fm

Similar documents
fm

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

<30352DB1E2C8B9C6AFC1FD2028C8ABB1E2C7F D36362E687770>

jaeryomading review.pdf

°ø±â¾Ð±â±â

114-01(07-19).fm

92-04.fm

06.fm

fm

untitled

12.077~081(A12_이종국).fm

¸ñÂ÷

00....

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

fm


<C6F7BDBAC5CD2E706466>

43-5.fm

생체고분자

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

26(2)-04(손정국).fm

304.fm

93.fm

10(3)-10.fm


¸ñÂ÷

18(3)-10(33).fm

19(1) 02.fm

16(1)-3(국문)(p.40-45).fm

50(6)-09.fm

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

PDF

untitled

10(1)-08.fm

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

_....

10(3)-09.fm

untitled

대한한의학원전학회지24권6호-전체최종.hwp

82-01.fm

(72) 발명자 마 빈 미국 뉴저지주 유잉 필립스 블바르 375 쩡 리창 미국 뉴저지주 유잉 필립스 블바르 375 데안젤리스 알랜 미국 뉴저지주 유잉 필립스 블바르 375 바론 에드워드 미국 뉴저지주 유잉 필립스 블바르 375

제 출 문 경상북도 경산시 농업기술센터 귀하 본 보고서를 6차산업수익모델시범사업 농산물가공품개발 연구용역 과제의 최종보고서로 제출합니다 년 11 월 19 일 주관연구기관명 : 영남대학교 총괄연구책임자 : 한 기 동 연 구 원 : 김 상 욱 이 수 형 이 상

07.045~051(D04_신상욱).fm

50(3)-07.fm

139~144 ¿À°ø¾àħ

14.531~539(08-037).fm

fm

Journal of Korean Society on Water Environment, Vol. 28, No. 2, pp (2012) ISSN ᆞ ᆞ ᆞ Evaluation of Forward Osmosis (FO) Membrane Per


fm


DBPIA-NURIMEDIA

49(6)-06.fm

14.fm

05À±Á¸µµ

박선영무선충전-내지

表紙(化学)

hwp

16(5)-03(56).fm

<31345FC3E1B0E8C7D0C8B8BBF3BCF6BBF3C0DAC7C1B7CEC7CA5F F D E687770>

18103.fm

fm

농학석사학위논문 폴리페닐렌설파이드복합재료의기계적및열적 특성에영향을미치는유리섬유 환원된 그래핀옥사이드복합보강재에관한연구 The combined effect of glass fiber/reduced graphene oxide reinforcement on the mecha


07라일랍스카탈로그24p 완성본

16(5)-04(61).fm

02-47(2)-08(조현태).fm

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

< DC1A4C3A5B5BFC7E22E666D>

10.063~070(B04_윤성식).fm

44-4대지.07이영희532~

½Éº´È¿ Ãâ·Â

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

KAERIAR hwp

16(5)-06(58).fm

歯_ _ 2001년도 회원사명단.doc


<313920C0CCB1E2BFF82E687770>

c04....

Subject : 귀사의 일익번창하심을 진심으로 기원합니다.

50(1)-09.fm

15.fm

03-ÀÌÁ¦Çö

13_1_학회소식_rev5_ hwp

45-51 ¹Ú¼ø¸¸

Lumbar spine

18211.fm

untitled

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

fm

02_4_특집_김태호_rev4_ hwp

hwp

Research subject change trend analysis of Journal of Educational Information and Media Studies : Network text analysis of the last 20 years * The obje

Sun ONE Portal Server, Mobile Access, h 6.2 ƒe 1 Ï Û ( Ñ ) l d e ' f el d ' f f i. 2 f CPU d Šf th. l hh Š Š h h Š. l hh Š f f hšš. l hh j j l

- 1 -

歯1.PDF

06_(2교)( ) 권용재.hwp

012임수진

Transcription:

