2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

Similar documents
09권오설_ok.hwp

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

1. 서 론

표지

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

2 : 3 (Myeongah Cho et al.: Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method) (Special Paper) 23 2

08김현휘_ok.hwp

1 : 360 VR (Da-yoon Nam et al.: Color and Illumination Compensation Algorithm for 360 VR Panorama Image) (Special Paper) 24 1, (JBE Vol. 24, No

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

(JBE Vol. 23, No. 4, July 2018) (Special Paper) 23 4, (JBE Vol. 23, No. 4, July 2018) ISSN

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

4 : (Hyo-Jin Cho et al.: Audio High-Band Coding based on Autoencoder with Side Information) (Special Paper) 24 3, (JBE Vol. 24, No. 3, May 2019

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

2 : (Juhyeok Mun et al.: Visual Object Tracking by Using Multiple Random Walkers) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ht

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

2 : (Rahoon Kang et al.: Image Filtering Method for an Effective Inverse Tone-mapping) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) h

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

(JBE Vol. 23, No. 1, January 2018) (Special Paper) 23 1, (JBE Vol. 23, No. 1, January 2018) ISSN 2287-

2 : (Jaeyoung Kim et al.: A Statistical Approach for Improving the Embedding Capacity of Block Matching based Image Steganography) (Regular Paper) 22

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

DBPIA-NURIMEDIA

14.531~539(08-037).fm

3. 클라우드 컴퓨팅 상호 운용성 기반의 서비스 평가 방법론 개발.hwp

(JBE Vol. 23, No. 1, January 2018). (VR),. IT (Facebook) (Oculus) VR Gear IT [1].,.,,,,..,,.. ( ) 3,,..,,. [2].,,,.,,. HMD,. HMD,,. TV.....,,,,, 3 3,,

1 : (Sunmin Lee et al.: Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)., [1][2]. GPS(Global P

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 28(11),

04 최진규.hwp

(JBE Vol. 20, No. 5, September 2015) (Special Paper) 20 5, (JBE Vol. 20, No. 5, September 2015) ISS

09구자용(489~500)

(JBE Vol. 24, No. 1, January 2019) (Regular Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

À±½Â¿í Ãâ·Â

04_이근원_21~27.hwp

07.045~051(D04_신상욱).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

°í¼®ÁÖ Ãâ·Â

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

(JBE Vol. 20, No. 2, March 2015) (Special Paper) 20 2, (JBE Vol. 20, No. 2, March 2015) ISSN

인문사회과학기술융합학회

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

1 : (Sung-Ho Bae et al.: A Novel Fast and High-Performance Image Quality Assessment Metric using a Simple Laplace Operator) (Special Paper) 21 2, 2016

(JBE Vol. 23, No. 6, November 2018) (Special Paper) 23 6, (JBE Vol. 23, No. 6, November 2018) ISSN 2

(JBE Vol. 23, No. 6, November 2018) (Special Paper) 23 6, (JBE Vol. 23, No. 6, November 2018) ISSN 2

45-51 ¹Ú¼ø¸¸

DBPIA-NURIMEDIA

3 : 3D (Seunggi Kim et. al.: 3D Depth Estimation by a Single Camera) (Regular Paper) 24 2, (JBE Vol. 24, No. 2, March 2019)

11 함범철.hwp

09È«¼®¿µ 5~152s

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),

04 김영규.hwp

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp

19_9_767.hwp

(JBE Vol. 20, No. 6, November 2015) (Special Paper) 20 6, (JBE Vol. 20, No. 6, November 2015) ISSN

½Éº´È¿ Ãâ·Â

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

¼º¿øÁø Ãâ·Â-1

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

<313920C0CCB1E2BFF82E687770>

Slide 1

<4D F736F F D20C3D6BDC C0CCBDB4202D20BAB9BBE7BABB>

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>


63-69±è´ë¿µ

(JBE Vol. 24, No. 4, July 2019) (Special Paper) 24 4, (JBE Vol. 24, No. 4, July 2019) ISSN

방송공학회논문지 제18권 제2호

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A528B1E8C1BEB9E8292E687770>

(JBE Vol. 20, No. 6, November 2015) (Regular Paper) 20 6, (JBE Vol. 20, No. 6, November 2015) ISSN

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

???? 1

1. 3DTV Fig. 1. Tentative terrestrial 3DTV broadcasting system. 3D 3DTV. 3DTV ATSC (Advanced Television Sys- tems Committee), 18Mbps [1]. 2D TV (High

10 이지훈KICS hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7),

: RTL-SDR (Young-Ju Kim: Implementation of Real-time Stereo Frequency Demodulator Using RTL-SDR) (Regular Paper) 24 3, (JBE Vol. 24, No. 3, May

<31325FB1E8B0E6BCBA2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

(JBE Vol. 23, No. 1, January 2018) (Regular Paper) 23 1, (JBE Vol. 23, No. 1, January 2018) ISSN 2287

