Development of child human model for crashworthiness simulation
List of Tables List of Figures Anthropometry Scale factor (R.O.M.) Neck Calibration Extremity 3-point bending test Sled test Abstract
1. 1.1.. 6. 50% 6. 6 GEBOD, VIEW POINT, KRISS DATA 6. HARB Scale Factor 6. 6(HYBRIDIII 6Year Old/TNO P6), 3(HYBRID III 3-Year Old/TNO P3), 12(CRABI/TNO P12).. 50% HYBRID III EUROSID..
1.2 Hybrid III (Child Crash Test Dummy) 3 6 1991 1993 SAE Biomechanics Committees (NHTSA : National Highway Traffic Safety Administration) Working Group, "Out-of-Position"(OOP) 1997. (Child Dummy) OOP (Neck Loading), (Chest Compression), VC(Viscous Criterion).. HYBRID III. Out-Of-Position. NHTSA 3 6 12. TNO P0(New born), P3/4(9 months), P3(3 years), P6(6 years).fig. 1.1. (1)~(2)
Fig. 1.1 Exploded view of TNO child dummy pillar 3/6.. 6% 30%. 1/4 1/7. (center of gravity)...
. 3 6.
2. / 2.1 (Pediatric chiropractic) (3) 2.1.1,. (dummies),,,,,..,. (1) (force). Barnsley 20( 32.2km/h), 12G. 5G 50%,,, 40 ( 64.4km/h), 90G 46G. (2). / 0.24 0.5.,.
(3),.,.,.,,..,.,, (4).. 80%. (occult fracture) CT. (5). Ameis, 6., 12~36. Schofferman Wasserman. 8~108, 29.
(6). Ameis 40-70%.,. Barnsley.,,,. Lord,,. 86%. Barnsley, 68%. 2.1.2.,,,,,,,,,,,.,,,..,,,.
2.1.3 (1)..,, 25%. 15%.,,. 0-3,.. (2)
(3) (ASIS) Fig2.1 Fig. 2.1 Anterior superior iliac spine
(4),.,.,. 4 9,.,.,, Fig. 2.2 (jackknifing).. (5),.,. (6) (SUBMARINING),, 4-9,. submarining. 10 14, submarining.
Child fastened with pelvic seat belt State that pelvis slides down under seat belt Pelvic seat belt Jackknifing Fig. 2.2 SUBMARINING
(7)., 25 ( 40km/h), 20G... 2.,. Fig. 2.3 Fig. 2.4.Fig. 2.5, Fig. 2.3 Baby seated in adult knee in suspension state and frontal crash.
Suspension state Child who do not create seat belt is threw like human projectile Seat belt for infant that do not connect to seat belt in crash threw human projectile with baby Fig. 2.4 Child with seat belt not fastened. Fig. 2.5 Serious damage happens often to child who do not fasten seat belt in car accident, In region head, face, cervical spine, breast, abdomen, pelvis etc.
,,, 40 (18kg).,. Burg.,. Chobra Klein, 71% 67%., 11 3. (8),., 1-4,. Sherz 95% 60%. 4 10.., 40%., gaus.,. Fig. 2.6 air bag. Fig. 2.7 Table 2.1.
Fig. 2.6 Safety seat for child that see back side must not use this posture in car with air bag. Fig. 2.7 Different types of seat belts
Table 2-1 Various sitting methods for safe in vehicle 4-9 12-14..,,... 0-4. Drongowski,,.. 4-9.,,.,,....,. Fig. 2.8 air bag Fig. 2.9.
Tingvall,.. 1. 9... 2. 9 4,,.. 3. 5-10,... 1. 2. 3.
Fig. 2.8 Safety seat for child that see back side that lean against and use in dash board with no air bag Fig. 2.9 Child in reinforcement seat
(9),.,..,,., -. Agran, 0-3 81%... 11%, 6%. Fig. 2.10 Fig. 2.11 ASIS. 1. 2. 3.,...,,.
Fig. 2.10 Seat belt can do to strengthening abdominal damage Fig. 2.11 If pelvic seat belt slides on ASIS in collision, abdomen damage can happen
(10),.,,,,., 58%,., Chance. Chance, 63%. Chance,. 4-9.. Fig. 2.12~14 Chance. Fig. 2.12 Seven age child is previewing mechanism of Chance bone fracture
Fig. 2.13 Damage of conical form involved in chance bone fracture Fig. 2.14 Abdominal cavity had fixed in peritoneum from middle lumbar part constructions by pelvis seat belt damage be apt to
(11) 4-9,.,,. /,. NHTSA..,,,. A. Seat belt is so loose B. Shoulder seat belt that omit shoulder backward C. Shoulder seat belt that jam under arm D. Shoulder seat belt put properly to pass clavicle Fig. 2.15 Various types of seat belts
,.,.,,,,,. States,,..Fig. 2.15~16.,.,,,. (12) Fig. 2.16 Image of safey seat belt child is cheated backward by air bag
2.1.4 Margolis, 10%. 16 796 479 10, 26%, 22%, 34%, 18%. 5 50%, 60%. 28%, 42%. 26%. 7%, 4%. (38%), (27%). 30%. (1), (27.5%)., 25%, 75%.,.,.,,,. (2) 17-50%..
