Left Center Right 3차원 L 비디오 C 부호화시스템 R LCR 가상시점영상 N- 시점영상출력 깊이정보맵생성 L C R 깊이정보맵 가상시점영상합성 1. 3 N- Fig. 1. N-view system with the 3-view configuration.

Similar documents
(JBE Vol. 21, No. 6, November 2016) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ISSN

그림 2. 최근 출시된 스마트폰의 최대 확장 가능한 내장 및 외장 메모리 용량 원한다. 예전의 피쳐폰에 비해 대용량 메모리를 채택하고 있지 만, 아직 데스크톱 컴퓨터 에 비하면 턱없이 부족한 용량이다. 또한, 대용량 외장 메모리는 그 비용이 비싼 편이다. 그러므로 기존

1. 3DTV Fig. 1. Tentative terrestrial 3DTV broadcasting system. 3D 3DTV. 3DTV ATSC (Advanced Television Sys- tems Committee), 18Mbps [1]. 2D TV (High

03홍성욱.hwp

5 : HEVC GOP R-lambda (Dae-Eun Kim et al.: R-lambda Model based Rate Control for GOP Parallel Coding in A Real-Time HEVC Software Encoder) (Special Pa

À±½Â¿í Ãâ·Â

03이승호_ok.hwp

19_9_767.hwp

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

09권오설_ok.hwp

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

14최해철_ok.hwp

1 : S-JND HEVC (JaeRyun Kim et al.: S-JND based Perceptual Rate Control Algorithm of HEVC) (Regular Paper) 22 3, (JBE Vol. 22, No. 3, May 2017)

10 서석용(69~79)_수정.hwp

01이국세_ok.hwp

(JBE Vol. 20, No. 6, November 2015) (Regular Paper) 20 6, (JBE Vol. 20, No. 6, November 2015) ISSN

3 : S-JND HEVC (JaeRyun Kim et al.: A Perceptual Rate Control Algorithm with S-JND Model for HEVC Encoder) (Regular Paper) 21 6, (JBE Vol. 21,

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

08김현휘_ok.hwp

a), b), c), b) Distributed Video Coding Based on Selective Block Encoding Using Feedback of Motion Information Jin-soo Kim a), Jae-Gon Kim b), Kwang-d

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.

2 : MMT QoS (Bokyun Jo et al. : Adaptive QoS Study for Video Streaming Service In MMT Protocol). MPEG-2 TS (Moving Picture Experts Group-2 Transport S

V28.

DBPIA-NURIMEDIA

PowerPoint 프레젠테이션

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

1 : MV-HEVC (Jae-Yung Lee et al.: Fast Disparity Motion Vector Searching Method for the MV-HEVC) High Efficiency Video Coding (HEVC) [1][2]. VCEG MPEG

1 : HEVC (Jeonghwan Heo et al.: Fast Partition Decision Using Rotation Forest for Intra-Frame Coding in HEVC Screen Content Coding Extension) (Regular

02손예진_ok.hwp

13김상민_ok.hwp

µðÇÃÇ¥Áö±¤°í´Ü¸é

MPEG-4 Visual & 응용 장의선 삼성종합기술원멀티미디어랩

ȲÀμº Ãâ·Â

1 : HEVC Rough Mode Decision (Ji Hun Jang et al.: Down Sampling for Fast Rough Mode Decision for a Hardware-based HEVC Intra-frame encoder) (Special P

(JBE Vol. 24, No. 2, March 2019) (Regular Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

(JBE Vol. 20, No. 2, March 2015) (Special Paper) 20 2, (JBE Vol. 20, No. 2, March 2015) ISSN

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

08년요람001~016

방송공학회논문지 제18권 제2호

(JBE Vol. 20, No. 6, November 2015) ISO/IEC HEVC [1]. LG 7680x4320 8k UHD TV 4 HEVC. HEVC H.264/AVC 3 2 [2]. UHD,,, HEVC.,,. Davinci Resolve

