.29 12.5 82 568 0.5 0.67 2.61 3.53 15:20:37 14 87.2 937 0.43 0.54 2.37 3.11 12.5 82 568 0.48 0.65 2.5 3.35 15:20:42 14 87.2 938 0.48 0.56 2.37 3.22 12.5 82.5 567 0.61 0.65 2.5 3.3 15:20:44 14 87.1 939 0.48 0.54 2.36 3.09 12.5 82.5 567 0.46 0.65 2.52 3.29 15:20:46 14 87.2 939 0.54 0.58 2.51 3.28 12.5 82.5 567 0.48 0.65 2.61 3.48 15:20:49 14 87.2 938 0.5 0.54 2.37 3.11 12.5 82.4 566 0.46 0.65 2.48 3.3 15:20:51 14 87 938 0.48 0.54 2.37 3.12 12.5 82.3 566 0.46 0.65 2.47 3.32 15:20:54 14 87.2 938 0.52 0.59 2.51 3.28 12.5 83 565 0.5 0.75 2.57 3.46 15:20:56 14 87.1 937 0.48 0.54 2.37 3.09 12.5 82.9 564 0.46 0.65 2.46 3.29 15:20:58 14 87 936 0.48 0.42 2.55 3.33 12.5 82.8 564 0.46 0.65 2.46 3.56 15:21:01 14 87.2 936 0.52 0.59 2.64 3.14 12.5 82.9 566 0.48 0.67 2.5 3.43 15:21:05 14 87.1 935 0.52 0.59 2.51 3.29 12.5 82.8 566 0.52 0.67 2.62 3.51 15:21:08 14 87.1 936 0.47 0.56 2.37 3.22 12.5 82.6 566 0.46 0.65 2.48 3.32 15:21:13 14 87 936 0.48 0.56 2.42 3.09 12.5 82.5 565 0.46 0.65 2.53 3.32 15:21:13 14 87.1 936 0.52 0.58 2.5 3.26 12.5 82.4 564 0.5 0.67 2.61 3.48 15:21:15 14 87 936 0.48 0.54 2.36 3.11 12.5 82.4 563 0.44 0.67 2.48 3.33 15:21:17 14 86.9 936 0.47 0.56 2.35 3.09 12.5 82.2 563 0.44 0.65 2.47 3.32 15:21:20 14 87 936 0.52 0.53 2.48 3.25 12.5 82.2 563 0.46 0.63 2.61 3.53 15:21:24 14 87 937 0.52 0.61 2.55 3.31 12.5 82 562 0.44 0.65 2.2 3.61 15:21:27 14 87.1 938 0.5 0.56 2.37 3.15 12.5 81.9 562 0.48 0.67 2.6 3.48 15:21:29 14 86.9 938 0.47 0.56 2.38 3.12 12.5 82.1 563 0.46 0.54 2.44 3.27 15:21:31 14 86.9 939 0.5 0.58 2.52 3.29 12.5 82.1 564 0.52 0.68 2.62 3.51 15:21:34 14 86.9 940 0.48 0.54 2.37 3.11 12.5 82 564 0.46 0.65 2.48 3.32 15:21:36 14 86.7 940 0.48 0.54 2.42 3.11 12.5 81.9 563 0.46 0.63 2.5 3.32 15:21:39 14 86.8 940 0.52 0.58 2.51 3.29 12.5 81.9 563 0.48 0.67 2.6 3.48 15:21:41 13.9 86.8 941 0.48 0.56 2.38 3.12 12.5 82 563 0.46 0.65 2.46 3.29 15:21:43 14 86.7 941 0.48 0.56 2.26 3.5 12.5 82.1 563 0.46 0.65 2.43 3.27 15:21:46 13.9 86.8 941 0.52 0.58 2.51 3.29 12.5 82.6 563 0.5 0.63 2.53 3.42 15:21:48 14 86.7 941 0.34 0.54 2.37 3.12 12.5 82.9 562 0.44 0.65 2.44 3.29 15:21:50 14 86.7 941 0.52 0.58 2.51 3.28 12.5 82.8 562 0.46 0.63 2.19 3.6 15:21:53 13.9 86.8 940 0.47 0.54 2.38 3.11 12.5 82.6 561 0.48 0.67 2.61 3.51 15:21:55 14 86.8 940 0.48 0.46 2.36 3.09 12.5 82.4 561 0.46 0.65 2.5 3.32 15:21:58 14 86.8 939 0.5 0.58 2.5 3.26 12.5 82.2 561 0.5 0.67 2.65 3.53 15:22:00 14 86.9 939 0.48 0.53 2.35 3.08 12.5 82.1 561 0.46 0.63 2.51 3.33