(3).,. 3 4. Tingvall,. 20%.,.,. (4) PangWilberger -,.,.,,.. (5),.,. Jackson,.,
(6),...,, MRI. (7),. 30 4.,,.,. (8),,, ( ).,..
(9), 7%.,.,. Conry Hall.,. Fig. 2.17~20. 4-9,. Fig. 2.17 Damage regions by 2 point seat belt
Fig. 2.18 When using 3 point seat belt, breast and cervical spine damage can happen. Fig. 2.19 Lumbar damage including anterolateral pressure bone fracture can happen by phenomenon to turn
Fig. 2.20 Infant slides like submarine and descends in safety seat. State that middle ring is not fastened
2.2 2.2.1 (1) (Macroscopic Anatomy, Gross Anatomy) (2) (Microscopic Anatomy) (3) (Developmental Anatomy)
2.2.2 (1) (Systemic Anatomy) (cell) (tissue) (organ), (system).,.. a. (Skeletal system) --------------------------- (Osteology) b. (Muscular system) ------------------------- (Myology) c. (Nervous system) -------------------------- (Neurology) d. (Circulatory system) -------------------- (Angiology) e. (Viceral system) ---------------------------- (Splachnology) (Digestive system) (Respiratory system) (Urinary system) (Reproductive system) f. (Endocrine system) ---------------------- (Endocrinology) g. (Sensory system) ------------------------ (Aesthesiology) h. (Integumentary system) ------------------- (Dermatolgy)
(2) (Regional Anatomy),,,. (surgical anatomy). (Applied anatomy) : (Radiographic Anatomy) : X- (Kinetic anatomy) : (Artistic anatomy) :
2.2.3 (4) Fig. 2.21 Infant and adult Fig. 2.21..
2.2.4. 1. 6. Fig. 2.22. (1) Vertebrae 1 year 3 year 6 year adult Fig. 2.22 Chang of vertebrae
(2) Intervertebral disc. 1.. Fig. 2.23. 1 year 3 year 6 year adult Fig. 2.23 Chang of disc
(3) Facet joint Fig. 2.24 Organization of facet joint Fig. 2.25 Change of facet joint angle
3. 6 3.1 6 Anthropometry 1997 D/B. Fig. 3.2 47. Table. 3.1~2 6 /. (skin) ViewPoint TM, Fig.3.1 6.,. Fig. 3.3 6. (5)~(6)
Fig. 3.1 Surface from VIEW POINT TM
Fig. 3.2 Measurement catagory
Table 3.1 Measured value of 6-yeat old child body (A)
Table 3.1 Measured value of 6-yeat old child body (B)
Fig. 3.3 Finite element model of 6 year old child
, ARB (Articulated Rigid Body) model (, ) GEBOD. ARB. GEBOD Fig. 3.2,,. GEBOD 6, segment Fig. 3.6, 15. Fig. 3.7. PAM-SAFE.
Fig. 3.4 Human Body Model Development Procedure Fig. 3.5 Organization of ARB program
Fig. 3.6 Mass property of segment
Fig. 3.7 Joint location of 6 year old child
Fig. 3.3~4 6.Fig. 3.8 -. 3, 6. Fig. 3.8 Various joint element
3.2 Scaling (7)~(13) 6 6.,, 50% HARB. 50% HARB 6 6. 3.2.1 Geometry Scale KRISS GEBOD VIEW POINT TM 50% HARB Hybrid III Table 3.3 Fig. 3.9~11,,, 2.. Table 3.4 6.Fig. 3.12 6 skin.
Table 3.3 Formulas for scale factor
Fig. 3.9 Head part Fig. 3.10 Torso,vertebral,pelvic parts Fig. 3.11 Extremities
Table. 3.4 Applied scale factor 6yrs Human Model 6yrs Hybrid lll Dummy Head X :0.88 Y:0.88 Z:0.9 X :0.914 Y:0.914 Z:0.914 neck X :0.629 Y:0.60 Z:0.675 X :0.618 Y:0.618 Z:0.7 Vertebra X :0.629 Y:0.60 Z:0.675 Torso X :0.629 Y:0.60 Z:0.675 X :0.618 Y:0.618 Z:0.7 Pelvis X :0.629 Y:0.60 Z:0.675 Femur X :0.579 Y:0.57 Z:0.574 X :0.505 Y:0.505 Z:0.647 Tibia,Fibula X :0.579 Y:0.57 Z:0.51 X :0.553 Y:0.553 Z:0.659 Humerus X :0.629 Y:0.60 Z:0.617 Ulna.Radius X :0.629 Y:0.60 Z:0.556 Fig. 3.12 Image that insert 50% HARB bone model in skin
3.2.2 Property Scale 6. Yoganandan Frank A. Pintar Scale factor.. (Fig. 3.13) 18 Small, Mid-size, Large 3.. Mid-size 1 Small, Large scale. Table 3.5 Fig.3.14.... Fig. 3.13 Experiment process for calculating human scale factor
Table. 3.5 Mean vertebral body height measurements. Standard error in parentheses Fig. 3.14 Bar graph representing scaling ratios for human and caprine vertebral body height,and human standing height.
