<28313539392D31363036292032C7FC20BFC0BAEABDBAC4B520B0A2B8B7C1F6C7FCB5B5B8A620C0CCBFEBC7D120BFF8C3DFB0A2B8B7B0FA20BFF8C3DFB0A2B8B7C0C7C1F5C0C720B0A2B8B7C7FCC5C2BAF1B1B3283038292E687770>



Similar documents
< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

012임수진

A 617

Can032.hwp

황지웅

hwp

untitled

<30342D30342D333428B1E8C0E7BFEB2DBEF6C5C2BFF D E687770>

Kbcs002.hwp

untitled

한국성인에서초기황반변성질환과 연관된위험요인연구

김범수

14.531~539(08-037).fm

<30362D30342D313528BCBAB9CEC3B62DC0CCB9CEC1F E687770>

<30362D30372D303728C1A4BCD2C7E22DBDC5C1F6BFB E687770>

자기공명영상장치(MRI) 자장세기에 따른 MRI 품질관리 영상검사의 개별항목점수 실태조사 A B Fig. 1. High-contrast spatial resolution in phantom test. A. Slice 1 with three sets of hole arr

( )Kju269.hwp

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

09È«¼®¿µ 5~152s

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie

1..

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

<35BFCFBCBA2E687770>

( )Kjhps043.hwp

004-( )09-16.hwp

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

현대패션의 로맨틱 이미지에 관한 연구

Lumbar spine

건강 indd

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

< D BAFBB0A3BCB7B4DCC3FEC3D4BFB5C0BB20C0CCBFEBC7D120C1A4BBF32C20B3ECB3BBC0E5C0C7C1F52C20C3CAB1E220B3ECB3BBC0E5BFA1BCADC0C720BAAFB

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: : A basic research

???? 1

서론 34 2

전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II)

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

(김진형-박세훈)_320~327.hwp

( )Jkstro011.hwp

Journal of Educational Innovation Research 2018, Vol. 28, No. 2, pp DOI: IPA * Analysis of Perc

(

54 한국교육문제연구제 27 권 2 호, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

590호(01-11)

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu


DBPIA-NURIMEDIA

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

인문사회과학기술융합학회

975_983 특집-한규철, 정원호

03-ÀÌÁ¦Çö

12이문규

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

<30382EC0C7C7D0B0ADC1C22E687770>


09구자용(489~500)

. 45 1,258 ( 601, 657; 1,111, 147). Cronbach α=.67.95, 95.1%, Kappa.95.,,,,,,.,...,.,,,,.,,,,,.. :,, ( )

005송영일

Kaes025.hwp


Crt114( ).hwp

γ

<31372DB9DABAB4C8A32E687770>

<30342D31372D B1E8C7F6BDC22DBDC9C0B1BCB E687770>

( ) Jkra076.hwp

노영남

03-서연옥.hwp

DBPIA-NURIMEDIA

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

???춍??숏

(박우찬-고병욱)( ).hwp

Æ÷Àå82š

( )Jksc057.hwp

歯1.PDF

139~144 ¿À°ø¾àħ

歯14.양돈규.hwp

도비라

벤슨-1장

16_이주용_155~163.hwp

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

목 차 1. 서론 1.1. 문제 제기 및 연구 목적 1.2. 연구 대상 및 연구 방법 2. 교양 다큐 프로그램 이해 3. 롤랑바르트 신화론에 대한 이해 3.1. 기호학과 그 에 대하여 3.2. 롤랑바르트 신화 이론 고찰 4. 분석 내용 4.1. 세계테마기행 에 대한 기

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

388 The Korean Journal of Hepatology : Vol. 6. No COMMENT 1. (dysplastic nodule) (adenomatous hyperplasia, AH), (macroregenerative nodule, MR

상담학연구,, SPSS 21.0., t,.,,,..,.,.. (Corresponding Author): / / / Tel: /

<31372D30342D303628B1E8BDC2C7F62DBCADC7FDC1F E687770>

untitled

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Study on the Pe

±èÇ¥³â

16(1)-3(국문)(p.40-45).fm

09권오설_ok.hwp

.. IMF.. IMF % (79,895 ). IMF , , % (, 2012;, 2013) %, %, %

02Á¶ÇýÁø

특수교육논총 * ,,,,..,..,, 76.7%.,,,.,,.. * 1. **

< FB5B5BAF1B6F32C20B8F1C2F D34292E687770>

(p47~53)SR

(11+12.).pdf

04-JKOS hwp

03이경미(237~248)ok

Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp DOI: Awareness, Supports

?

