009-19ÀÌÀºÇý



Similar documents
(

Kbcs002.hwp

김재형 한만큼횡축자기화가생성되지못해결국 MRI 신호가감소한다. 따라서 TR을짧게하면조직간의 T1이완시간차이를대조도로반영한영상을만들수있으며이것이 T1강조영상이다. 즉 T1강조영상은짧은 TR과짧은 TE을사용하며, 짧은 TR 로조직간의 T1 대조도를증강시키고, 짧은 TE로는

자기공명영상장치(MRI) 자장세기에 따른 MRI 품질관리 영상검사의 개별항목점수 실태조사 A B Fig. 1. High-contrast spatial resolution in phantom test. A. Slice 1 with three sets of hole arr

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

Lumbar spine

16_이주용_155~163.hwp

012임수진

( )Kju269.hwp

Can032.hwp

황지웅

1..


The Window of Multiple Sclerosis

hwp

440 /

김범수

<30372EC0CCC0AFC1F82E687770>

±èÇ¥³â

16(1)-3(국문)(p.40-45).fm

±è¼Ò¿µ

Ȳ¼º¼ö

12이문규

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie

À̱ٿµ


노영남

±è¹ÎÁö

GB A(1~3).indd

< B3E220BCF6C1B7B1B8BAB4C1F6C4A72D56312E687770>

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

( )Jkstro011.hwp

대한빙시선의학호 IAI199?;3?:9-15 뇌경색의급속 FLAIRMR 영상소견 :T2 강조영상과의비교 1 공근영 최우석 김의종 목적 : 뇌경색의진단을위해널리이용되는상용 T2 영상과급속 FLAIR(Fluid Attenuated Inversion Recovery) 영상소

( )Kjhps043.hwp

139~144 ¿À°ø¾àħ

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

스마일 contents 당신을 만나 기분이 좋습니다! 병원에 있는 사람들은 모두 힘듭니다. 환자는 환자대로, 보호자는 보호자대로, 의료진은 의료진대로. 아픈 환자가 제일 힘들 것 같다가도, 그들을 뒷바라지하는 보호자가 더 어려울 것 같습니다. 하지만 환자와 보호자를 상

γ


Â÷¼øÁÖ

슬라이드 제목 없음

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ


878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

ÀÌÁÖÈñ.hwp

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

( ) Jkra076.hwp

54 한국교육문제연구제 27 권 2 호, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

975_983 특집-한규철, 정원호

도비라

Kor. J. Aesthet. Cosmetol., 라이프스타일은 개인 생활에 있어 심리적 문화적 사회적 모든 측면의 생활방식과 차이 전체를 말한다. 이러한 라이프스 타일은 사람의 내재된 가치관이나 욕구, 행동 변화를 파악하여 소비행동과 심리를 추측할 수 있고, 개인의


???? 1

<35BFCFBCBA2E687770>

이신재 외: 자궁선근종의 자궁동맥색전술 후 장기 추적 자기공명영상 소견 angle, 80 ; matrix size, ; section thickness, 5 mm) 기법을 이용하여 영상을 얻었다. MRI에서 자궁선근종의 진단은 T2 강조 영상에서 자궁근층

388 The Korean Journal of Hepatology : Vol. 6. No COMMENT 1. (dysplastic nodule) (adenomatous hyperplasia, AH), (macroregenerative nodule, MR

Àü°æ³à

( )Jksc057.hwp

원위부요척골관절질환에서의초음파 유도하스테로이드주사치료의효과 - 후향적 1 년경과관찰연구 - 연세대학교대학원 의학과 남상현

한국성인에서초기황반변성질환과 연관된위험요인연구

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

04조남훈

歯1.PDF

Microsoft Word doc

47-55ÀÌÁ¤ÈÖ


YI Ggodme : The Lives and Diseases of Females during the Latter Half of the Joseon Dynasty as Reconstructed with Cases in Yeoksi Manpil (Stray Notes w