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 28(2),

3 : ATSC 3.0 (Jeongchang Kim et al.: Study on Synchronization Using Bootstrap Signals for ATSC 3.0 Systems) (Special Paper) 21 6, (JBE Vol. 21

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun; 26(6),

(JBE Vol. 23, No. 2, March 2018) (Regular Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

DBPIA-NURIMEDIA

Transcription:

2: (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, 2019 7 (JBE Vol. 24, No. 4, July 2019) https://doi.org/10.5909/jbe.2019.24.4.623 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a), a) Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network Seungsoo Lee a), Changyeol Choi a), and Manbae Kim a),. hand-crafted.,. 102. Abstract Many researches have been carried out for brightness and contrast enhancement, illumination reduction and so forth. Recently, the aforementioned hand-crafted approaches have been replaced by artificial neural networks. This paper proposes a convolutional neural network that can replace the method of generating a reflectance image where illumination component is attenuated. Experiments are carried out on 102 low-light images and we validate the feasibility of the replacement by producing satisfactory reflectance images. Keywords : Low-light image, Retinex, Convolutional neural network, Reflectance, Illumination a) (Department of Computer and Communications Eng., Kangwon National University) Corresponding Author : (Manbae Kim) E-mail: manbae@kangwon.ac.kr Tel: +82-33-250-6395 ORCID: https://orcid.org/0000-0002-4702-8276 This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2019-2018-0-01433) supervised by the IITP (Institute for Information & communications Technology Promotion). Manuscript received January 31, 2019; Revised April 15, 2019; Accepted June 25, 2019. Copyright 2016 Korean Institute of Broadcast and Media Engineers. All rights reserved. This is an Open-Access article distributed under the terms of the Creative Commons BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited and not altered.

(JBE Vol. 24, No. 4, July 2019)..,...,., (histogram equalization) [1-2], (gamma correction) [3]. Land (reflectance) (illumination) [4]. Jobson Land Weber-Fachner Single Scale Retinex(SSR) [5].. SSR,. (low-light),,. 1,,,., Retinex. hand-crafted, (Deep Neural Network: DNN) [6-9]. DNN. (ground-truth). Lore stacked denoising (autoencoder) [6]. Shen (Convolutional Neural Network) [7]. Park CNN [8]. Kim [9]. (high-light image) (gamma transformation),.,.,. (Convolutional Neural Network: CNN) 1. Fig. 1. Low-light images affected by light source

2: (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (feasibility). Retinex. Retinex (ground-truth image) CNN, CNN. 2. 2(a),, (predicted image).,.,. 2(b) Retinex, CNN. CNN., CNN., CNN. CNN.. Retinex..... Retinex 2.. (a) [8] (b) CNN Fig. 2. Difference of conventional reflectance image generation and the proposed method. (a) The approach of the former [8] and (b) diagram replacing a customized reflectance map generation algorithm with CNN Land [4], (brightness) (illumination) (reflectance)..

(JBE Vol. 24, No. 4, July 2019).,.,. Weber-Fechner [5] (log), (1). log loglog. logixy, logrxy, zxy. (3)... (5) 0.5 (Butterworth).,.,. 3 Retintex. 3(a). 3(b).. 3(a), 3(b).,. 3.. (a), f (b), r R Fig. 3. Images used at the training of a neural network. (a) input images, f and (b) reflectance images, r R

2: (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network). 4. (Input low-light image) (Low-pass filter: LPF). (LPF input image)., (High-frequency data)..., 3x3. CNN., CNN. denoising [10], super-resolution [11].,... CNN autoencoder [12]. deconvolution [10] motion deblurring, super-resolution..,...,.,.. 4. Fig. 4. The overall block diagram of the proposed method

(JBE Vol. 24, No. 4, July 2019) 5. 4 CNN Fig. 5. CNN model in Fig. 4 4 CNN 5. 2 (conv layer) (fully-connected layer, fc layer).., (patch), [6,7,8,9].. N=20. 1 CNN. (conv layer 1) 128 3x3, (activation function) relu(rectified linear unit). (conv layer 2) 64 3x3, relu.. 1. CNN Table 1. Layers and parameters of CNN network Layer Input conv layer 1 pooling activation function conv layer 2 activation function fc-1 activation function Output Parameter NxN patch 128, 3x3 filter max pooling relu 64, 3x3 filter relu 500 nodes sigmoid nodes 500 (fc-1), 1. [0,1] (sigmoid).,...., 6.,.,. 128x128 WINDOWS 10 MATLAB R2018a. 102. 82, 20. [0,1]...,,

