4 : CNN (Sangwon Suh et al.: Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset) (Regular Paper) 23 6, (J

Similar documents
09권오설_ok.hwp

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

4 : (Hyo-Jin Cho et al.: Audio High-Band Coding based on Autoencoder with Side Information) (Special Paper) 24 3, (JBE Vol. 24, No. 3, May 2019

08김현휘_ok.hwp

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

°í¼®ÁÖ Ãâ·Â

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

2 : 3 (Myeongah Cho et al.: Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method) (Special Paper) 23 2

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7),

1 : (Sunmin Lee et al.: Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)., [1][2]. GPS(Global P

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

2 : (Juhyeok Mun et al.: Visual Object Tracking by Using Multiple Random Walkers) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ht

DBPIA-NURIMEDIA

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

(JBE Vol. 23, No. 6, November 2018) (Special Paper) 23 6, (JBE Vol. 23, No. 6, November 2018) ISSN 2

1 : 360 VR (Da-yoon Nam et al.: Color and Illumination Compensation Algorithm for 360 VR Panorama Image) (Special Paper) 24 1, (JBE Vol. 24, No

À±½Â¿í Ãâ·Â

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

(JBE Vol. 24, No. 4, July 2019) (Special Paper) 24 4, (JBE Vol. 24, No. 4, July 2019) ISSN

DBPIA-NURIMEDIA

3 : (Won Jang et al.: Musical Instrument Conversion based Music Ensemble Application Development for Smartphone) (Special Paper) 22 2, (JBE Vol

03-서연옥.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

<B8F1C2F72E687770>

(JBE Vol. 23, No. 1, January 2018). (VR),. IT (Facebook) (Oculus) VR Gear IT [1].,.,,,,..,,.. ( ) 3,,..,,. [2].,,,.,,. HMD,. HMD,,. TV.....,,,,, 3 3,,

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

63-69±è´ë¿µ

DBPIA-NURIMEDIA

02손예진_ok.hwp

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

3 : 3D (Seunggi Kim et. al.: 3D Depth Estimation by a Single Camera) (Regular Paper) 24 2, (JBE Vol. 24, No. 2, March 2019)

표지

¼º¿øÁø Ãâ·Â-1

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

04 최진규.hwp

(JBE Vol. 23, No. 1, January 2018) (Special Paper) 23 1, (JBE Vol. 23, No. 1, January 2018) ISSN 2287-

(JBE Vol. 23, No. 6, November 2018) (Regular Paper) 23 6, (JBE Vol. 23, No. 6, November 2018) ISSN 2

(JBE Vol. 21, No. 3, May 2016) HE-AAC v2. DAB+ 120ms..,. DRM+(Digital Radio Mondiale plus) [3] xhe-aac (extended HE-AAC). DRM+ DAB HE-AAC v2 xhe-aac..

5 : HEVC GOP R-lambda (Dae-Eun Kim et al.: R-lambda Model based Rate Control for GOP Parallel Coding in A Real-Time HEVC Software Encoder) (Special Pa

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

19_9_767.hwp

인문사회과학기술융합학회

DBPIA-NURIMEDIA

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

04김호걸(39~50)ok

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp

2 : (Jaeyoung Kim et al.: A Statistical Approach for Improving the Embedding Capacity of Block Matching based Image Steganography) (Regular Paper) 22

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

04_이근원_21~27.hwp

< C6AFC1FD28C3E0B1B8292E687770>

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

표지

05( ) CPLV12-04.hwp

Æ÷Àå82š

45-51 ¹Ú¼ø¸¸

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

1 : UHD (Heekwang Kim et al.: Segment Scheduling Scheme for Efficient Bandwidth Utilization of UHD Contents Streaming in Wireless Environment) (Specia

(JBE Vol. 24, No. 1, January 2019) (Regular Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287

14.531~539(08-037).fm

3 : ATSC 3.0 (Jeongchang Kim et al.: Study on Synchronization Using Bootstrap Signals for ATSC 3.0 Systems) (Special Paper) 21 6, (JBE Vol. 21