#Ȳ¿ë¼®

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

433대지05박창용

Àå¾Ö¿Í°í¿ë ³»Áö

<303720C7CFC1A4BCF86F6B2E687770>

Vol.259 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

untitled

ePapyrus PDF Document

09È«¼®¿µ 5~152s

63-69±è´ë¿µ

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

02이용배(239~253)ok

Æ÷Àå½Ã¼³94š

서론 34 2

충북의대학술지 Chungbuk Med. J. Vol. 27. No. 1. 1~ Charcot-Marie-Tooth Disease 환자의마취 : 증례보고 신일동 1, 이진희 1, 박상희 1,2 * 책임저자 : 박상희, 충북청주시서원구충대로 1 번지, 충북대학교

서론

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

기관고유연구사업결과보고

Crt114( ).hwp

27 2, 1-16, * **,,,,. KS,,,., PC,.,,.,,. :,,, : 2009/08/12 : 2009/09/03 : 2009/09/30 * ** ( :

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

서강대학원123호

1093_특집- 구현우

( ) ) ( )3) ( ) ( ) ( ) 4) 1915 ( ) ( ) ) 3) 4) 285

A 617

인문사회과학기술융합학회


09권오설_ok.hwp

°ø±â¾Ð±â±â

005송영일

27 2, 17-31, , * ** ***,. K 1 2 2,.,,,.,.,.,,.,. :,,, : 2009/08/19 : 2009/09/09 : 2009/09/30 * 2007 ** *** ( :

보건사회연구-25일수정

Transcription:

9

Fig. 1. Measurement of the signal intensity of CSF in the rabbit. The area of ROI is 5 mm 2 (Magnified post-enhanced FLAIR image). 10 Fig. 2. Measurement of the signal intensities of CSF and parenchyma in the normal volunteer. The signal intensities of CSF are measured in the lateral ventricle (1) and subarachnoid space (2). The signal intensities of parenchyma are measured in the gray (3) and white matters (4). The areas of round ROI was 4 5 mm 2 (Pre-enhanced FLAIR mage).

Fig. 3. Changes in the signal intensities of CSF and parenchyma in the rabbit study. The signal intensities of CSF increase after an hour of contrast infusion on FLAIR images. But those of parenchyma do not increase at all. Table 1. Clinical Features of the Patient Group Patient CSF FLAIR* Hosp No. WBC Diff Prot Glc ADA Diagnosis 1 8 06 0780 L 63 115 47 03.2 viral 2 7 12 0075 L 74 123 48 01.0 viral 3 7 19 0310 L 81 246 56 12.1 tuberculous 4 4 16 1120 P 74 172 67 04.2 bacterial 5 9 13 0270 L 46 281 11 77.0 tuberculous * Interval between onset of symptom and FLAIR study (day) Duration of hospitalization (day) Differential count of WBC in the CSF; L=lymphocyte, P=polymorphonuclear leukocyte (mm 3 ) Protein concentration of CSF (mg/dl) Glucose concentration of CSF (mg/dl) Adenosine deaminase concentration of CSF (IU/L; normal value <8) 11

Fig. 5. Comparison of the signal intensities of CSF according to the location of ROI. In the patient group, the signal intensities of CSF in the subarachnoid spaces (SAS) are higher than those in the normal control group on post-enhanced FLAIR images. But the signal intensities of CSF in the lateral ventricles (LV) are not different on any FLAIR images in the both groups. A: pre B: 1 hour C: 2 hours D: 3 hours E: 4 hours Fig. 4. Serial FLAIR images of the rabbit. The signal intensities of CSF in the ambient cistern (arrows) increase on post-enhanced FLAIR images (B E) after infusing triple doses of contrast. 12

Fig. 6. Comparison of the signal intensities of parenchyma according to the location of ROI. The signal intensities of parenchyma are not different irrespective of the location of ROI which is in the gray (GM) or white matter (WM) in the both groups. Fig. 7. Comparison of the slopes of the signal intensities of CSF and parenchyma in the both groups. In the patient group, the slope of signal intensities of CSF in the subarachnoid spaces (P- SAS) is higher compared with that in the normal control group (N-SAS). But the slopes of parenchyma are not different in the both groups. 13