Transcription:

2형 오브스캔 각막지형도를 이용한 원추각막과 원추각막의증의 각막형태비교 1599

1600

Figure 1. The map of Orbscan II topography in keratoconus. The parameters including central corneal power, anterior and posterior elevation from BFS and central corneal thickness are significantly different from normal eyes. Figure 2. The map of Orbscan II topography in keratoconus suspect. Anterior elevation from BFS is the only significantly different parameter comparing with normal eyes, and central corneal power, posterior elevation from BFS, central corneal thickness and most protruded corneal thickness are the parameters significantly different from keratoconic eyes. 1601

Table 1. Comparison of parameters of Orbscan II system in keratoconic and normal eyes. The parameters including central corneal power, anterior and posterior elevation from BFS and central corneal thickness are significantly different from normal eyes Parameter Keratoconic eye Normal eye p-value Central corneal power (Diopter) 48.81±6.33 (37.60~72.06) 42.48±1.71 (38.98~44.81) Anterior elevation from BFS * (µm) 43.05±27.26 6.80±4.91 Posterior elevation from BFS * (µm) (4.00~125.00) 93.93±54.64 (1.00~14.00) 25.70±7.13 Central corneal thickness (µm) (9.00~225.00) 451.07±61.01 (15.00~41.00) 543.65±44.24 (282.00~560.00) (441.00~611.00) Anterior chamber depth (mm) Corneal diameter (mm) Pupil size (mm) 3.34±0.36 (2.64~4.04) 11.74±0.36 (11.10~12.50) 4.91±1.48 (3.20~10.80) 3.07±0.23 (2.73~3.47) 11.56±0.45 (11.10~13.00) 5.15±1.44 (3.70~8.00) 0.024 0.104 0.564 * : Best-fit sphere. (By Scheffe s method) Table 2. Comparison of parameters of Orbscan II system in keratoconus-suspected and normal eyes. Anterior elevation from BFS is the only significantly different parameter compared with normal eyes Parameter Keratoconus-suspected eye Normal eye p-value Central corneal power (Diopter) 42.74±1.59 (40.32~46.12) 42.48±1.71 (38.98~44.81) 0.999 Anterior elevation from BFS * (µm) 24.28±7.65 6.80±4.91 0.014 Posterior elevation from BFS * (µm) (6.00~37.00) 30.72±19.03 (1.00~14.00) 25.70±7.13 0.591 Central corneal thickness (µm) (1.00~64.00) 501.84±55.34 (15.00~41.00) 543.65±44.24 0.065 (362.00~580.00) (441.00~611.00) Anterior chamber depth (mm) Corneal diameter (mm) Pupil size (mm) 3.27±0.35 (2.45~3.83) 11.81±0.43 (10.80~12.50) 4.95±1.24 3.07±0.23 (2.73~3.47) 11.56±0.45 (11.10~13.00) 5.15±1.44 0.188 0.101 0.662 (3.40~7.80) (3.70~8.00) * : Best-fit sphere. (By Scheffe s method) 1602

Table 3. Comparison of parameters of Orbscan II system in keratoconic and keratoconus-suspected eyes. Central corneal power, posterior elevation from BFS, central corneal thickness and most protruded corneal thickness are the parameters significantly differed from keratoconus-suspected eyes Parameter Keratoconic eye Keratoconus suspected eye p-value Central corneal power (Diopter) 48.81±6.33 (37.60~72.06) 42.74±1.59 (40.32~46.12) Anterior elevation from BFS * (µm) 43.05±27.26 24.28±7.65 0.980 Posterior elevation from BFS * (µm) (4.00~125.00) 93.93±54.64 (6.00~37.00) 30.72±19.03 Central corneal thickness (µm) (9.00~225.00) 451.07±61.01 (1.00~64.00) 501.84±55.34 0.003 (282.00~560.00) (362.00~580.00) Most protruded corneal thickness (µm) Anterior chamber depth (mm) Corneal diameter (mm) Pupil size (mm) 440.05±66.38 (280.00~560.00) 3.34±0.36 (2.64~4.04) 11.74±0.36 (11.10~12.50) 4.91±1.48 (3.20~10.80) 497.38±59.13 (362.00~579.00) 3.27±0.35 (2.45~3.83) 11.81±0.43 (10.80~12.50) 4.95±1.24 (3.40~7.80) 0.001 0.845 0.563 0.924 * : Best-fit sphere. (By Scheffe s method) 1603

1) Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998;42:297-319. 2) Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol 1604

