2 : HEVC (Dongmin Park et al.: Object Tracking in HEVC Bitstreams) (Regular Paper) 20 3, (JBE Vol. 20, No. 3, May 2015)

Similar documents
09권오설_ok.hwp

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

5 : HEVC GOP R-lambda (Dae-Eun Kim et al.: R-lambda Model based Rate Control for GOP Parallel Coding in A Real-Time HEVC Software Encoder) (Special Pa

19_9_767.hwp

13김상민_ok.hwp

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

1 : MV-HEVC (Jae-Yung Lee et al.: Fast Disparity Motion Vector Searching Method for the MV-HEVC) High Efficiency Video Coding (HEVC) [1][2]. VCEG MPEG

DBPIA-NURIMEDIA

08김현휘_ok.hwp

03홍성욱.hwp

03이승호_ok.hwp

(JBE Vol. 20, No. 6, November 2015) (Regular Paper) 20 6, (JBE Vol. 20, No. 6, November 2015) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

그림 2. 최근 출시된 스마트폰의 최대 확장 가능한 내장 및 외장 메모리 용량 원한다. 예전의 피쳐폰에 비해 대용량 메모리를 채택하고 있지 만, 아직 데스크톱 컴퓨터 에 비하면 턱없이 부족한 용량이다. 또한, 대용량 외장 메모리는 그 비용이 비싼 편이다. 그러므로 기존

1 : HEVC Rough Mode Decision (Ji Hun Jang et al.: Down Sampling for Fast Rough Mode Decision for a Hardware-based HEVC Intra-frame encoder) (Special P

14최해철_ok.hwp

À±½Â¿í Ãâ·Â

(JBE Vol. 20, No. 2, March 2015) (Special Paper) 20 2, (JBE Vol. 20, No. 2, March 2015) ISSN

(JBE Vol. 24, No. 2, March 2019) (Regular Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

07.045~051(D04_신상욱).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

1 : S-JND HEVC (JaeRyun Kim et al.: S-JND based Perceptual Rate Control Algorithm of HEVC) (Regular Paper) 22 3, (JBE Vol. 22, No. 3, May 2017)

19_9_767.hwp

ȲÀμº Ãâ·Â

1. 3DTV Fig. 1. Tentative terrestrial 3DTV broadcasting system. 3D 3DTV. 3DTV ATSC (Advanced Television Sys- tems Committee), 18Mbps [1]. 2D TV (High

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

02손예진_ok.hwp

2 : HEVC (Woo-Jin Han et al. : Early Decision of Inter-prediction Modes in HEVC Encoder) (Regular Paper) 20 1, (JBE Vol. 20, No. 1, January 201

02이주영_ok.hwp

2 : (Juhyeok Mun et al.: Visual Object Tracking by Using Multiple Random Walkers) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ht

3 : S-JND HEVC (JaeRyun Kim et al.: A Perceptual Rate Control Algorithm with S-JND Model for HEVC Encoder) (Regular Paper) 21 6, (JBE Vol. 21,

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

(JBE Vol. 24, No. 1, January 2019) (Regular Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287

1 : HEVC (Jeonghwan Heo et al.: Fast Partition Decision Using Rotation Forest for Intra-Frame Coding in HEVC Screen Content Coding Extension) (Regular

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

(JBE Vol. 21, No. 6, November 2016) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ISSN

2 : MMT QoS (Bokyun Jo et al. : Adaptive QoS Study for Video Streaming Service In MMT Protocol). MPEG-2 TS (Moving Picture Experts Group-2 Transport S

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.

2 : 3 (Myeongah Cho et al.: Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method) (Special Paper) 23 2

¼º¿øÁø Ãâ·Â-1

14.531~539(08-037).fm

09È«¼®¿µ 5~152s

05안용조.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 25(12),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 28(11),

(JBE Vol. 20, No. 6, November 2015) ISO/IEC HEVC [1]. LG 7680x4320 8k UHD TV 4 HEVC. HEVC H.264/AVC 3 2 [2]. UHD,,, HEVC.,,. Davinci Resolve

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

2 : (Jaeyoung Kim et al.: A Statistical Approach for Improving the Embedding Capacity of Block Matching based Image Steganography) (Regular Paper) 22

(JBE Vol. 23, No. 2, March 2018) (Regular Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

(JBE Vol. 21, No. 3, May 2016) HE-AAC v2. DAB+ 120ms..,. DRM+(Digital Radio Mondiale plus) [3] xhe-aac (extended HE-AAC). DRM+ DAB HE-AAC v2 xhe-aac..