이은혜 외: 연수막염의 진단에서 조영증강 후 지연획득 FLAIR 영상의 유용성 A: patient No. 1, pre B: early C: delayed D: normal, pre E: early F: delayed G: patient No. 2, pre H: early I: delayed Fig. 8. Pre- and post-enhanced FLAIR images: comparison of the patients and the normal volunteer. There is a markedly meningeal enhancement in the subarachnoid space on post-enhanced delayed FLAIR image (C) of one patient (patient No. 1) compared with pre- (A) and post-enhanced early FLAIR images (B). But, there is no evidence of meningeal enhancement on any post-enhanced FLAIR images (E, F) of the normal volunteer compared with pre-enhanced FLAIR image (D). There is another example showing the meningeal enhancement on post-enhanced delayed FLAIR image (I) of another patient (patient No. 2) compared with pre- (G) and post-enhanced early FLAIR images (H). The open ring (C) and arrow (I) show the representative areas. 14

대한영상의학회지 2006;55:9-19 독하였다(Fig. 10). 고 찰 연수막질환의 진단에서 조영증강 T1 강조영상을 주로 사용 하고 있으나 감염성 또는 종양성 연수막질환에 대한 민감도는 36-71%에 불과하며 특이도 역시 높지 않다(6-10). 연수막 질환의 진단은 주로 뇌척수액 분석에 의존하고 있는데 임상적 으로 흔한 바이러스성 수막염은 뇌척수액 소견이 비특이적이 고 배양도 어렵기 때문에 진단이 애매한 경우가 많다(6-10). 그러므로 조영증강 T1 강조영상보다 효과적으로 연수막질환 을 진단할 수 있는 영상기법이 필요하다. Fig. 9. Changes of signal intensities of the subarachnoid space in the patient group. Patients having tuberculous meningitis (patient No. 3,5) show the most increase of signal intensities in the subarachnoid space on post-enhanced delayed FLAIR images compared with post-enhanced early FLAIR images. A patient having bacterial meningitis (patient No. 4) shows the least increase of signal intensities in the subarachnoid space on post-enhanced delayed FLAIR image compared with post-enhanced early FLAIR image. A: pre-flair B: early-t1wi Hajnal 등(11)이 1992년에 최초로 소개한 FLAIR 영상은 긴 에코시간(echo time)을 이용한 강한 T2 강조영상이면서 동시에 반전회복 (inversion-recovery) 펄스연쇄 (pulse sequence)를 이용하여 뇌척수액의 고신호 강도를 효과적으로 상쇄(nulling)시키므로 T2 강조영상과 달리 뇌척수액이 저신 호 강도로 보인다. 따라서 뇌실질병변과 주변 뇌척수액의 대 조도가 증가하므로 뇌척수액이나 인접 뇌실질의 병변을 진단 하는데 효과적이다(11-20). 또한, FLAIR 영상은 다른 MR 펄 스연쇄들과 달리 지주막하 출혈에 의한 뇌척수액의 신호강도 변화도 나타낼 수 있는데(30-32) 이는 뇌척수액의 단백질 농 도가 역치(threshold) 이상 높아지면 뇌척수액의 T1 이완시 간(relaxation time)이 감소하여 무효역전시간(null inversion time)을 상쇄시키므로 뇌척수액이 고신호 강도로 나타나기 때 문이다(1). 정상 뇌척수액은 FLAIR 영상에서 저신호 강도로 보이지만 뇌혈관장벽이 파괴되어 조영제가 뇌척수액강으로 유출되면 뇌 척수액 고유의 T1, T2 반복시간이 짧아져서 더는 반전회복 연 쇄에 의해 상쇄되지 않는다. 따라서 원래의 고신호 강도를 유 지하게 되므로 조영증강 현상으로 나타난다(14-21). FLAIR 영상은 T1 강조영상이 인지할 수 있는 조영제 농도보다 4배 이상 낮은 농도의 조영제를 인지할 수 있으므로 근본적으로 T1 강조영상보다 T1 단축효과에 더 민감하다(1, 2, 21-23, 33, 34). 또한, T1 강조영상에서는 피질 정맥의 느린 혈류가 고신호 강도로 나타나므로 수막의 조영증강과 구분하기가 어 려운데 비해, FLAIR영상에서는 반복시간과 에코시간이 길어 서 느린 혈류가 유동공백(flow void)으로 나타나기 때문에 연 수막의 조영증강과 피질 정맥의 조영증강을 쉽게 구분할 수 있다(21, 24). 그러므로 조영증강 FLAIR 영상은 뇌혈관장벽 이 파괴되어 뇌척수액의 단백질 농도나 조영제 농도가 증가할 수 있는 연수막 질환의 진단에 유용하다(1, 21, 22, 24-28). 조영증강후 지연획득 MR영상에 대한 기존의 연구를 살펴보 면, Elster 등(35)은 조영제 주입 2-6일 후 T1 강조영상에서 C: early-flair D: delayed-flair Fig. 10. A patient having a tuberculous meningoencephalitis (patient No. 5): comparison of T1WI and FLAIR images. Pre-enhanced FLAIR (A) and post-enhanced early T1WI (B) do not show meningeal enhancement. The diffuse meningeal enhancement (arrows) is more conspicuous on post- enhanced delayed FLAIR (D) than post-enhanced early FLAIR image (C). Among all images (A-D), multiple enhancing nodules in brain parenchyma are most conspicuous on post-enhanced delayed FLAIR image (D). 15