Biomaterials Research (2010) 14(2) : 95-102 Biomaterials Research 7 The Korean Society for Biomaterials jm ù œw Fabrication of Chitosan Nanofiber Scaffold and Their Biomedical Applications wùáá«* Ha Na Park, Jung Bok Lee, and Il Keun Kwon* Š tš Department of Maxillofacial Biology and Institute of Oral Biology, School of Dentistry, Kyunghee University, Seoul 130-701, Korea (Received May 10, 2010/Acccepted May 12, 2010) Functional biomaterial research has been directed toward the development of improved scaffolds for tissue engineering. Many biodegradable and biocompatible polymers both synthetic polymers and natural polymers have been used to make scaffolds. Among the naturally derived polymers, chitosan which is deacetylated derivative of chitin, is widely used for biomedical applications such as tissue engineering scaffolds, drug delivery, and wound dressing due to their unique biological properties such as biocompatibility, biodegradability, anti-bacterial, and non-toxicity. In the recent years, electrospinning has been used to be a novel technique to fabricate nano/micro fibers. These nano/micro fibers have been applied in biomedical fields as tissue engineering scaffold because of their high surface area and porosity. In this reason, there has been a growing interest in electrospinning using chitosan in order to improve similarities to natural tissue. This article reviews the recent and relevant reports of the chitosan nanofibers fabricated by electrospinning and their biomedical applications. Key words: chitosan, electrospinning, nanofiber scaffold, tissue engineering lšh (Tissue engineering)f fdš l Œ f fš ilf f gš eš thšf f fdš llt(scaffold) Š Œ lš f. il gf ilšh h f,, gš f llt, ilf gš f fff Šd Š, j ti l hšš if eš fhf dlf i f Š f jd f. 1) f llt f r, l, Œ f Š, f Œ f ihf Š, llt hfš xv,, f f. 2) u h(electrospinning, ELSP)f fdš f lf l e Š ilf ECM i eš Œf l llt hfš f. h f 1882 Lord Rayleigh Š tf Š fh ff hhf gf Š f f, 1934 ff A. Formhals fš f. h f f} f lf l *sfhf: kwoni@khu.ac.kr ef hff Š, hf hf e e Š f e l hf d } eš df f Š f } ƒlf l ff, ilš llt fd f. 3-5) hf fdf d f lf Š Š, 10~50 kvf hf l fš 10~25 cmf h f l f ef hf f Š l df eœ~ lš, ef lf Œ~ fh, l l ff,,, l f h f i f, fš dff ihš eš Œ ~f hff Š. jm(chitosan) g e ~f Š lltf hf d f d eš, j g f d f t hš f poly (L-lactic acid) (PLLA), poly (LA-co-GA) (PLGA), poly (ε-caprolactone) (PCL), poly (L-lactic-coε-caprolactone) (PLCL) f Š f z, h, ~ f s f f f. j ~ 95