(JBE Vol. 24, No. 1, January 2019) (Special Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287-

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

4 : WebRTC P2P DASH (Ju Ho Seo et al.: A transport-history-based peer selection algorithm for P2P-assisted DASH systems based on WebRTC) (Special Pape

07.045~051(D04_신상욱).fm

DBPIA-NURIMEDIA

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 28(11),

: RTL-SDR (Young-Ju Kim: Implementation of Real-time Stereo Frequency Demodulator Using RTL-SDR) (Regular Paper) 24 3, (JBE Vol. 24, No. 3, May

<C7D1B1B9B1B3C0B0B0B3B9DFBFF85FC7D1B1B9B1B3C0B05F3430B1C733C8A35FC5EBC7D5BABB28C3D6C1BE292DC7A5C1F6C6F7C7D42E687770>

김기남_ATDC2016_160620_[키노트].key

디지털포렌식학회 논문양식


<313920C0CCB1E2BFF82E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

07변성우_ok.hwp

I

<333820B1E8C8AFBFEB2D5A B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

6.24-9년 6월

(JBE Vol. 20, No. 6, November 2015) (Regular Paper) 20 6, (JBE Vol. 20, No. 6, November 2015) ISSN

Slide 1

(JBE Vol. 20, No. 5, September 2015) (Special Paper) 20 5, (JBE Vol. 20, No. 5, September 2015) ISS

2 : CNN (Jaeyoung Kim et al.: Experimental Comparison of CNN-based Steganalysis Methods with Structural Differences) (Regular Paper) 24 2, (JBE

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

APOGEE Insight_KR_Base_3P11

DBPIA-NURIMEDIA

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

Transcription:

(Regular Paper) 23 6, 2018 11 (JBE Vol. 23, No. 6, November 2018) https://doi.org/10.5909/jbe.2018.23.6.855 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) CNN a), a), a), a), a) Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset Sangwon Suh a), Wootaek Lim a), Youngho Jeong a), Taejin Lee a), and Hui Yong Kim a). DCASE. DCASE,.,., CNN, 2016 2017 DCASE. Abstract Sound event detection is one of the research areas to model human auditory cognitive characteristics by recognizing events in an environment with multiple acoustic events and determining the onset and offset time for each event. DCASE, a research group on acoustic scene classification and sound event detection, is proceeding challenges to encourage participation of researchers and to activate sound event detection research. However, the size of the dataset provided by the DCASE Challenge is relatively small compared to ImageNet, which is a representative dataset for visual object recognition, and there are not many open sources for the acoustic dataset. In this study, the sound events that can occur in indoor and outdoor are collected on a larger scale and annotated for dataset construction. Furthermore, to improve the performance of the sound event detection task, we developed a dual CNN structured sound event detection system by adding a supplementary neural network to a convolutional neural network to determine the presence of sound events. Finally, we conducted a comparative experiment with both baseline systems of the DCASE 2016 and 2017. Keyword : Machine learning, Deep learning, Audio signal processing, Sound event detection, Dataset Copyright 2016 Korean Institute of Broadcast and Media Engineers. All rights reserved. This is an Open-Access article distributed under the terms of the Creative Commons BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited and not altered.