16

17 1. Dechambre SD, Duprez T, Grandin CB, Lecouvet FE, Peeters A, Cosnard G. High signal in cerebrospinal fluid mimicking subarachnoid hemorrhage on FLAIR following acute stroke and intravenous contrast medium. Neuroradiology 2000;42:608-611 2. Jackson EF, Hayman LA. Meningeal enhancement on fast FLAIR images. Radiology 2000;215:922-924 3. Naul LG, Finkenstaedt M. Extensive cerebrospinal fluid enhancement with gadopentate dimeglumine in a primitive neuroectodermal tumor. AJNR Am J Neuroradiol 1997;18:1709-1711 4. Sakamoto S, Kitagaki H, Ishii K, Yamaji S, Ikejiri Y, Mori E. Gadolinium enhancement of the cerebrospinal fluid in a patient with meningeal fibrosis and cryptococcal infection. Neuroradiology 1997;39:504-505 5. Pui MH, Langston JW, Arai Y. Gd-DTPA enhancement of CSF in meningeal carcinomatosis. J Comput Assist Tomogr 1993;17:940-944 6. Sze G, Soletsky S, Bronen R, Krol G. MR imaging of the cranial meninges with emphasis on contrast enhancement and meningeal carcinomatosis. AJR Am J Roentgenol 1989;153:1039-1049 7. Chang KH, Han MH, Roh JK, Kim IO, Han MC, Kim CW. Gd-DT- PA-enhanced MR imaging of the brain in patients with meningitis: comparison with CT. AJR Am J Roentgenol 1990;154:809-816 8. Phillips M, Ryals TJ, Kambhu SA, Yuh WT. Neoplastic vs inflammatory meningeal enhancement with Gd-DTPA. J Comput Assist Tomogr 1990;14:536-541 9. Yousem D, Patrone P, Grossman R. Leptomeningeal metastases: MR evaluation. J Comput Assist Tomogr 1990;14:255-261 10. Ginsberg LE. Contrast enhancement in meningeal and extra-axial disease. Neuroimaging Clin N Am 1994;4:133-152 11. Hajnal JV, Bryant DJ, Kasuboski L, Pattanyi PM, De Coene B, Lewis PD, et al. Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain. J Comput Assist Tomogr 1992;16:841-844 12. White SJ, Hajnal JV, Young IR, Bydder GM. Use of fluid-attenuated inversion-recovery pulse sequences for imaging the spinal cord. Magn Reson Med 1992;28:152-162 13. De Coene B, Hajnal JV, Gatehouse P, Longmore DB, White SJ, Oatridge A, et al. MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. AJNR Am J Neuroradiol 1992; 13:1555-1564 14. Rydberg JN, Hammond CA, Grimm RC, Erickson BJ, Jack C Jr, Huston J 3rd, et al. Initial clinical experience in MR imaging of the brain with a fast fluid attenuated inversion-recovery pulse sequence. Radiology 1994;193:173-180 15. Alexander J, Sheppard S, Davis P, Salverda P. Adult cerebrovascular disease: role of modified rapid fluid-attenuated inversion-recovery sequences. AJNR Am J Neuroradiol 1996;17:1507-1513 16. Tsuchiya K, Inaoka S, Mizutani Y, Hachiya J. Fast fluid-attenuated inversion-recovery MR of intracranial infections. AJNR Am J Neuroradiol 1997;18:909-913 17. Husstedt HW, Sickert M, Kostler H, Haubitz B, Becker H. Diagnostic value of the fast-flair sequence in MR imaging of intracranial tumors. Eur Radiol 2000;10:745-752 18. Essig M, Schlemmer HP, Tronnier V, Hawighorst H, Wirtz R, van Kaick G. Fluid-attenuated inversion recovery MR imaging of gliomatosis cerebri. Eur Radiol 2001;11:303-308 19.,,,. FLAIR T2. 