96 ŠÁfhÁf Figure 1. (a) ~ (b) ~ f ŒŠ i. (Poly-(1Á4)-2-amino-2-deoxy-β-D-glucose)f z f fl ~ (f d, vf, f f ig)f ~ Œ(deacetylation, DA)Š l t f, z z f fl f ff(figure 1). ~ f Œ h z z f h ef l, f - ƒ, d Š f ~ f f ƒf ih. ~ e f Š (Acid dissociation constant)f pka ~ Œf h, fœ f hš jœ fš h, Œf h 50% tšl f, h j Œ fd Š e pka 6.3-6.7f e. f f t ff d f dš~. f f t ff d f ff ghf Œ fdšf ff r fš lf Š f ~. ~ f jdš ƒf f d Š f dš h l hf., ef f, zf f ~ f ešh lf f Œ Š h h d f j zf ef t f } ~ f. 6) fš ƒf l ~ f Šhf g, Š, Še, t hšf dš 7) d Š, Š e hi ef fdf Š f, vx h, ˆ th, 8) r x 9,10) h t 11) Š il Šh fdf f. 12-15) jm ù ~ e ~ f dš thšf l f fdš ilšh fdf ff, hf Š e hf Š Šf fš f. 16-19) ~ f e Š f z unit f Šf fhff f, f f Šf fe f f f. f e d l ~ Š, ~ f f l pka 6.3 f primary amine groups fš Š f ph 6.0 fšf d. 20) 2004 Min f ~ f vz ŠjŠ (depolymerization)š, dš l ~ f 1,1,1,2,2,2- hexafluoro-2-propanol (HFIP) hf ƒ hfš. hf ~ ƒ 40% aq NaOH df f dš 60 o C 100 o C ~ ŒŠ Š ~ ƒ ~ f xœš, FT-IR WAXD Š ih f Œ ŒfŠf hf ~ ƒ hff f ŒfŠ. 21) Geng f ~ f ~ Œ h f, d dš ƒf df g h whš, SEMf Š ~ ef Œ~ ŒfŠ. ff Š ff ~ f fdš h Š e hfš. f ff ~ f 9.5-10.5 wt.%f } } (bead) ŒŠ ef f Š f ŒfŠf, f f f ~ f 2.5-3 wt.% df d Š d e hf f Š f ŒfŠ. ff, 106,000 g/mol f ff l ~ f fdš 7-7.5 wt.%f f fš e ŒŠ f Šf, f ff ~ f Š lf e ŒŠl Š fe ~ f l f fš f hš f f Š. 17) Ohkawa f Š ~ f f df fdš h ŠŠ eš methanol, ethanol, 1,4-dioxane, dichloromethane (DCM) f Ž e d, N,Ndimethylformamide (DMF), dimethylsulfoxie (DMSO) f f d (aprotic solvent), Acetic acid, HCl f d f ŒŠ d fdšf, d j Trifluoroacetic acid (TFA) fdšf d ~ f l e ŒŠ Š. 22) ff ~ / TFAdf hš, ~ f 6wt.% fšf d e Š f Œ(Figure 2(a), (b)), chitosanf 7wt.% f, e dš Œf ŒfŠ(Figure 2(c), (d)). Š fš Œ~ l ~ e 8wt.% f Œ f ŒfŠ(Figure 2(e), (f)). Biomaterials Research 2010

~ e lltf hf tšh fd 97 Figure 2. TFA d fdš ~ h. ~ f h ~ ef SEM fl: a) 5 wt.%, b) 6wt.%, c) 7wt.%, d) 7wt.% e) 8wt.% f) 8wt.%. Figure 3. TFA DCMf ŒŠ ed fdš hf Š hfš ~ ef SEM fl. ~ f 7 wt.% TFA/DCM (70/30 v/v%) ŒŠ ed f. a) jœs Šhf ~ e, b) 5 M NaOH fdš jœs Š f ~ e, c) 5 M Na 2 CO 3 fdš jœsš f ~ e. Ohkawa f TFA d dšf d, hf ~ f h fl f, tm, ~ f TFA f ŒŠ, f fš ~ ff Š Šf z h Š Šj, m, TFAf Š Žf ~ /TFA df h fhf fdš ff f Œ. 22) ~ f hš e hfš eš TFA DCMf dš f. Sangsanoh ftfa/ DCM(70:30)f d Š hfš ~ e ƒ (Figure 3(a)) h dš jœ hf ŠdŠf fl Vol. 14, No. 2