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

(JBE Vol. 23, No. 2, March 2018) (Regular Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

°í¼®ÁÖ Ãâ·Â

02이주영_ok.hwp

19_9_767.hwp

2 : (Jaeyoung Kim et al.: A Statistical Approach for Improving the Embedding Capacity of Block Matching based Image Steganography) (Regular Paper) 22

., 3D HDTV. 3D HDTV,, 2 (TTA) [] 3D HDTV,,, /. (RAPA) 3DTV [2] 3DTV, 3DTV, DB(, / ), 3DTV. ATSC (Advanced Television Systems Committee) 8-VSB (8-Vesti

05안용조.hwp

6.24-9년 6월

2 : HEVC (Woo-Jin Han et al. : Early Decision of Inter-prediction Modes in HEVC Encoder) (Regular Paper) 20 1, (JBE Vol. 20, No. 1, January 201

(JBE Vol. 21, No. 3, May 2016) HE-AAC v2. DAB+ 120ms..,. DRM+(Digital Radio Mondiale plus) [3] xhe-aac (extended HE-AAC). DRM+ DAB HE-AAC v2 xhe-aac..

#유한표지F

45-51 ¹Ú¼ø¸¸

지속가능경영보고서도큐_전체

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

µðÇÃÇ¥Áö±¤°í´Ü¸é

DBPIA-NURIMEDIA

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

<31325FB1E8B0E6BCBA2E687770>


½Éº´È¿ Ãâ·Â

4 : (Hyo-Jin Cho et al.: Audio High-Band Coding based on Autoencoder with Side Information) (Special Paper) 24 3, (JBE Vol. 24, No. 3, May 2019

차분 이미지 히스토그램을 이용한 이중 레벨 블록단위 가역 데이터 은닉 기법 1. 서론 멀티미디어 기술과 인터넷 환경의 발달로 인해 현대 사회에서 디지털 콘텐츠의 이용이 지속적 으로 증가하고 있다. 이러한 경향과 더불어 디지털 콘텐츠에 대한 소유권 및 저작권을 보호하기


1. 서 론

(JBE Vol. 24, No. 1, January 2019) (Regular Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287

#Ȳ¿ë¼®

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

<313920C0CCB1E2BFF82E687770>

Â÷¼øÁÖ

,,, 3D, 3D 3D. 3DTV,,, [1][2].,, (frame-compatible) 3D [3][4]. 3DTV, 3DTV, 3DTV DTV [5]. 3DTV,, 3. 3DTV MPEG-2 (ISO/IEC ) [6] 3DTV (dual

3 : ATSC 3.0 (Jeongchang Kim et al.: Study on Synchronization Using Bootstrap Signals for ATSC 3.0 Systems) (Special Paper) 21 6, (JBE Vol. 21

±è¼ºÃ¶ Ãâ·Â-1

DBPIA-NURIMEDIA

63-69±è´ë¿µ

01박기준.hwp

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

Microsoft PowerPoint - MPEG_3DVC

I

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp

歯111

1 : UHD (Heekwang Kim et al.: Segment Scheduling Scheme for Efficient Bandwidth Utilization of UHD Contents Streaming in Wireless Environment) (Specia

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

(JBE Vol. 20, No. 5, September 2015) (Special Paper) 20 5, (JBE Vol. 20, No. 5, September 2015) ISS

14.531~539(08-037).fm

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

,, [1-2]. MPEG(Moving Picture Experts Group). MPEG.. [3-4].. DC DC, (thubnail).. MPEG [5-8]. H.264/AVC [9-10].. H.264/AVC [11-14]. H.264/AVC, [13]., H