2003;48:1-6 20. Adams JG, Melhem ER. Clinical usefulness of T2-weighted fluidattenuated inversion recovery MR imaging of the CNS. AJR Am J Roentgenol 1999;172:529-536 21. Mamourian AC, Hoopes PJ, Lewis LD. Visualization of intravenously administered contrast material in the CSF on fluid-attenuated inversion-recovery MR images: an in vitro and animal-model investigation. AJNR Am J Neuroradiol 2000;21:105-111 22. Mathews VP, Caldemeyer KS, Lowe MJ, Greenspan SL, Weber DM, Ulmer JL. Brain: gadolinium-enhanced fast fluid-attenuated inversion-recovery MR imaging. Radiology 1999;211:257-263 23. Bozzao A, Floris R, Fasoli F, Fantozzi LM, Colonnese C, Simonetti G. Cerebrospinal fluid changes after intravenous injection of gadolinium chelate: assessment by FLAIR MR imaging. Eur Radiol 2003;13:592-597 24. Griffiths PD, Coley SC, Romanowski CA, Hodgson T, Wilkinson I. Contrast-enhanced fluid-attenuated inversion recovery imaging for leptomeningeal disease in children. AJNR Am J Neuroradiol 2003; 24:719-723 25. Tsuchiya K, katase S, Yoshino A, Hachiya J. FLAIR MR imaging for diagnosing intracranial meningeal carcinomatosis. AJR Am J Roentgenol 2001;176:1585-1588 26. Ercan N, Gultekin S, Celik H, Tali TE, Oner YA, Erbas G. Diagnostic value of contrast-enhanced fluid-attenuated inversion recovery MR imaging of intracranial metastases. AJNR Am J Neuroradiol 2004;25:761-765 27.,,,,,. fluid-attenuated inversion-recovery MR. 2000;43:257-264 28. Essig M, Knopp MV, Schoenberg SO, Hawighorst H, Wenz F, Debus J, et al. Cerebral gliomas and metastases: assessment with contrast-enhanced fast fluid-attenuated inversion-recovery MR imaging. Radiology 1999;210:551-557 29. Hirota T, Ishihara K, Akazawa K, Kubota T, Yamada K, Nishimura T. Case report: delayed post-contrast fluid-attenuated inversion recovery image for depicting meningeal carcinomatosis. Br J Radiol 2004;77:528-531 30. Noguchi K, Ogawa T, Inugami A, Toyoshima H, Okudera T, Uemura K. MR of acute subarachnoid hemorrhage: a preliminary report of fluid-attenuated inversion-recovery pulse sequences. AJNR Am J Neuroradiol 1994;15:1940-1943 31. Noguchi K, Ogawa T, Inugami A, Inugami A, Toyoshima H, Sugawara S, et al. Acute subarachnoid hemorrhage: MR imaging with fluid-attenuated inversion recovery pulse sequences. Radiology 1995;196:773-777 32. Singer M, Atlas SW, Drayer BP. Subarachnoid space disease: diagnosis with fluid-attenuated inversion-recovery MR imaging and