2: (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) [0,1], 255 [0, 255]. 1) RMSE SE. 2) PSNR PSNR log RMSE 3) Structural Similarity Index (SSIM) [13] SSIM,,. 1 0. 6. Fig. 6. Low-light images under illumination used in experiments [7]. (stride), [8,9].. 0.001, (stochastic gradient descent). Adam. 3 ; 1) Root Mean Squared Error (RMSE), 2) Peak Signal-to-Noise Ratio (PSNR), 3) Structural Similarity Index (SSIM).,.,,,. 2 4 Target reflectance image Predicted reflectance image. 82 Train 20 Test RMSE (Training, Test) = (18.62, 27.26). [0,255]. PSNR (Training, Test) = (23.47, 19.44). SSIM=(0.42, 0.22). 2 PSNR, SSIM, [8]. [8] PSNR 13~16 db, SSIM 0.38~0.65. [8] [8].,

(JBE Vol. 24, No. 4, July 2019),.,.,. 2. RMSE, PSNR, SSIM Table 2. Performance evaluation of RMSE, PSNR and SSIM Avg. RMSE (in pixel) Avg. PSNR (in db) Avg. SSIM [0,1] Training Test Training Test Training Test 18.62 27.26 23.47 19.44 0.42 0.22 7, 8 Train Test,. 7(a), 8(a) 4 Target reflectance image. Retinex. 7(b), 8(b) Predicted reflectance image. Test 1, 2, 3. 4, 5. 1, 2, 3 9. 9(a), 9(b)., 7.. [0,255]. (a), (b) Fig. 7. Resulting images of train images. (a) Ground-truth output images, and (b) predicted images 8.. [0,255]. (a), (b) Fig. 8. Resulting images of test images. (a) Ground-truth output images, and (b) predicted images

2: (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network). CNN,.,. (References) 9. 8 1, 2, 3. (a) (b) Fig. 9. Close-up of Columns 1, 2, 3 in Fig. 8. (a) Ground-truth output images, and (b) predicted images.,. Retinex,. Retinex,. 102, Train RMSE 18.62, PSNR 23.47(dB), SSIM 0.42, Test RMSE 27.26, PSNR 19.44(dB), SSIM 0.22..,. hand-crafted. [1] D. Cho, H. Kang, and W. Kim, "An image enhancement algorithm on color constancy and histogram equalization using edge region", Journal of Broadcast Engineering, Vol. 15, No. 3, 2010. [2] H. Cheng and X. Shi, "A simple and effective histogram equalization approach to image enhancement," Digital Signal Processing, pp. 158-170, 2004. [3] C. Poynton, "The Rehabilitation of Gamma," Human Vision and Electronic Imaging, Proceedings of SPIE, vol. 3299, p. 232-249, 1998. [4] E. Land and J. McCann, "Lightness and retinex theory," J. Opt. Soc. Am., vol. 61, no. 1, pp. 111, 1971. [5] D. Jobson, Z. Rahman, and G. Woodell, "Properties and performance of a center/surround retinex," IEEE Transactions on Image Processing, Vol. 6, no. 3, pp. 451-462, Mar. 1997. [6] K. Lore, A. Akintayo, and S. Sarkar, "LLNet: A deep autoencoder approach to natural low-light image enhancement," Pattern Recognition, vol. 61, pp. 650-662, 2017. [7] L. Shen, Z. Yue, F. Feng, and Q. Chen, "MSR-net: Low-light image enhancement using deep convolutional network," arxiv:1711.02488. [8] S. Park, S. Yu, M. Kim, K. Park, and J. Paik, "Dual Autoencoder Network for Retinex-based Low-Light Image Enhancement", IEEE Access, Vol. 6, Mar. 2018. [9] W. Kim, I. Hwang and M. Kim, Generating a Retinex-based reflectance image from a low-light image using deep neural network, Journal of Broadcast Engineering, Vol. 24, No. 1, Jan. 2019. [10] L. Xu. C. Liu, J. Ren, and J. Jia, Deep convolutional neural network for image deconvolution, Int. Conf. Neural Information Processing System, 2014. [11] A. Agrawal, R. Raskar, Resolving objects at higher resolution from a single motion-blurred image, Int. Conf. Computer Vision and Pattern Recognition, 2007 [12] C. Turhan and H. Bilge, Recent trends in deep generative modes: a review, 3rd Int. Conf. Computer Science and Engineering, 2018. [13] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, "Image quality assessment: from error visibility to structural similarity". IEEE Trans. Image Processing, 13(4), pp. 600-612, 2004.

(JBE Vol. 24, No. 4, July 2019) - 2017 8 : IT - 2017 9 ~ : - :,, - 1979 : - 1981 : - 1995 : - 1984 ~ 1996 : ETRI / - 2009 ~ 2011 : IT - 1996 ~ : - ORCID : http://orcid.org/0000-0002-8340-4195 - :, 3D, - 1983 : - 1986 : University of Washington, Seattle - 1992 : University of Washington, Seattle - 1992 ~ 1998 : - 1998 ~ : - 2016 ~ 2018 : - ORCID : http://orcid.org/0000-0002-4702-8276 - : 3D,,