07.045~051(D04_신상욱).fm

¿ì¾ç-ÃÖÁ¾

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie


03허영수.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

06박영수.hwp

Slide 1


Transcription:

a), a) A Depth-map Coding Method using the Adaptive XOR Operation Kyung Yong Kim a) and Gwang Hoon Park a).,., /. XOR. DCT (H.264/AVC). H.264/AVC BD-PSNR 0.9 db ~ 1.5 db BD-rate 11.8 % ~ 20.8 %. BD-PSNR 0.5 db ~ 0.8 db BD-rate 7.7 % ~ 12.2 %. DCT,. Abstract This paper proposes an efficient coding method of the depth-map which is different from the natural images. The depth-map are so smooth in both inner parts of the objects and background, but it has sharp edges on the object-boundaries like a cliff. In addition, when a depth-map block is decomposed into bit planes, the characteristic of perfect matching or inverted matching between bit planes often occurs on the object-boundaries. Therefore, the proposed depth-map coding scheme is designed to have the bit-plane unit coding method using the adaptive XOR method for efficiently coding the depth-map images on the object-boundary areas, as well as the conventional DCT-based coding scheme (for example, H.264/AVC) for efficiently coding the inside area images of the objects or the background depth-map images. The experimental results show that the proposed algorithm improves the average bit-rate savings as 11.8 % ~ 20.8% and the average PSNR (Peak Signal-to-Noise Ratio) gains as 0.9 db ~ 1.5 db in comparison with the H.264/AVC coding scheme. And the proposed algorithm improves the average bit-rate savings as 7.7 % ~ 12.2 % and the average PSNR gains as 0.5 db ~ 0.8 db in comparison with the adaptive block-based depth-map coding scheme. It can be confirmed that the proposed method improves the subjective quality of synthesized image using the decoded depth-map in comparison with the H.264/AVC coding scheme. And the subjective quality of the proposed method was similar to the subjective quality of the adaptive block-based depth-map coding scheme. Keyword: 3D Video Coding, Depth-map Coding, FTV(Free view-point TV), MVC(Multi-view Video Coding)

Left Center Right 3차원 L 비디오 C 부호화시스템 R LCR 가상시점영상 N- 시점영상출력 깊이정보맵생성 L C R 깊이정보맵 가상시점영상합성 1. 3 N- Fig. 1. N-view system with the 3-view configuration. 3 3.,, 3. 3 HD 3. 3D HDTV,.. 19.4 Mbps.. 3D 3 ISO/IEC MPEG(Moving Picture Experts Group) 3 a) Media Lab., College of Electronics and Information, Kyung Hee University : (ghpark@khu.ac.kr) IT (NIPA-2011-(C1090-1111-0001)). (2010 9 7 ),(1 :2011 1 11,2 :3 7 ), (2011 3 7 )., 3 3. 3 (Depth-map).,. 3D., 3. 1 MPEG 3 N(N>3)- [1].,,,,.,, 3..,..,,

3. 2 HM(Head Mount) TV(FTV; Free view-point TV) [2]. 3 MPEG 3.., 3., 3. DCT(Discrete Cosine Transform) [3].....,... II. (a) (b) (a) (c) (a) (d) (c) (e) (f) (e) (g) (e) (h) (g) 2. "Breakdancers" (a) (e) Fig. 2. Comparison of the subjective picture quality of the synthesized image generated by using the original depth map(a) and the decoded depth map(e) after encoding in the "Breakdancers" sequence

,. (Edge). DCT,.. 2 MPEG Breakdancers. 2(a) Breakdancers 2(e) Breakdancers (Quantization Parameter) '37' H.264( MPEG-4 part 10 AVC; Advanced Video Coding) [4]. 2(c) 2(g) 2(a) (e). MPEG 3 (VSRS, View Synthesis Reference Software) [5,6]., 8 2 (2 ) 2 (1 3 ) (1 3 ). 2(e) ( 2(f)), DCT. 2(g) ( (h)),.. DCT [7,8]. DCT ( 3(A)) ( 3(B)) H.264/ AVC - (Rate-distortion Optimization) [9].. DCT, DCT. 3. 3(A) DCT, H.264/AVC. 3(B),,,. A DCT 기반동영상부호화방법 깊이정보맵블록입력 B 그레이코드변환 비트평면분리 비트평면부호화 다중화 비트스트림 3. [7] Fig. 3. Adaptive block-based depth-map coding method