(JBE Vol. 20, No. 5, September 2015) (Special Paper) 20 5, (JBE Vol. 20, No. 5, September 2015) ISS

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

1. 서 론

김기남_ATDC2016_160620_[키노트].key

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 27(5),

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

05( ) CPLV12-04.hwp

untitled

정보기술응용학회 발표

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

박선영무선충전-내지

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

<C7A5C1F620BEE7BDC4>

DBPIA-NURIMEDIA

06박영수.hwp

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

., 3D HDTV. 3D HDTV,, 2 (TTA) [] 3D HDTV,,, /. (RAPA) 3DTV [2] 3DTV, 3DTV, DB(, / ), 3DTV. ATSC (Advanced Television Systems Committee) 8-VSB (8-Vesti

표지

DBPIA-NURIMEDIA

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

04 김영규.hwp

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

a), b), c), b) Distributed Video Coding Based on Selective Block Encoding Using Feedback of Motion Information Jin-soo Kim a), Jae-Gon Kim b), Kwang-d

Left Center Right 3차원 L 비디오 C 부호화시스템 R LCR 가상시점영상 N- 시점영상출력 깊이정보맵생성 L C R 깊이정보맵 가상시점영상합성 1. 3 N- Fig. 1. N-view system with the 3-view configuration.

°í¼®ÁÖ Ãâ·Â

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

04 최진규.hwp

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

6.24-9년 6월

10 이지훈KICS hwp

1 : 360 VR (Da-yoon Nam et al.: Color and Illumination Compensation Algorithm for 360 VR Panorama Image) (Special Paper) 24 1, (JBE Vol. 24, No

1 : UHD (Heekwang Kim et al.: Segment Scheduling Scheme for Efficient Bandwidth Utilization of UHD Contents Streaming in Wireless Environment) (Specia

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

<31372DB9DABAB4C8A32E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

02이재원_ok.hwp

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선

디지털포렌식학회 논문양식

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun; 26(6),

1 : (Sunmin Lee et al.: Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)., [1][2]. GPS(Global P

Transcription:

(Regular Paper) 20 3, 2015 5 (JBE Vol. 20, No. 3, May 2015) http://dx.doi.org/10.5909/jbe.2015.20.3.449 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) HEVC a), a), a) Object Tracking in HEVC Bitstreams Dongmin Park a), Dongkyu Lee a), and Seoung-Jun Oh a),,,,. HEVC., (MV : Motion Vector) Spatio-Temporal Markov Random Fields (ST-MRF). ST-MRF. 86.4%, 79.8%, F-measure 81.1% F-measure 0.2% 9%. 5.4ms. Abstract Video object tracking is important for variety of applications, such as security, video indexing and retrieval, video surveillance, communication, and compression. This paper proposes an object tracking method in HEVC bitstreams. Without pixel reconstruction, motion vector (MV) and size of prediction unit in the bitstream are employed in an Spatio-Temporal Markov Random Fields (ST-MRF) model which represents the spatial and temporal aspects of the object s motion. Coefficient-based object shape adjustment is proposed to solve the over-segmentation and the error propagation problems caused in other methods. In the experimental results, the proposed method provides on average precision of 86.4%, recall of 79.8% and F-measure of 81.1%. The proposed method achieves an F-measure improvement of up to 9% for over-segmented results in the other method even though it provides only average F-measure improvement of 0.2% with respect to the other method. The total processing time is 5.4ms per frame, allowing the algorithm to be applied in real-time applications. Keyword : Object tracking, Markov random fields, HEVC, compressed domain a) (Dept. of Electronic Engineering, Kwangwoon university) Corresponding Author : (Seoung-Jun Oh) E-mail: sjoh@kw.ac.kr Tel: +82-2-940-5102 ORCID: http://orcid.org/0000-0002-5036-3761 2015 () (No.R0101-15-293, ) 2013. Manuscript received March 23, 2015; revised May 12, 2015; accepted May 12, 2015.

