Characterization Technology and Reliability (Recent Technology for the Characterization of Nanomaterials by Electron Microscopy) jdyun@kyungnam.ac.kr....,...,,,,,,,,,,...... 1980 (STM) (AFM).,,. 1,2) 2000 8.. ( ) ( ),.,..,,,..,,,,,,,... 41
.,,,,,,.. Fig. 2. <110> STEM HAADF-STEM (SEM). (TEM).. 1 Fig. 1. ( ) TEM ( ) TEM CdSe 3). (Cs) (Cs corrector). Fig. 1 2, 4, TEM Fig. 1. 3,4) (STEM) 5), (TEM) (Cs) 0.5 mm 3.8 m 120.. Fig. 2 (HAADF) 0.9., (STEM) 10 (EELS).,. CBED, STEM,. (nano-area diffraction) 2 3 42
Fig. 3. ( ) ( ) 4nm 6). Fig. 5. ( ) (0001) ( ) 9). 6) 50nm 4nm (Fig. 3)., (STEM) (END: electron nanodiffraction) 7). Fig. 4. TEM 1 nm 8).,. (TEM). 8) 1 nm (Fig. 4). (graphene). Fig. 5 c 9-13). (Ewald) 43
Fig. 6. ( ) ( ). 10,11). Fig. 6(a).. Fig. 6... ( HAADF: high angle annular dark field) Fig. 7. STEM ( ) HAADF, ( ), ( ) EELS. A, B. EELS 5). (Z-contrast).. 50 mrad( 2.9 ) (coherent). Fig. 7 5). A, B Fig. 7(a) Fig. 7(b). (EELS) A B. EDS EELS. 44
Fig. 8. STEM-EELS 8). EELS (Fig. 8). 2 3. 3. 20 3,, 3.,,,,,. 3 (tomography),,.. 10 m (FIB) (SEM) 10 m 10nm, Fig. 9. TiN. ( ), ( ) 15). 100 14). 3.,,,. (McGrouther) 15) 4 m (TiN) 500mN 3. 100-200 200 3 (Amira) 3. Fig. 9 3. (TEM). 70 45
Fig. 10. 120 nm TiO2-Ag ( ) TEM ( ). Fig. 11. ( ) TEM, ( ) STEM Ru10Pt2 16). Fig. 12. STEM HAADF 19). 1 2...., 16,17). Fig. 10 100nm TiO 2-Ag. (a) (b) 18).,,, (delocalization), (HAADF). Fig. 11 - (Ru 10Pt 2). Fig. 12 - (gold leaf) 19). EDS EELS. (FFT) 20) (Fig. 13). (mesoporous) SBA-6 Fig. 14(a) Fig. 14(b). 46
1 TEM STEM.,.. Fig. 13. TEM 20). Fig. 14. SBA-6 ( ) ( ) 20).. (Fig. 14).,., 1.,,, ( ),, 1998. 2. Nanotechnology for dummies, written by R. Booker and E. Boysen, Wiley Publishing Inc., USA 2005. 3. A. I. Kirkland, L-Y. Chang, and J. L. Hutchison, Application of aberration corrected transmission electron microscopy to materials science JEOL news, 41[1] 8-11 (2006). 4. J. L. Hutchison, J. M. Titchmarsh, D. J. H. Cockayne, G. Mobus, C. J. D. Hetherington, R. C. Doole, F. Hosokawa, P. Hartel, and M. Haider, A Cs corrected HRTEM: initial application in materials science JEOL news, 37[1] 2-5 (2002) 5. M. Watanabe, D. W. Ackland, C. J. Kiely, D. B. Williams, M. Kanno, R. Hynes, and H. Sawada, The aberration corrected JEOL JEM-2200FS FEG- STEM/TEM fitted with an omega electron energy filter: performance characterization and selected application, JEOL news, 41[1] 2-7 (2006). 6. J. M. Zuo, M. Gao, J. Tao, B. Q. Li, R. Twesten, and I. Petrov, Coherent nanoarea electron diffraction, Microscopy Research and Technique, 64 347-355 (2004). 7. J. M. Cowley, Scanning Transmission Electron Microscopy in Handbook of Microscopy for Nanotechnology, Ed. by N. Yao and Z. L. Wang, 455-491 (2005). 8. J. Yun, C. Du, N. Pan, and N. Browning, Preparation and characterization of manganese oxide nanowires, paper submitted (2007). 9. X. F. Zhang, X. B. Zhang, G. Van Tendeloo, S. Amelinckx, M. Op de Beeck, and J. Van Landuyt, Carbon nano-tubes: their formation process and observation by electron microscopy, J. Crystal Growth, 130, 47
368-382 (1993) 10. G. Van Tendeloo, and S. Amelinckx, Electron microscopy of fullerenes and related materials, in Characterization of Nanophase Materials, Ch. 12, edited by Z. L. Wang, Wiley-VCH, (2000) 11. J. C. Meyer, M. Paillet, G. S. Duesberg, and S. Roth, Electron diffraction analysis of individual singlewalled carbon nanotubes, Ultramicroscopy 106[3] 176-190 (2006). 12. Z. Liu, and L-C. Qin, Symmetry of electron diffraction from single-walled carbon nanotubes, Chem. Phys. Lett., 400, 430-435 (2004). 13. J. M. Cowley, P. Nikolaev, A. Thess, and R. E. Smalley, Electron nano-diffraction study of carbon single-walled nanotube ropes, Chem. Phys. Lett., 265, 379-384 (1997). 14. A. Velichko, C. Holzapfel and F. Mucklich, 3D characterization of graphite morphologies in cast iron", Advanced Engineering Materials, 9[1-2] 39-45 (2007). 15. D. McGrouther and P. R. Munroe, Imaging and analysis of 3-D structure using a dual beam FIB, Microscopy Research and Technique, 70, 186-194 (2007). 16. J. M. Thomas, P. A. Midgley, T. J. V. Yates, J. S. Barnard, R. Raja, I. Arslan, and M. Weyland, The chemical application of high resolution electron tomography: bright field or dark field? Angew. Chem. Int. Ed., 43, 6745-6747 (2004). 17. K. P. de Jong, L. C. A. van den Oetelaar, E. T. C. Vogt, S. Eijsbouts, A. J. Koster, H. Friedrich and P. E. de Jongh, High- resolution electron tomography study of an industrial Ni-Mo/Al 2O 3 hydrotreating catalyst, J. Physical Chemistry Lett. B, 110, 10209-10212 (2006). 18. K. Kaneko, W-J. Moon, K. Inoke, Z. Horita, S. Ohara, T. Adschiri, H. Abe, and M. Naito, Characterization of TiO 2-Ag nanocomposite particles prepared by spray pyrolysis process using transmission electron microscopy and three-dimensional electron tomography, Mater. Sci. Eng. A403, 32-36 (2005). 19. H. Rosner, S. Parida, D. Kramer, C. A. Volkert and J. Weissmuller, Reconstructing a nanoporous metal in three dimensions: an electron tomography study of dealloyed gold leaf, Advanced Engineering Materials, 9[7] 535-541 (2007). 20. K. P. de Jong, and A. J. Koster, Three dimensional electron microscopy of meso- porous materials: recent strides towards spatial imaging at the nanometer scale, Chemphyschem., 3, 776-780 (2002). 1975-1982 1982-1984 1984-1987 (KIET) 1988-1994 1994-2006- 48