[10]... (P; Most significant bit-plane) (P; Least significant bit-plane) MPEG-4 Part-2 Visual(ISO/IEC 14496-2) [11] (binary shape coding) [12]. (CAE; Context-based Arithmetic Encoding) [13]. III. [7,8]..,., 4 Breakdancers (16x16 ). 5. ( 5(a) 5(b) 5(c)) ( 5(d) 5(e) 5(f)),., 6 비트평면블록 그레이코드로변환된비트평면블록 (a) 비트평면블록 그레이코드로변환된비트평면블록 (b) 비트평면블록 그레이코드로변환된비트평면블록 4. Breakdancers Fig. 4. Bit-plane analysis of the object boundary block with the depth-map of Breakdancers sequence (c)

(a) 4(a) -5 (b) 4(b) -6 (c) 4(c) (d) 4(a) -5 (e) 4(b) -6 (f) 4(c) 5. Fig. 5. Comparison of the bit-plane's binary image of before and after the gray coding 깊이정보맵블록 XOR( ),. 3 비트평면단위부호화 yes 1 모두 0 인지혹은모두 255 인지에대한모드정보만부호화 비트평면분리 2 적응적 XOR 연산 블록내모든이진영상값이동일한가? no 모드정보부호화와 CAE 이용하여이진영상을부호화 6. XOR Fig. 6. bit-plane unit coding method using the adaptive XOR method 1.. 2. XOR., -(i), -(i-1) XOR ( A ). -(i), -(i-1) XOR ( B ). A B. XOR. 3. 6. 3-1., Step 3-2 Step 3-3. 3-2. 0(0) 255(1). 3-3. (CAE).

XOR DCT, DCT. DCT XOR. IV. XOR, XOR., DCT. 7. 7. DCT ( 7(A)) ( 7(B)) H.264/AVC -.. DCT ( 7(A)) ( 7(B)).. 깊이정보맵블록 DCT 기반부호화 비트평면부호화 A 움직임예측 움직임보상 인터 + _ 변환 양자화 엔트로피부호화 다중화 비트스트림 영상버퍼 참조영상버퍼 인트라예측 인트라 재구성된영상버퍼 디블록킹필터 + + 역변환 역양자화 B 비트평면분리 비트율조절 XOR 연산 비트평면단위부호화 깊이정보맵구성 비트평면결합 XOR 연산 비트평면단위복호화 7. Fig. 7. Encoder block diagram of the proposed method

7(A) DCT H.264/AVC, 16x16.,. (Intra) (Inter). DCT. (1). 7(A),. 7(A),. ( ) (Motion Vector).. (2), ( ) (Residual Block),.,,,,. (2-1) DCT (Transform Coefficient). (Spatial Domain) (Frequency Domain),. (2-2) (Quantized Coefficient). (2-3) DC (Zigzag). (2-4) (Entropy). (CAVLC; Context-adaptive Variable Length Coding) (CABAC; Context-based Adaptive Binary Arithmetic Coding [15] ). (3) DCT. (4) (Inter-frame)..,. /., (Blocking Artifact) ( ). (5),. 7(B) XOR. 16x16. 7(B),, XOR,,.