Table. 3.6 Comparison of scaling ratios between the current study, Ching et al. and FMVSS 208 Table 3.6.
3.3 ROM(Range of motion) analysis joint,. 6 6, Fig. 3.15 -. Fig. 3.16~19 ROM joint. Table 3.7. (a) Torso-shoulder joint
(b) Arm-elbow joint
(c) Leg-knee joint (d) Knee-ankle joint Fig. 3.15 Joint property
I : 129+48 (deg) Ref. : Glanville &Kreezer(1937) Dempster(1955a) (a) Shoulder abduction and adduction motion (b) Deformed shape
Fig. 3.16 ROM analysis for shoulder P : 142(deg) Ref. : Dempster(1955a) (a) Moment-rotation characteristic (b) Elbow flexion motion
Fig. 3.17 ROM analysis for elbow CC : 35 (deg) DD : 38 (deg) Ref. : Dempster(1955a) (a) Moment-rotation characteristic (b) Ankle rotation motion
Fig. 3.18 ROM analysis for ankle (a) Neck extension (b) Neck flexion
Fig 3.19 ROM test on 6-YR neck model
Table. 3.7 Terms of body movement 3.4 Neck (14)~(15). 6 flexion/extension 6 scale factor. Fig. 3.20 6 X-ray. 17~19 4~6 C2 dens. 50% HARB.
3.4.1 Fig. 3.20 6-years old girl's lateral X-ray picture Fig. 3.22 flexion/extension. C2 T2. pure moment flexion/extension.
3.4.2 Fig. 3.21 Neck flexion/extension test installation 6..Fig. 3.22 Fig. 3.23. Fig. 3.22 6-year old child s neck model Fig. 3.23 Image that magnify cervical verterbral
C2 T2 rigid bar pure moment rigid bar flexion/extension. Fig. 3.24 rigid bar Fig. 3.25 flexion extension. Fig. 3.24 Apply rigid bar to neck model for pure moment Flexion moment Extension moment
Fig. 3.25 Flexion/extension moment mechanism flexion/extension ligament scale Fig. 3.26~27 Fig. 3.28.. Fig. 3.29. Fig. 3.26 Result value of cadaver(a)
Fig. 3.27 Result value of cadaver(b) Fig. 3.28 Average Result value of cadavers
Fig. 3.29 Comparison cadaver and simulation result value and applied scale factor. Fig. 3.30 extension. 6. 15 25 40 Fig. 3.30 Deformed shape of extension simulation
3.5 Extremity 3-point bending test (16)~(17) 3.. 6 Humerus 3. Fig. 3.31. 3.5.1 Fig. 3.32 3. PMMA..
Fig. 3.31 Long bones Fig. 3.32 Three point bending test fixture
Fig. 3.33 Scale factor for bone property Fig. 3.33 Martin scale factor. 6.7 6 Humerus. Fig. 3.34 3 Fig. 3.35 3. Fig. 3.36 martin sturtz.. Fig. 3.34 three point bending simulation (Humerus) Fig. 3.35 Force-Displacement curve.
Fig. 3.36 Comparison of result values (Humerus)
3.6 Sled simulation (Barrier Crash Test),.,. (Actuator). ECE R16 (Steel Seat) 40020kg TNO-10 (Dummy), H- Point (Seat Belt). 48km/h 2632g (Half Sine Deceleration Pulse), 100300mm, 80200mm, (Biomechanical Injury)., ECE R16, 6.. (Sled Buck) ECE R16 (Universal Sled Buck), Fig. 3.37. (Crash Pulse) Fig. 3.38 ECE R16 (Upper / Lower Boundary) 30mph (Frontal Half Sine).
Fig. 3.39~40 sled skin bone. neck flexion. Fig. 3.41, (, ). cadaver dummy. Fig. 3.37 Universal bucket and child model for ECE R16
Fig. 3.38 ECE R16 Curve
(a) at 0 msec (b) at 15 msec (c) at 30 msec (d) at 35 msec (e) at 40 msec (f) at 45 msec Fig. 3.39 Deformed shapes during sled simulation
(a) at 0 msec (b) at 15 msec (c) at 30 msec (d) at 45 msec (e) at 60 msec (f) at 75 msec Fig. 3.40 Deformed shapes of bone structure during sled simulation
Fig. 3.41 Trace of extremity
4. 6. 6 6 6.. 1. 6 - KRISS GEBOD VIEW POINT TM 6,, Joint 6. 2. 6-6 50% HARB 6. 3. 6 Scale factor - 50% HARB 6,,,, 2. 6. 4. 6 6
. 5. 6 6 flexion/extension. 6. 6 extremity 3-point bending test Humerus 3 6. 7. 6 sled-test 6 sled 6.