98 ŠÁfhÁf Figure 4. a) NaOH b) Na 2 CO 3 fš ~ f jœ h. Š, NaOH Na 2 CO 3 df fdš 3 jœ s Š. 19) 5M NaOH df sš ~ e ƒ tf ei elšl Šf(Figure 3(b)), Na 2 CO 3 df sš d, tf fiber i elš f df ŒfŠ vhf f Š ih f jœ flf flš. NaOH Na 2 CO 3 f Š ~ f jœ hf (Figure 4) ~. fš ~ f hf fdš e f g } h hh fš e l f ~ f f hf, h Š ~ e hfš eš ~ df h ihš f ŠdŠ. f x s Š Šf Š 24). ~ x s Š ~ f tff Š fš l ff Š, h Š hhš h l ~ df d fš. jm w ù chitosanf acetic acid f d dš ƒf e ŒŠ f. Šl f hi ~ ft hfš f hf, f ŠŠ eš PEO, PVA, PLA, silk fibroin, collagen f Š Œf sff ŒŠf fdš e hfš f. 25) ~ e hfš eš h i ŒŠf hš(table 1) ~. ~ e hfš eš g f d f PVA bone implant, f g f fšhf Š fd f. Xu f enzyme immobilizationf eš hš chitosan e PVAf ŒŠf fdš hfš. 26) ff chitosan PVAf ŒŠdf e NaOH s Š e f PVA h Š hš i l chitosan ef ŒŠ. ef PVAf h ff f TEMf Š ŒfŠ(Figure 5(b)). PVAf h fš Š ~ ef ff f enzyme loading, immobilized lipasef hg enzyme immobilizationf eš hš i hš fff Š. ~ PVA ŒŠŠ antibacterial activity l ~ e ƒ wound healing h dš. 27) ff quaternized ~ (QCS) PVA ŒŠŠ df hš Staphylococcus aureus Escherichia coli Š hšf l ƒ hfš. polyampholyte (N-carboxyethyl chitosan) fœl f }f(poly acrylamide) ŒŠŠ df h fš, f l fš dš ~ e hfš. 28) ~ e hfš eš f ~ (4-6 wt.%) PEO 2:1 1:1f e ŒŠŠ d e hfš. 29,30) PEO thšf if, 31) r h, 32) il g 33) f d f d f. Kriegel f ~ PEO 3:1f e ŒŠŠ f f d e hfš. 34) f Biomaterials Research 2010

~ e lltf hf tšh fd 99 Table 1. l ed ff ŒŠf fdš ~ ef hf Blended polymer Molecular weight DDA [%] Solvent Surfactant Ref. CS/PLLA-CL PLA 50 mol% 60 HFIP, TFA 57 CS/CL I CL-I 0.8-1 10 5 Da 85 HFIP, TFA 58 HFIP, TFA, MC 40 CS 1.48 10 5 g/mol, PEO 9 10 5 g/mol 82 AA 59 CS 190 kda, PEO 900 kda 85 AA, DMSO Triton -100 36 PEO 9 10 5 g/mol CS/PEO CS 4 10 5, 6 10 5, 1.48 10 5 g/mol 75-85 AA 63 PEO 600, 1500, 2300, 4000 kda, CS 654 kda 90 AA 29 CS 1400, 100 kda, PEO 900 kda 80, 70, 60 / 83 AA 35 α-cs/ PEO α-cs 1000 kda, PEO 900 kda 80 AA SDS, Brij 35, DTAB 61 CS/UHMWPEO UHMWPEO >5 10 6 Da 85 AA, DMSO 64 CS/PVA CS/PEO/PVA/ PAA/PAAm CS 1600 kda, PVA 124-186 kda 82.5 AA 60 PEO 9 10 5 g/mol CS 1.2 10 5 Mw 82.5 AAc 66 CS 405, 40, 89 kda PAA 450 kda PEO 100 kda PAAm 10, 5-6 10 5 kda, PVA 124-186 kda CS/PAAm/AMPS/PVA CS 4 10 5 g/mol 80 acrylic acid 28 PLGA/PVA-CS CS 1.65 10 5 Da 90 THF, DMF, AA 62 CS/PET - 85 HFIP, TFA 67 *DDA : degree of deacetylation, SDS : Anionic sodium dodecyl sulfate, Brij 35 : nonionic, polyoxyethylene glycol (23) lauryl ether, DTAB : cationic dodecyltrimethylammoniumbromide CL : collagen, UHMWPEO : ultra high molecular weigh PEO (poly ethylene oxide) PVA : poly vinyl alcohol, PAA : poly acrylic acid, PAAm : poly acrylamide, CS : chitosan, AA : acetic acid, AAc : acrylic acid, DMSO : dimethyl sulfoxide, AMPS : 2-acryloylamido-2-methylpropanesulfonic acid, MC : Methylene chloride, PET : poly (ethylene terephthalate) 84.7 93.3 88.6 65 Figure 5. ~ /PVA f fdš e. a) h jœs hf e b) 0.5 M NaOH sš f ~ e. (Œ : PVA h f pore). ŒŠd nonionic, ionic, cationic surfactant tš d, Š }f d e f f. h h f-d, f-f f h, h, g f df ƒf g jdš dff fdš, Œh Š hhh Œfdf i hš Šf Š. PEO fdš ~ e hfš d ~ f ef lš ef lf Š. 29,35) Bhattarai f ~ /PEO 9/1f e Š i~ g elš (chondrocyte) (osteoblast)f hrf g ellt hfš ilš(bone tissue engineering) fdš. 36) Vol. 14, No. 2