(JBE Vol. 23, No. 6, November 2018).,., (sound event detection) [1-4].,. DCASE(Detection and Classification of Acoustic Scenes and Events), (onset) (offset). 2013, 2016 2017 DCASE [5-7],. DCASE (non-negative matrix factorization) [2] (gaussian mixture model) [8], RNN(recurrent neural network) [9] CNN(convolutional neural network) [10] (deep learning). 2017 CNN RNN CRNN(convolutional recurrent neural network) [11], a) AV (Realistic AV Research Group, Electronics and Telecommunications Research Institute) Corresponding Author : (Youngho Jeong) E-mail: yhcheong@etri.re.kr Tel: +82-42-860-6472 ORCID: https://orcid.org/0000-0001-9552-8593 This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No.2017-0-00050, Development of Human Enhancement Technology for auditory and muscle support) 2018 () (No.2017-0-00050, ) Manuscript received August 20, 2018; Revised October 24, 2018; Accepted October 24, 2018..,., 5~10 % 3.6% [12] 2015 ILSVRC(ImageNet Large Scale Visual Recognition Challenge) [13]. (ImageNet) [14]. ILSVRC 1,000 120. DCASE 2017 3~5 24, 659. (imbalanced dataset), DCASE.,. state-of-the-art CNN.,.. II,. III CNN. IV, DCASE 2016 2017. V.

. 1.. (onset) (offset) (annotation) [15]. DCASE TUT [8] 1. Table 1. Sound event classes I n d o o r O u t d o o r Event class label Number of Hazard instances event Kettle whistle 227 O Children crying 255 O Children playing 602 - Children shouting 94 - Dish cleanup 249 - Dish rinse sound 121 - Dishwasher 143 - Doorbell 201 - Drawer sound 155 - Drop impact sound 287 O Fire alarm sound 218 O Footfall 139 - Keyboard sound 95 - Scream 236 O Speech 411 - Water flowing 211 - Bicycle idle horn 127 O Bird singing 504 - Car crash 82 O Car idle horn 90 O Car passing 173 O Car passing horn 130 O Drop impact sound 231 O Footfall 485 - Motorcycle idle horn 141 O Motorcycle passing horn 212 O Scream 122 O Speech 3 - Truck idle horn 108 O Truck passing 123 O Truck passing horn 206 O Wind sound 593 -,.. 1, 16., DCASE 2016 2017 [5,6]. 2,. 3~5. 2. Table 2. Recording signal specifications Signal type Sampling rate Bit resolution Audio format Binaural / Stereo 44.1 khz 24 bits PCM WAV 2..,. Soundman OKM II Klassik/studio A3 electret in-ear microphones, Rode NT4 X/Y Stereo Condenser Microphone. TASCAM DR-100mkII PCM.

(JBE Vol. 23, No. 6, November 2018),., 10.,,. 2,.,,. binaural stereo 13 9 230, 1 254. DCASE 2017 1 31 8.7, 1.7. 3. 3. Table 3. Examples of sound event metadata onset offset event class label 2.087000 10.354000 footfall 16.977000 21.690000 footfall 26.481000 31.470000 water flowing 32.999000 40.825000 dishwashing 38.326000 38.984000 drop impact sound III. 1. CNN CNN.,.,. (confusion matrix), 2.. DCASE,,, 10.. 1 (a), (b). 44.1kHz 40ms (analysis window) 50% 40. (context information) 25 2...

1. CNN Fig. 1. Schematic diagram of dual CNN based sound event detection algorithm 3 (Convolution layer) 2 (fully-connected layer). 3x3 64, ReLU. 20% dropout 2x2 (max-pooling). 2 128, ReLU sigmoid. (minibatch) 64, (learning rate) 0.001, Adam [16], 100 epochs., (over-adaptation) 10 epoch (loss)., (validation) (evaluation criterion). 3. 3x3 32, ReLU. 20% dropout., 1 ( ) 0( )., 0.2.

(JBE Vol. 23, No. 6, November 2018),. TensorFlow [17] Keras [18]. 2. DCASE 2. (Gaussian Mixture Model, GMM) (Multi-Layer Perceptron, MLP).. n EM(Expectation Maximization). DCASE 2016 [8], MFCC MFCC-delta MFCC-acceleration. 40ms 50% -, 0 19 MFCC. MFCCdelta MFCC-acceleration MFCC, MFCC. 60. 16,.,,..,.,. (Backpropagation),. 2. Fig. 2. Block diagram of multi-layer perceptron model DCASE 2017 [7]. 0 ~ 22050 Hz 40 -, 40ms 50%.. 2 50. (over-