120 Yo Han Park, Hak Kyung Lee, Man Keun Seo, and Jin Kim 보가소프트웨어내에저장이되고, 통기모델중원하는구간에센서를배치하여센서별데이터를나타내는것이가능해진다. 이러한소프트웨어를본연구에서개발한환경모니터링시스템과연동하기위해자체제작한모니터링인터페이스프로그램안에 LiveView 데이터포맷에맞게 COM 포트로수신되는모든데이터가 CSV 파일로자동저장및업데이트가되는기능을추가하였다. 앤드디바이스센서모듈로부터지그비게이트웨이 ( 코디네이터 ) 안에 VentSim TM LiveView 모듈까지연동되는흐름도 (Flow diagram) 는 Fig. 10과같고, 지그비모듈과모니터링인터페이스프로그램을통해수집한데이터소스를 VentSim TM LiveView에연동하여 G광산 3D 모델에적용한예제는 Fig. 11에나타내었다. 본연구에서개발된것과같은갱내환경모니터링시스템이광산현장에구축되고이를 VentSim TM LiveView와함께연동하여사용하면현장작업자가전반적인갱내환경정보를한눈에파악할수있어만일의사고에빠르게대처할수있게된다. 또한갱내공기질불량구간구간에대한시뮬레이션분석으로광산통기모델수정이가능하며, 수정된통기모델의현장적용을통한갱내통기네트워크최적화로한층더면밀한갱내공기질관리가가능해질것으로판단된다. Fig. 10. Flow diagram of environmental data from Zgibee end-device module to VentSim TM LiveView Fig. 11. Example of VentSim TM LiveView software

A Study on the Application of Real-time Environment Monitoring System in Underground Mines using Zigbee Technology 121 4. 결론 본연구에서는지그비기술을이용한지하광산내실시간환경모니터링시스템을개발하고국내석회석광산현장에적용한결 과를고찰하였으며, 다음과같이정리하였다. 1) 통신환경검토기준을결정하고 G 광산내통신네트워크를구축하여 7편내환경데이터를수집하였다. 수집된데이터중수신이탈락되거나데이터문자열이흩어져수신되는경우등여러문제가발생하였다. 주된원인은램프구간에서차량및장비의이동으로인해가시선에위치한지그비노드연결구간에서비가시선구간이되어데이터가안정적으로수신되지못한것으로판단된다. 이를해결하기위해서는램프구간갱도상부에센서모듈을설치하는등차량및장비이동에영향을받지않도록설치위치를설정해야할것으로판단된다. 2) 개발된갱내환경모니터링시스템으로수집된데이터를확인해볼때이산화황 (SO 2 ) 이광산안전기술기준에명시되어있는유해가스허용농도기준에초과하는것으로나타났다. 하지만현재국내지하광산갱내유해가스농도기준은작업시간 8시간기준평균농도로만규정되어있으며단시간노출허용농도나최대노출허용농도가정해져있지않고, 갱내유해가스측정방법에대한기준또한정해져있지않은실정이다. 따라서본연구에서개발된실시간환경모니터링시스템을국내지하광산에적용하기위해서는갱내유해가스측정방법등법령기준이우선적으로확립되어야할것으로판단된다. 3) 본연구에서는 7편을테스트베드로선정하여갱내환경데이터를수신하였지만, 현재개발중인 13편및 14편작업장근처에서발생하는유해가스농도가현저히높을것으로예상된다. 하지만굴진작업이계속진행되는막장면근처에고정형센서모듈을설치하는것은현실적으로한계가존재하므로이동식무선센서모듈을개발하여작업구간에위치한작업자들이소지하고실시간으로갱내환경을파악할수있도록하는방법을고려해볼필요가있다. 4) 개발된실시간환경모니터링시스템과연동하여 VentSim TM LiveView의활용성에대해검토하였다. 지그비코디네이터가연결된 PC( 게이트웨이 ) 에서 VentSim TM LiveView를사용하여갱내에서수집된데이터를실시간으로모니터링하고공기질불량구간파악에따른즉각적인시뮬레이션분석및갱내통기모델수정이가능하게된다. 이러한결과를갱내에위치한국부선풍기등통기설비에적용하는통기설비제어시스템구축이가능할것으로판단된다. 나아가수집된많은데이터를기반으로통기설비제어분야에서머신러닝 (Machine Learing) 기법등인공지능 (Artificial Intelligence, AI) 기술이접목된다면통기설비자동제어를통해최적화된스마트통기시스템을구축할수있을것이다. 지하광산내실시간환경모니터링시스템구축을위해서는무엇보다안정적인무선통신네트워크구축이우선시되어야한다. 안정적인데이터송수신이가능한무선통신네트워크환경이구축된다면실시간통기시스템관리뿐만아니라작업자및장비위치추적, 원격제어등많은기술들이적용가능하므로좀더안전한갱내작업환경을조성할수있을뿐만아니라효율적인광산운영이가능해질것이다.