comparison with gadolinium-enhanced spin-echo MR imaging: blinded reader study. Radiology 1998;208:417-422 33. Bergin PS, Fish DR, Shorvon SD, Oatridge A, desouza NM, Bydder GM. Magnetic resonance imaging in partial epilepsy: additional abnormalities shown with the fluid attenuated inversion recovery (FLAIR) pulse sequence. J Neurol Neurosurg Psychiatry 1995; 58:439-443 34. Luzzani F, Cipolla P, Pelaprat ML, Robert F, Gotti C, Tirone P, et al. Brain penetration and neurological effects of gadobenate dimeglumine in the rat. Acta Radiol 1997;38:268-272 35. Elster AD, Moody DM. Early cerebral infarction: gadopentetate dimeglumine enhancement. Radiology 1990;177:627-632 36. Mathews VP, Caldemeyer KS, Ulmer JL, Nguyen H, Yuh WT. Effects of contrast dose, delayed imaging, and magnitization transfer saturation on gadolinium-enhanced MR imaging of brain lesions. J Magn Reson Imaging 1997;7:14-22 37. McClennan BL, Becker JA. Cerebrospinal fluid transfer of contrast material at urography. Am J Roentgenol Radium Ther Nucl Med 1971;113:427-432 38. Knutzon RK, Poirier VC, Gerscovich EO, Brock J, Buonocore M. The effect of intravenous gadolinium on the magnetic resonance appearance of cerebrospinal fluid. Invest Radiol 1991;26:671-673 39. Mihara F, Gupta KL, Righi AM. Non-T1-weighted spin-echo MR imaging with contrast material: experimental and preliminary clinical assessment. Radiat Med 1994;12:209-212 18

Usefulness of Post-enhanced Delayed FLAIR Imaging for Making the Diagnosis of Leptomeningitis 1 Eun Hye Lee, M.D., Deok Hee Lee, M.D. 2, Kwang Deog Jo, M.D. 3, Jae Seok Song, M.D. 4, Man Soo Park, M.D., Kyoung Sik Cho, M.D. 2 1 Department of Radiology, Gangneung Asan Hospital, University of Ulsan College of Medicine 2 Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine 3 Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine 4 Department of Preventive Medicine & Public Health, College of Medicine Kwandong University Purpose: To evaluate the usefulness of post-enhanced delayed FLAIR (fluid-attenuated inversion-recovery) images in the diagnosis of leptomeningitis. Materials and Methods: We obtained the pre- and post-enhanced FLAIR images of 7 rabbits every hour after infusing triple doses of contrast, and we measured the signal intensities of the CSF (cerebrospinal fluid) and the brain parenchyma. Five leptomeningitis patients and 5 volunteers were enrolled to obtain the pre-enhanced FLAIR images, the early post-enhanced FLAIR images and the delayed post-enhanced FLAIR images, with using a standard dose of contrast, and to measure the signal intensities of the CSF and brain parenchyma. The statistical significances were determined by a mixed procedure and the Wilcoxon rank-sum test (p<0.05). Results: In the rabbits, the signal intensities of the CSF began to increase after an hour of contrast infusion, but those of the parenchyma did not increase. The time of maximum CSF enhancement was 2 hours after contrast infusion (p<0.001; standard estimate=750.43) and we obtained the post-enhanced delayed FLAIR images for clinical studies according to this result. The signal intensities of the CSF in the subarachnoid space were higher in the patient group compared with those of the normal control group on both the early post-enhanced FLAIR images and the delayed post-enhanced FLAIR images (p=0.0096) (p=0.0391). In the patient group, changes of signal intensities of the CSF in the subarachnoid space were more conspicuous on the delayed post-enhanced FLAIR images than on the early post-enhanced FLAIR images (p=0.0042). However, those of the parenchyma were not different in either group. Conclusion: The post-enhanced delayed FLAIR images obtained at 2 hours after contrast infusion are more useful for making the the diagnosis of leptomeningitis than are the post-enhanced early FLAIR images. Index words : Brain, MR Magnetic resonance (MR), pulse sequence Magnetic resonance (MR), contrast enhancement Meningitis Cerebrospinal fluid, MR Brain, diseases Address reprint requests to : Deok Hee Lee, M.D., Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine 388-1, Poongnap-dong, Songpa-gu, Seoul 138-736, Korea. Tel. 82-2-3010-4325 Fax. 82-2-476-0090 E-mail: dhlee@amc.seoul.kr 19