1984;28:293-322. 3) Caroline PJ, Doughman DJ, McGuire JR. Preliminary report on a new contact lens design for keratoconus. Contact Intraocul Lens 1978;4:69-73. 4) Soper JW, Jarrett A. Results of a systematic approach to fitting keratoconus and corneal transplants. Cont Lens Med Bull 1972;5:50-9. 5) Edrington TB, Barr JT, Zadnik K, et al. Standardized rigid contact lens fitting protocol for keratoconus. Optom Vis Sci 1996;73:369-75. 6) Rosenthal P. The Boston Lens and the management of keratoconus. Int Ophthalmol Clin 1986;26:101-9. 7) Maguire LJ, Bourne WM. Corneal topography of early keratoconus. Am J Ophthalmol 1989;108:107-12. 8) Maguire LJ, Lowry JC. Identifying progression of subclinical keratoconus by serial topography analysis. Am J Ophthalmol 1991;112:41-5. 9) Rao SN, Raviv T, Majmudar PA, Epstein RJ. Role of Orbscan II in screening keratoconus suspects before refractive corneal surgery. Ophthalmology 2002;109:1642-6. 10) Rabsilber TM, Becker KA, Frisch IB, Auffarth GU. Anterior chamber depth in relation to refractive status measured with the Orbscan II Topography System. J Cataract Refract Surg 2003;29:2115-21. 11) Pflugfelder SC, Liu Z, Feuer W, Verm A. Corneal thickness indices discriminate between keratoconus and contact lens induced corneal thinning. Ophthalmology 2002;109:2336-41. 12) Amsler M. The forme fruste of keratoconus. Wien klin Wocherschr 1961;73:842-3. 13) Wilson SE, Klyce SD. Advances in the analysis of corneal topography. Surv Ophthalmol 1991;35:269-77. 14) Guarnieri FA, Guarnieri JC. Comparison of Placido-based, rasterstereography, and slit-scan corneal topography system. J Refract Surg 2002;18:169-76. 15) Maeda N, Klyce SD, Smolek MK. Comparison of methods for detecting keratoconus using videokeratography. Arch Ophthalmol 1995;113:870-4. 16) Rabinowitz YS, McDonnel PJ. Computer-assisted corneal topography in keratoconus. Refract Corneal Surg 1989;5:400-8. 17) Rabinowitz YS. Videokeratographic indices to aid in screening for keratoconus. J Refract Surg 1995;11:371-9. 18) Rabinowitz YS, Rasheed K. KISA index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus. J Cataract Refract Surg 2000;26:472-4. 19) Smolek MK, Klyce SD. Current keratoconus detection methods compared with a neural network approach. Invest Ophthalmol Vis Sci 1997;38:2290-9. 20) Lee HH, Shin MC, Lee HB. The Analysis of Corneal Topography after Laser in Situ Keratomileusis (LASIK) for Myopic Correction. J Korean Ophthalmol Soc 2001;42:960-6. 21) Liu Z, Huang AJ, Pflugfelder SC. Evaluation of corneal thickness and topography in normal eyes using the Orbscan corneal topography system. Br J Ophthalmol 1999;83:774-8. 22) Kim JD, Park KS, Kim SD. Corneal thickness variation and consistency according to daytime. J Korean Ophthalmol Soc 2000;41:1690-6. 23) Choi HJ, Kim MK, Lee JL. Diagnostic criteria for keratoconus using Orbscan II slit scanning topography/pachymetry system. J Korean Ophthalmol Soc 2004;45:928-35. 24) Auffarth GU, Wang L, Volcker HE. Keratoconus evaluation using the Orbscan Topography System. J Cataract Refract Surg 2000;26:222-8. 25) Kawana K, Miuta K, Tokunaga T, et al. Central corneal thickness measurements using Orbscan II scanning slit topography, noncontact specular microscopy, and ultrasonic pachymetry in eyes with keratoconus. Cornea 2005;24:967-71. 26) Arntz A, Duran JA, Pijoan JI. Subclinical keratoconus diagnosis by elevation topography. Arch Soc Esp Oftalmol 2003;78:659-64. 27) Mohammad HD, Hassan H. A quantitative corneal topography index for detection of keratoconus. J Refract Surg 1998;14: 427-36. 1605

Corneal Topographic Study Using Orbscan II between Keratoconus and Keratoconus Suspect Seung Uk Lee, M.D. 1, Chang Hwan Lee, M.D. 2, Ji-Eun Lee, M.D., Ph.D. 1, Jong Soo Lee, M.D., Ph.D. 1 Department of Ophthalmology, College of Medicine, Pusan National University 1, Pusan, Korea Department of Ophthalmology, Wallace Memorial Baptist Hospita 2, Pusan, Korea Purpose: To compare corneal topographic changes using Orbscn II between keratoconus and keratoconussuspected eyes. Methods: Thirty-seven keratoconus eyes, 17 keratoconus-suspected eyes and 37 normal eyes were evaluated by using Orbscan II corneal topography. We compared central phachymetry, anterior elevation from best-fit sphere (BFS), posterior elevation from BFS, most protruded corneal thickness, central corneal thickness, anterior chamber depth, corneal diameter, and pupil size. Results: Central pachymetry, anterior and posterior elevation from BFS, central corneal thickness, and anterior chamber depth were statistically significantly different between keratoconus and control eyes. Anterior elevation from BFS showed a significant difference between keratoconus-suspected and control eyes. There were statistically significant differences in central pachymetry, posterior elevation from BFS, central corneal thickness and most protruded corneal thickness between keratoconus and keratoconus-suspected eyes. Corneal diameter and pupil size showed no differences among the 3 groups. Conclusions: Suspected keratoconus eyes have a higher value of anterior elevation from BFS on Orbscan II topography as compared with control eyes. Central pachymetry, posterior elevation from BFS, central corneal thickness and most protruded corneal thickness may be helpful in distinguishing between keratoconus and keratoconus-suspected eyes. J Korean Ophthalmol Soc 48(12):1599-1606, 2007 Key Words: Anterior chamber depth, Best fit sphere (BFS), Keratoconus, Keratoconus suspect, Orbscan II corneal topography 1606