(1) N- N. (2).,. H.264/AVC -. (3) n -1, -2, -3, -4, -5, -6,,.. (3-1) XOR ( ) XOR. XOR ( ). XOR 8. ( A )., XOR ( B ). A B A B XOR. XOR XOR (1 ), XOR 1 XOR '0' XOR. (3-2) MPEG-4 Part-2 Visual(ISO/IEC 14496-2) [11] [12]. (CAE; Context-based Arithmetic Encoding) [13]. (4). (5),. (m : ), m. (6) XOR XOR. XOR XOR. (7) m M-. (8) M- (N- ). N- (+m+1 ) 0(0). (9) 7(A) DCT 7(B) /,. 현재비트평면을이진부호화한후비트양측정 (A) 시작 A > B yes XOR 연산수행 끝 XOR 연산을수행한비트평면을이진부호화한후비트양측정 (B) 8. XOR Fig. 8. Method deciding whether or not the execution of XOR operation no

s 7 MPEG-4 Part-2 Visual(ISO/IEC 14496-2) [11] (binary shape coding) [12], 9. 현재비트평면블록 모드결정 재구성된영상 비트평면분리 XOR 연산 CAE 부호화다중화비트스트림 9. Fig. 9. Block diagram of the bit-plane encoding method 9. (1),,. 255(1) all_1, 0(0) all_0., intracae CAE [13]. (2) CAE [13]., (Binary Arithmetic Coding). (3), XOR, CAE. 참조비트평면 참조비트평면 XOR 연산 참조비트평면 XOR 연산 XOR 연산 XOR 연산 XOR 연산 참조비트평면 부호화할비트평면 10. Fig. 10. Construction method of the reference bit-plane

9. DCT ( 7(A)) ( 7(B)).. XOR XOR. 10 (-3) XOR CAE,. -3 CAE -3. -3, -3. -3 XOR, XOR. 7 MPEG-4 Part-2 Visual(ISO/IEC 14496-2) [11] (binary shape coding) [12], 11. 11,. (1), XOR, CAE. (2) all_0 all_1,. intra- CAE, CAE [13]. (3) all_0, 0(0). all_1, 255(1). (3) CAE.,.. XOR XOR. 비트스트림 역다중화 재구성된영상 비트평면분리 XOR 연산 CAE 복호화 동일수준블록복호화 재구성된비트평면블록 11. Fig. 11. Decoder block diagram of the bit-plane decoding method 12. 12. 12(C), DCT 12(D). 12(C) XOR.

비트평면복호화 C 비트평면복호화 XOR 연산 비트평면결합 깊이정보맵구성 비트스트림 역다중화 DCT 기반복호화 D 엔트로피복호화 역양자화 역변환 + 디블록킹필터 + 인트라 인트라예측 재구성된영상버퍼 재구성된깊이정보맵블록 인터 움직임보상 참조영상버퍼 영상버퍼 12. Fig. 12. Decoder block diagram of the proposed method (m : ). m. 11. m XOR XOR XOR. M-. M- (N- ) (+m+1 ) 0(0) N-. 12(D) 12(C).. 12(D) DCT (H.264/AVC),,......,. V. H.264/AVC JM(Joint Model) 13.2 [14]

(a) breakdancers (b) ballet (c) champagne_tower (d) breakdancers (e) ballet (f) champagne_tower 13. Fig. 13. Real image and depth-map image DCT (H.264/AVC) [7], 13. 1, I-P-P-P CAVLC CAE, Hierarchical B CABAC(Context-based Adaptive Binary Arithmetic Coding) [15]. 1.. Table 1. Test Condition Ballet,Breakdancers (1024x768, 15Hz), Champagne Tower (1280x960, 30Hz) 100 Frames YUV 4:0:0 22, 27, 32, 37 I-P-P-P-, Hierarchical B CAVLC, CABAC, CAE 14 15 16 DCT (H.264/AVC) [7], PSNR(Peak Signal-to-Noise Ratio) RD(Rate-distortion)-Curve. 2. 14 15, 16, 2,.. Breakdancers Ballet Champagne_ tower PSNR BD-PSNR [16], DCT I-P-P-P 1.3 db, Hierarchical B 1.0 db. I-P-P-P 0.8 db, Hierarchical B 0.6 db. bit-rate BD-bitrate [16]