fitting) 20% dropout. Adam, 0.001 learning rate 200 epoch. 100 epoch, 10 epoch. IV. 1. II III. DCASE [5,6], 16. 4 (4-fold cross validation). DCASE (metrics) F1- (F1-score) (error rate) [19]. 1 (ground truth), 3. true positives(tp), true negatives(tn)., false positives(fp), false negatives(fn). F1- (1) k (precision, P) (recall, R).,., where, 0. (2). N(number of reference events), S(substitutions), I(insertions) FP S, D(deletions) FN S. 2. 3. Ground truth Fig. 3. Visualization of system output to ground truth

(JBE Vol. 23, No. 6, November 2018),.,.. 2. (context size),., (hop size)., 4., 4 F1-. 4,, 25 51, 10. 4. Table 4. Acoustic event detection results according to the context and hop size Context size [frames] Hop size [frames] 5 10 25 50 11 80.1 79.6 77.5 77.5 21 79.9 79.9 79.1 77.5 51 80 80.4 78.4 78.1 101 79.7 80.3 79.1 78.3 51, 10. II, 5 6. F1-80.4%, 0.35, F1-73%, 0.46.,. Children shouting, Dish cleanup Speech,, (Class imbalance). 5. Table 5. Detailed results of detection per sound event in an indoor environment <Indoor> F1-score [%] Error Rate Precision Recall Kettle whistle 93.4 0.13 0.928 0.94 Children crying 64.4 0.74 0.62 0.67 Children playing 75.7 0.56 0.666 0.877 Children shouting 0 1 0 0 Dish cleanup 0 1 0 0 Dish rinse sound 81.4 0.38 0.803 0.824 Dishwasher 79.5 0.42 0.77 0.821 Doorbell 91.5 0.18 0.881 0.952 Drawer sound 66.8 0.66 0.672 0.664 Drop impact sound 54.4 0.82 0.611 0.49 Fire alarm sound 91.3 0.18 0.895 0.933 Footfall 78.3 0.43 0.797 0.769 Keyboard sound 92.4 0.16 0.903 0.945 Scream 69.3 0.64 0.668 0.721 Speech 77.2 0.45 0.781 0.763 Water flowing 88.2 0.25 0.851 0.915 Instance-based average 80.4 0.35 - -

Bird singing. 6. Table 6. Detailed results of detection per sound event in an outdoor environment <Outdoor> F1-score [%] Error Rate Precision Recall Bicycle idle horn 72.7 0.57 0.698 0.758 Bird singing 9 0.98 0.612 0.049 Car crash 54.9 0.86 0.574 0.526 Car idle horn 66.3 0.61 0.739 0.602 Car passing 77.3 0.48 0.738 0.813 Car passing horn 54.9 0.7 0.768 0.427 Drop impact sound 68.5 0.61 0.71 0.662 Footfall 74.4 0.52 0.727 0.762 Motorcycle idle horn 68.7 0.66 0.656 0.721 Motorcycle passing horn 65.1 0.63 0.724 0.591 Scream 46.9 0.82 0.664 0.362 Speech 0 1 0 0 Truck idle horn 61.8 0.62 0.808 0.5 Truck passing 61.1 0.71 0.671 0.56 Truck passing horn 45.8 0.82 0.673 0.347 Wind sound 84 0.31 0.857 0.823 Instance-based average 73.0 0.46 - - III 2, CNN., III 2 DCASE. 7, F1-19.7%, 0.72, F1-3.0%, 0.01., F1-7.2%, 0.16, F1-3.0%, 0.01. CNN, CNN (w/o aux) CNN (w/ aux)., CNN,. 7. Table 7. Performance test for sound event detection systems F1-score [%] Indoor Error Rate F1-score [%] Outdoor Error Rate GMM 60.7 1.07 65.8 0.62 MLP 77.4 0.36 70.0 0.47 CNN (w/o aux.) Proposed (w/ aux.) 79.2 0.36 72.1 0.47 80.4 0.35 73.0 0.46 V., CNN., DCASE TUT,. 13 9, 254. DCASE 2017 1 31, 1.7. CNN,.