122 Yo Han Park, Hak Kyung Lee, Man Keun Seo, and Jin Kim 사사 본연구는에너지기술평가연구원 2017 년자원개발기술개발의 국내광산생산성향상을위한실시간웹기반광산안전통합관리 시스템개발 (20172510102310) 연구단의지원을받아수행되었습니다. 연구지원에감사드립니다. REFERENCES CHASM, 2015, Ventsim Visual User Guide. Choi, D. H., Bae, S. S., and Choi, K. T., 2012, ZigBee technology & system. (Issued February, 2007). Choi, Y., 2017, The roles and technology trends of ICT in mines, J. Korean Soc. Miner. Energy Resour. Eng., 54(1), 66-78. Digi, 2018(a), XBee/XBee-PRO Zigbee RF Modules User Guide. Digi, 2018(b), XCTU Configuration and Test Utility Software User Guide. Dohare, Y. S., Maity, T., Paul, P. S., and Prasad, H., 2016, Smart low power wireless sensor network for underground mine environment monitoring, In 2016 3rd International Conference on Recent Advances in Information Technology (RAIT), 112-116, IEEE. Hartman, H.L., J.M. Mutmansky, R.V. Ramani, and Y.J. Wang, 2012, Mine ventilation and air conditioning, John Wiley & Sons. Kawamura, Y., Moridi, M. A., Sharifzadeh, M., and Jang, H., 2014, Development of Underground Mine Communication and Monitoring Systems by Using ZigBee Technology, In ISRM International Symposium-8th Asian Rock Mechanics Symposium. International Society for Rock Mechanics and Rock Engineering. Kennedy, G. A. and Bedford, M. D., 2014, Underground wireless networking: A performance evaluation of communication standards for tunnelling and mining. Tunnelling and Underground Space Technology, 43, 157-170. Kim, Y. K., J. Kim, 2007, A Study of Efficient Ventilation Management in Hwa-Soon Colliery, Journal of the Korean Society of Mineral and Energy Resources Engineers, 44(5), 364-375. KORES, 2018, 광산안전기술기준 [Mine Safety Technology Standards]. Kwon, J. U., Kim, S. M., Kim, Y. K., and Jang, Y. H, 2015, A Study on Optimum Ventilation System in the Deep Coal Mine, Tunnel and Underground Space, 25(2), 186-198. Kwon, J. U., Song, D. H., Kim, Y. K., & Jang, Y. H, 2016, Optimum Mine Ventilation System Using Gallery Temperature Prediction, Journal of the Korean Society of Hazard Mitigation, 16(3), 73-79. Kwon, J., J. Kim, G. Kim, and H. Kim, 2009, Air quality monitoring system using NDIR-CO2 sensor for underground space based on wireless sensor network, The Institute of Electronics Engineers of Korea - System and Control, 46(4), 28-38. Lee, C. W, and Nguyen, V. D., Kiro, R. K., & Kim C. O., 2018(a), A Study on the Ventilation Effects of the Shaft Development at a Local Limestone Mine, Tunnel and Underground Space, 28(6), 609-619. Lee, S., Park, Y., Lee, H., & Kim, J, 2018(b), Review of Environmental Monitoring and Communication System in Underground Mines Using Wireless Sensor Network, Tunnel and Underground Space, 28(3), 209-231. Mcpherson, M.J., 1993, Subsurface Ventilation and Environmental Engineering, Springer Science & Business Media. Min, B., Kim, Y., Kim, G., & Shin, D., 2012, Implementation of sensor network for subway air-quality monitoring system, In Information and control symposium, 326-327. Ministry of Employment and Labor, 2018, 2018.9 월말산업재해발생현황.

A Study on the Application of Real-time Environment Monitoring System in Underground Mines using Zigbee Technology 123 Moridi, M. A., Kawamura, Y., Sharifzadeh, M., Chanda, E. K., & Jang, H., 2014, An investigation of underground monitoring and communication system based on radio waves attenuation using ZigBee. Tunnelling and Underground Space Technology, 43, 362-369. Moridi, M. A., Sharifzadeh, M., Kawamura, Y., & Jang, H. D., 2018, Development of wireless sensor networks for underground communication and monitoring systems (the cases of underground mine environments). Tunnelling and Underground Space Technology, 73, 127-138. Oh, J. T., & Kim, G. S., 2011, Environmental sensor monitoring system of subway stations using USN, Journal of the Institute of Electronics Engineers of Korea SC, 48(3), 60-66. Queiroz, D.V., M.S. Alencar, R.D. Gomes, I.E. Fonseca, and C. Benavente-Peces, 2017, Survey and systematic mapping of industrial wireless sensor networks, Journal of Network and Computer Applications, 97, 96-125. Song, D. H., Kim, Y. K., Kim, T. S., & Kim, S. H., 2016, A study of efficient ventilation system in deep mines, Clean Technology, 22(3), 168-174. Vutukuri, V.S. and R.D. Lama, 1986, Environmental Engineering in Mines, Cambridge University Press.