14. Breakdancers (1 ) : (CAVLC), (CABAC) Fig. 14. Comparison of PSNR results in depth-map(view #1) of Breakdancers sequence: left(cavlc), right(cabac) 15. Ballet (1 ) : (CAVLC), (CABAC) Fig. 15. Comparison of PSNR results in depth-map(view #1) of Ballet sequence: left(cavlc), right(cabac) 16. Champagne_tower (39 ) : (CAVLC), (CABAC) Fig. 16. Comparison of the PSNR results in the depth-map(view #39) of Champagne_tower sequence: left(cavlc), right(cabac)

2. Table 2. Coding efficiency comparison of the depth-map coding methods DCT (H.264/AVC) BD-PSNR (db) CAVLC, I-P-P-P BD-rate (%) [7] BD-PSNR (db) BD-rate (%) DCT (H.264/AVC) BD-PSNR (db) CABAC, Hierarchical B BD-rate (%) [7] BD-PSNR (db) ballet 1.5-20.8 0.8-11.7 0.9-13.3 0.5-7.7 breakdancers 1.3-18.6 0.8-10.3 0.9-14.5 0.5-8.5 BD-rate (%) champagne tower 1.0-11.8 0.7-8.5 1.1-16.9 0.8-12.2 Average 1.3-17.1 0.8-10.2 1.0-14.9 0.6-9.5, DCT I-P-P-P 17.1 %, Hierarchical B 14.9 %. I-P-P-P 10.2 %, Hierarchical B 9.5 %. 3 PSNR. 3 DCT, PSNR. PSNR, PSNR 1 db. 3. PSNR. Table 3. Comparison of the PSNR from the synthesized images. QP H.264/AVC Ballet Breakdancers Champagne tower PSNR (db) PSNR (db) PSNR (db) 29.98 29.76 32.06 [7] H.264/AVC [7] H.264/AVC [7] PSNR (db) PSNR (db) PSNR (db) PSNR (db) PSNR (db) PSNR (db) PSNR (db) PSNR (db) PSNR (db) CAVLC, I-P-P-P 37 29.27 29.23 29.18 28.94 28.88 28.87 32.05 32.07 32.17 32 29.57 29.54 29.54 29.03 29.00 29.00 32.14 32.23 32.27 27 29.74 29.76 29.78 29.08 29.05 29.04 32.18 32.19 32.19 22 29.82 29.84 29.86 29.12 29.12 29.12 32.11 32.15 32.11 QP CABAC, Hierarchical B 37 29.38 29.53 29.30 28.89 28.88 28.86 32.23 32.26 32.24 32 29.58 29.66 29.64 29.03 29.03 28.99 32.28 32.34 32.37 27 29.76 29.78 29.79 29.09 29.10 29.06 32.28 32.28 32.28 22 29.81 29.87 29.86 29.12 29.14 29.11 32.24 32.21 32.16

3 (warping).. Ballet Breakdancers, (arc)., 17 ( 17(b)) MPEG 3 (VSRS, View Synthesis Reference Software) [5,6]. 2 (2 ), 2 (1 3 ) (1 3 ). 17(c) ( 17(a)) ( 17(b)). 17(a) 17(b), ( 17(c)).. (PSNR). 3., DCT, 18. 18 2, 2 (1 3 ) (1 3 ). DCT ( 18(c), 18(f), 18(i)).. ( 18(e), 18(h), 18(k)). DCT. ( 18(e), 18(h), 18 (a) 2 (b) 2 (c) 2 17. 'Breakdancers' 2 Fig. 17. Comparison of the real image and the synthesized image and the subtracted image of the two images in the Breakdancers sequence(view #2).