(JBE Vol. 20, No. 3, May 2015). (Video Object Tracking : VOT),,,,. VOT.. (bitstream), H.264/ Advanced Video Coding(H.264/AVC) [1] High Efficiency Video Coding(HEVC) [2]. (Motion Vector : MV),,..,.. (Global Motion Estimation : GME) (macroblock rejection) H.264/AVC [3].. Kas Nicolas H.264/AVC Scalable Video Coding (SVC) [4]., (temporal filtering). Timed motion history images. H.264/AVC (partition size) mean shift clustering [5]. - (median filter) (Global Motion Compensation : GMC), mean shift, mean shift. (Markov Random Fields : MRF). Treetasanatavorn - (Gibbs-MRF theory) (Bayesian estimation) [6]. (stochastic motion coherence model) [7], (affine model) (projection)., (label). Zeng (classification) [8].,,., (maximum a posteriori probability : MAP). Chen coarse-to-fine [9]. MRF (edge) region growing. Mak RANSAC(RANdom SAmple consensus) MRF [10]. RANSAC,,, 4. Khatoonabadi - (Spatial- Temporal Markov Random Fields : ST-MRF) [11]. ST-MRF MRF (over-segmentation)

. (error propagation). HEVC. Khatoonabadi ST-MRF [11] HEVC. HEVC,, 3.. (Global Motion : GM) [12]. ST-MRF... ST-MRF...., 2.., ST-MRF Iterated Conditional Modes (ICM) [13]. Khatoonabadi 1.. ST-MRF Khatoonabadi ST-MRF [11]. ST-MRF MRF (motion coherence), (spatial compactness), (temporal continuity) H.264/AVC. 1. ST-MRF Fig. 1. Flow chart of the ST-MRF model based object tracking method,

(JBE Vol. 20, No. 3, May 2015) (over-segmentation) (error propagation)..... HEVC.. HEVC,, 3.,. (Coding Unit : CU).., [12]. ST-MRF. Khatoonabadi (object shape adjustment).. 2. 2. Fig. 2. Flow chart of the proposed object tracking

1. ST-MRF ST-MRF (rigid object) [11]. ST-MRF., (4x4 ) (labeling).,.. (posterior probability). inter-frame likelihood, intra-frame likelihood, (a priori probability) (Bayesian framework) (1). ㆍ ㆍ (2). argmax ㆍ ㆍ. (2) (3). argmin log log log, Hammersley-Clifford theorem [14] (3) (Gibbs) (4~6). (energy function), Z (normalizing constant). exp exp exp (4)~(6),, (temporal continuity), (motion coherence), (compactness).,, (scaling factor).,,,,.. (degree of overlap).. flat-texture (outlier). Modified Trimmed Mean [11]., PVM (Polar Vector Median) [11].. (compact).. 8-adjacency (weighted sum).

(JBE Vol. 20, No. 3, May 2015) (7) Stochastic Relaxation(SR) [15] ICM [13]. SR ICM. SR ICM. ICM.., ICM (7).... 2. m (10) (10) (11). V H ㆍ m ㆍ (11), v. m (least squares solution) (12)... M-estimator [16] 6 (Affine) [17]. m, (8). v (9). v m H T ㆍ W ㆍ H ㆍ H T ㆍ W ㆍ V W..,.,,. Arvanitidou 8x8 [16].,,., argmin ㆍ ㆍ ㆍ

. W (13). W..,. [12]. 3. 3 (c),. 3. (13).. v m v (14). v.. M-estimator (iterative algorithm). W m ST-MRF. PVM [11]. PVM 4-neighborhood. 4x4. 4. 4 (15). 3.. (a). (b). (c) Fig. 3. GMC. (a) Motion vector before GMC. (b) Motion vector after GMC. (c) Motion vector after ROI-based GMC

(JBE Vol. 20, No. 3, May 2015) (17). argmin v v v. PVM v p (18)~(19). 4. Fig. 4. Motion vertor assignment for intra-coded block v p median v v p median v v v v v v v v v v v v v 4x4 v v v, v. (polar coordinate). v. (16) 5 PVM. PVM v p 4x4. 4. Khatoonabadi 6 5. PVM. (a). (b) : PVM. (c). : PVM. Fig. 5. PVM. (a) Input vectors. (b) Lengths of input vectors. Red line : representative length. (c) Angles of vectors. Red vector : representative angle

...,...,.., log dynamic range.,. 3.0. 7.,,, 4..,. (correlation).. 6.. (a). (b). Fig. 6. Result of over-segmentation. (a) Tracking result. (b) Motion vectors.. 4x4., (outlier) 2x2 7. Fig. 7. Flow chart of object shape adjustment algorithm 8. 8 (a). (b). (c),. (d).