(JBE Vol. 23, No. 6, November 2018) 0 1 CNN. DCASE, II., 51 10. DCASE 2016 2017., F1-.,.,,.,. (References) [1] A. Temko et al., CLEAR evaluation of acoustic event detection and classification systems, Lecture Notes in Computer Science, vol.4122, pp.311-322, 2007. [2] D. Stowell et al., Detection and classification of acoustic scenes and events, IEEE Transactions on Multimedia, vol.17, no.10, pp.1733-1746, 2015. [3] DCASE Community, http://dcase.community/community_info [4] J. Portêlo et al., Non-Speech Audio Event Detection, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2009. [5] DCASE 2016 Task3 Sound event detection in real life audio, http://www.cs.tut.fi/sgn/arg/dcase2016/task-sound-event-detection-in-real-life-audio [6] DCASE 2017 Task3 Sound event detection in real life audio, http:// www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-sound-event-detection-in-real-life-audio [7] A. Mesaros et al., DCASE 2017 Challenge Setup: Tasks, Datasets and Baseline System, Detection and Classification of Acoustic Scenes and Events (DCASE), 2017. [8] A. Mesaros, T. Heittola, and T. Virtanen, TUT Database for Acoustic Scene Classification and Sound Event Detection, 24th European Signal Processing Conference (EUSIPCO), pp. 1128-1132, 2016. [9] S. Adavanne, G. Parascandolo, P. Pertila, T. Heittola, and T. Virtanen, Sound event detection in multichannel audio using spatial and harmonic features, Detection and Classification of Acoustic Scenes and Events (DCASE), 2016. [10] I. Jeong, S. Lee, Y. Han, and K. Lee, Audio event detection using multiple-input convolutional neural network, Detection and Classification of Acoustic Scenes and Events (DCASE), 2017. [11] S. Adavanne, and T. Virtanen, A report on sound event detection with different binaural features, Detection and Classification of Acoustic Scenes and Events (DCASE), 2017. [12] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, IEEE Conference on Computer Vision and Patter Recognition (CVPR), 2016. [13] Large Scale Visual Recognition Challenge (LSVRC), http://image-net.org/challenges/lsvrc/imagenet, http://www.image-net.org/ [14] ImageNet, http://www.image-net.org/ [15] Y. Jung, S. Seo, W. Lim, and H. Kim, Design and construction of Acoustic Database for developing Sound Event Detection technique, IEIE Summer General Conference, June, 2018 [16] D. P. Kingma, and J. Ba, Adam: A method for stochastic optimization, Proceedings of the 3rd International Conference on Learning Representations (ICLR), 2014. [17] TensorFlow, https://www.tensorflow.org/ [18] Keras, https://keras.io/ [19] Metrics For sound event detection tasks, http://www.cs.tut.fi/sgn/arg/ dcase2017/challenge/metrics

- 2015 : - 2015 ~ : ETRI AV - ORCID : https://orcid.org/0000-0002-4286-6537 - :, - 2010 : - 2012 : - 2012 ~ : ETRI AV - :, - 1992 : - 1994 : - 2006 : - 2011 ~ 2017 : (UST) - 1994 ~ : ETRI AV - ORCID : https://orcid.org/0000-0001-9552-8593 - :,, - 2014 : - 2002 ~ 2003 : Tokyo Denki University, - 2000 ~ : ETRI AV / - :,, - 1994 : - 1998 : - 2004 : - 2003 ~ 2005 : - 2006 ~ 2010 : (UST) - 2013 ~ 2014 : Univ. Southern California(USC) - 2005 ~ : ETRI AV - ORCID : https://orcid.org/0000-0001-7308-133x - : /,, UHD/3D/HDR/VR