(a) DCT (b) (c) (d) DCT (e) (f) (g) DCT (h) (i) 18. 'Breakdancers' 2 Fig. 18. Comparison of the subjective quality of the synthesized image(view #2) in the Breakdancers sequence (k)) ( 18(d), 18(g), 18(j)). VI. 3

. / XOR. DCT.,,. XOR, DCT... [1] ISO/IEC JTC1/SC29/WG11, Draft Report on Experimental Framework for 3D Video Coding, N11478, Geneva, Switzerland, July 2010. [2] M. Tanimoto, Overview of Free Viewpoint Television, Signal Processing: Image Communication, Vol. 21, No. 6, pp.454-461, July 2006. [3] A. Smolic, K. Mueller, N. Stefanoski, J. Ostermann, A. Gotchev, G.B. Akar, G.A. Triantafyllidis and A.Koz: Coding Algorithms for 3DTV - A Survey, IEEE Trans. οn Circuits and Systems for Video Technology, Vol. 7, Issue 11, pp. 1606-1621, November 2007. [4] ITU-T Recommendation H.264 and ISO/IEC 14496-10 (MPEG-4 Part 10 AVC), Advanced Video Coding for Generic Audiovisual Services, Version 1: March 2003, Version 2: May 2004, Version 3: March 2005, Version 4: September 2005, Version 5 and Version 6: June 2006, Version 7: April 2007, Version 8: July 2007. [5] Y. Mori, N. Fukushima, T. Yendo, T. Fujii, M. Tanimoto, View generation with 3D warping using depth information for FTV, Image Communication, Vol. 24 No. 1-2, pp. 65-72, January 2009. [6] M. Tanimoto, T. Fujii, View synthesis algorithm in view synthesis reference software 2.0 (VSRS 2.0), ISO/IEC JTC 1/SC29/WG11 M16090, Lausanne, Switzerland, February 2009. [7] K.Y. Kim, G.H. Park, D.Y. Suh, Adaptive Depth-map Coding for 3D-Video, IEICE Trans. on INF. & SYST., Vol. E93-D, No. 8, pp. 2262-2272, August 2010. [8] K.Y. Kim, G.H. Park, D.Y. Suh, Bitplane-based lossless depth-map coding, SPIE Optical Engineering, Vol. 49, No. 6, 067403, June. 2010. [9] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G.J. Sullivan, Rate-Constrained Coder Control and Comparison of Video Coding Standards, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 7, pp. 688-703, July 2003. [10] J. R. Bitner, G. Ehrlich, and E. M. Reingold, Efficient generation of the binary reflected gray code and its applications, Commun. ACM, Vol. 19, No. 9, pp.517-521, September 1976. [11] ISO/IEC 14496-2 (MPEG-4 Visual), Coding of Audio-Visual Objects - Part 2: Visual, Version 1: April 1999, Version 2: February 2000, Version 3: May 2004. [12] N. Brady, and F. Bossen, Shape compression of moving objects using context-based arithmetic encoding, Signal Processing: Image Communication, Vol. 15, No. 7, pp. 601-617, May 2000. [13] N. Brady, F. Bossen, and N. Murphy, Context-based arithmetic encoding of 2D shape sequences, Special session on shape coding (ICIP '97), Vol. 1, pp. 29-32, 1997. [14] F. Heinrich-Hertz-Institut, H.264 Reference Software Version JM13.2, http://iphome.hhi.de/suehring/tml, May 2008. [15] D. Marpe, H. Schwarz, and T. Wiegand, Context-Based Adaptive Binary Arithmetic Coding in the H.264/AVC Video Compression Standard, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 7, pp. 620-636, July 2003. [16] G. Bjøntegaard, "Calculation of average PSNR differences between RD-curves," ITU-T SG16 Q.6, VCEG-M33, Texas, USA, April 2001.

- 2007 2 : - 2009 2 : - 2009 3 ~ : - :,, - 1985 2 : - 1987 7 : - 1991 1 : Case Western Reserve University, Dept. of EEAP - 1995 1 : Case Western Reserve University, Dept. of EEAP - 1995 3 ~ 1997 2 : - 1997 3 ~ 2001 2 : - 2001 3 ~ : - :,,,,