(JBE Vol. 20, No. 3, May 2015) 8.. (a). (b). (c). (d) Fig. 8. Shape adjustment algorithm process. (a) Object estimation. (b) Object boundary extraction. (c) Search a correlation with transform coefficient. (d) Boundary adjustment. 1. Intel i7-2600 3.40GHz, 14.0GB Microsoft Visual Studio 2010 C++. MPEG SIF (352x240), CIF (352x288). HEVC test Model (HM) 14.0 low-delay P configuration Common Test Conditions (CTC). 1, Quantization Parameter (QP) 22.,,. ST-MRF,, 1, 2/3, 0.25 Khatoonabadi [11].,,.,. ground truth. ground truth ground truth true positive, ground truth false positive, ground truth false negative. (precision), (recall), F-measure, (20), TP true positive, FP false positive, FN false negative.

2. Khatoonabadi 1. Khatoonabadi 6.1%.., 5%... F-measure 0.2% FlowerGarden. 9 FlowerGarden. Khatoonabadi. 1. Khatoonabadi Table 1. Tracking performance comparison of the proposed method with respect to the Khatoonabadi s method Sequence Frame Precision (%) Recall (%) F-measure (%) Pro Ref Pro Ref Pro Ref City (CIF) 100 91.68 94.5 95.39 95.4 93.46 94.9 FlowerGarden (SIF) 50 76.49 59.3 84.77 94.0 80.15 71.2 TableTennis (SIF) 25 91.80 96.3 92.14 89.0 91.91 92.4 Stefan (CIF) 90 95.72 85.4 44.79 59.2 60.10 68.7 HallMonitor (CIF) 60 89.30 70.9 68.82 80.9 77.60 75.4 MobileCalendar (CIF) 100 84.05 77.8 82.54 83.1 83.00 80.1 Coastguard (CIF) 100 64.41 62.8 89.75 90.1 74.61 73.4 Foreman (CIF) 100 97.86 95.5 80.03 85.9 87.62 90.2 Average 86.41 80.3 79.78 84.7 81.06 80.8 * Pro, Ref Khatoonabadi. Reference method Frame #2 Frame #14 Frame #26 Frame #38 Frame #50 Proposed method Frame #2 Frame #14 Frame #26 Frame #38 Frame #50 9. FlowerGarden Fig. 9. Tracking results for FlowerGarden

(JBE Vol. 20, No. 3, May 2015). 10 MobileCalendar 200. Khatoonabadi,.,....,, Reference method Frame #2 Frame #20 Frame #90 Frame #150 Frame #200 Proposed method Frame #2 Frame #20 Frame #90 Frame #150 Frame #200 10. MobileCalendar Fig. 10. Tracking results for MobileCalendar Reference method Frame #2 Frame #15 Frame #50 Frame #70 Frame #90 Proposed method Frame #2 Frame #15 Frame #50 Frame #70 Frame #90 11. Stefan Fig. 11. Tracking results for Stefan

. 11 Stefan.. Stefan. 12 Stefan. Khatoonabadi 15 50.. F-measure.... 2. Khatoonabadi 10 MATLAB Khatoonabadi C++. 2. 12. Stefan Fig. 12. Tracking performance for Stefan 2. Table 2. Processing time of each module per frame Sequence Pre-processing (ms) GMC (ms) ST-MRF tracking (ms) Post-processing (ms) Total (ms) Pro Ref Pro Ref Pro Ref Pro Ref Pro Ref City (CIF) 0.01 0.5 7.2 52.9 1.9 7.3 0.3 0 9.4 60.7 FlowerGarden (SIF) 0.01 0.4 5.3 45.5 1.3 7.0 0.2 0 6.9 52.9 TableTennis (SIF) 0.02 0.5 3.3 38.5 1.6 6.2 0.3 0 5.2 45.2 Stefan (CIF) 0.04 1.3 4.1 50.8 0.6 3.3 0.1 0 4.8 55.4 HallMonitor (CIF) 0.04 1.8 1.9 45.9 0.6 3.6 0.1 0 2.7 51.2 MobileCalendar (CIF) 0.01 0.5 2.6 49.5 0.4 2.7 0.1 0 3.2 52.7 Coastguard (CIF) 0.01 0.6 2.8 48.6 0.4 2.7 0.2 0 3.4 51.9 Foreman (CIF) 0.04 1.5 4.9 48.1 2.7 9.3 0.3 0 8.0 58.9 Average 0.02 0.9 4.0 47.5 1.2 5.3 0.2 0 5.4 53.6 * Pro, Ref Khatoonabadi.

(JBE Vol. 20, No. 3, May 2015)... ST-MRF.,. Foreman Coastguard 6... HEVC.,. ST-MRF,. HEVC 3.,. PVM.. ST-MRF -.,,..... 6.1% 5.0% F-measure 0.2% FlowerGarden F-measure 9%. MobileCalendar. (References) [1] ITU-T, Advanced Video Coding for Generic Audiovisual Services, Rec. H.264/ISO IEC 14996-10 AVC, 2003. [2] B. Bross, W-J. Han, J-R. Ohm, G. J. Sullivan, Y-K. Wang, and T. Wiegand, High Efficiency Video Coding (HEVC) Text Specification Draft 10, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T VCEG and ISO/IEC MPEG, JCTVC-L1003, Geneva, CH, Jan. 2013. [3] V. Mezaris, I. Kompatsiaris, N. V. Boulgouris, and M. G. Strintzis, Real-time compressed-domain spatiotemporal segmentation and ontologies for video indexing and retrieval, IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 5, pp. 606621, May 2004. [4] C. Käs and H. Nicolas, An approach to trajectory estimation of moving objects in the H.264 compressed domain, in Proc. 3rd Pacific Rim Symp. Adv. Image Video Technol., pp. 318329, 2009. [5] W. Fei and S. Zhu, Mean shift clustering-based moving object segmentation in the H.264 compressed domain, IET Image Process., vol. 4, no. 1, pp. 1118, Feb. 2010. [6] S. Treetasanatavorn, U. Rauschenbach, J. Heuer, and A. Kaup, Bayesian method for motion segmentation and tracking in compressed videos, in Proc. 27th DAGM Conf. Pattern Recognit., pp. 277 284, 2005. [7] S. Treetasanatavorn, U. Rauschenbach, J. Heuer, and A. Kaup, Stochastic motion coherency analysis for motion vector field segmentation on compressed video sequences, in Proc. IEEE Workshop

Image Anal. Multimedia Interact. Services, pp. 14, Apr. 2005. [8] W. Zeng, J. Du, W. Gao, and Q. Huang, Robust moving object segmentation on H.264/AVC compressed video using the block-based MRF model, Real-Time Imaging, vol. 11, no. 4, pp. 290299, Aug. 2005. [9] Y. M. Chen, and I. V. Baji c, Moving region segmentation from compressed video using global motion estimation and markov random fields, IEEE Transactions on Multimedia, vol. 13, no. 3, June 2011. [10] C. M. Mak, and W. K. Cham, Real-time video object segmentation in H.264 compressed domain, IET image Processing, vol. 3, lss. 5, Oct, 2009. [11] S. H. Khatoonabadi and I. V. Baji c, Video object tracking in the compressed domain using spatio-temporal Markov Random Fields, IEEE Transactions on Image Processing, vol. 22, no. 1, pp.300-313, Jan. 2013. [12] D. M. Park, D. K. Lee, S. M. Kim, and S. J. Oh Fast ST-MRF tracking using ROI-based GMC, The Korean Society Of Broadcast Engineers, 2014. Nov. [13] J. Besag, On the statistical analysis of dirty pictures, J. Royal Stat. Soc. B, vol. 48, no. 3, pp. 259302, 1986. [14] J. E. Besag, Spatial interaction and the statistical analysis of lattice systems, J. Royal Stat. Soc., Ser. B, vol. 36, no. 2, pp. 192236, 1974. [15] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, no. 6, pp. 721741, Nov. 1984. [16] M. G. Arvanitidou, A. Glantz, A. Krutz, T. Sikora, M. Mrak, and A. Kondoz, Global motion estimation using variable block sizes and its application to object segmentation, in Proc. IEEE Workshop Image Anal. Multimedia Interact. Services, London, U.K., pp. 173176, May 2009. [17] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. 2nd ed, Cambridge Univ. Press, Cambridge, U.K., pp. 3944, 2004. - 2014 2 : - 2014 3 ~ : - ORCID:http://orcid.org/0000-0002-7063-4354 - :, - 2012 2 : - 2014 2 : - 2014 3 ~ : - ORCID:http://orcid.org//0000-0003-0713-854X - :, - 1980 2 : - 1982 2 : - 1988 5 : Syracuse University / - 1982 3 ~ 1992 8 : - 1986 7 ~ 1986 8 : NSF Supercomputer Center - 1987 5 ~ 1988 5 : Northeast Parallel Architecture Center - 1992 3 ~ 1992 8 : - 1992 9 ~ : - 2002 3 ~ : SC29-Korea MPEG Forum - ORCID:http://orcid.org//0000-0002-5036-3761 - :,,