100 ŠÁfhÁf PVA PEO d PET (poly ethylene terpthalate), collagen, silk fibroin f Š f ŒŠŠ e hfš ff, u 37-43) derivated ~ ff ŒŠ df fdš h f. 27,44-47) jm (modification) mw w w» ~ f Š if side chainf ~Šf dš f f eš ƒf ff Š fš (biomedical engineering) d Š fdf f. lf Š ~ f l ƒf tl, ~ f thš, Š, Š, rxe, mucoadhesivity f Šh ƒ(biological properties)f elš f. ~ f f ff Š ŒŠh i f(figure 1(b)) etherification, esterification, cross-linking, graft copolymerization f f ff Š. 20) acetylation, quaternization, aldehyde ketone f f, alkylation, grafting, chelation of metals f Œ Šh ff Š ff, Š r Š(cross-link)f Š diisocyanate, Resimene, 48) N,N-disuccinimidyl suberate, 49) epichlorohydrin, 50) genipin, 51) hexamethylene 1,6-di (aminocarboxysulfonate) f f ŠŠ 52) ff, l f O-acetylation, gratfing, eff H-bonding f Š ff Š f. il Šh hdf eš ~ f l(modification)f Š f ƒh f(specific recognition)f. Š f ~ f Šf j fš ƒ h, f, f f, DDS (drug delivery system), gene therapy, ilš. Li f D-, L- fucose, lectin ƒhš Šf f f f Š f ~ f Š Š Š. 53) PLGA-~ /PVAf Š ƒ f embryo skin fibroblast ~d hšš, 63) ~, PEO, Triton X-100 f ŒŠŠ d(~ /PEO = 9/1,w/w), Š i elš f f rf ll~. 54,55) Jiang f hf fdš ibuprofenf ~g f PLGA/PEG-g-chitosanŒŠ ƒ hfš. ff PEGg-chitosan fdš PLGA ƒ t f v f jf, PEG-g-chitosanf 2j f ibuprofen Šf elš f Šf u h 56) f fdš hfš e ƒ hhš h Š hff h. ~ f thš, Š, Š f dš Šh ƒ Š, f dš f df f Š ilšh hdf e h f f l Š f. Šl ff Œ Œf f ŒŠ f Š h dfš Š ff, f fdš h ~ e hfš f. u f fdš f f. e h hfš f j Šf hf h, l l ff, df jf f df f, h, h, g Š d jdš dff fdš, ƒ f f f l ff d ŒŠ f ff, f ff f lf } e ŒŠ hf fdš ~ f fdf hf Š eš f ŒŠ e, d Š h i f hhš g f g jdš. hhš if ŒŠ h, rx f fšhf hd df hf ~ f ƒ f fd f f. uf ll(b0010536) es (10035291)f le fš fhf f. šx 1. I. O. Smith, X. H. Liu, Smith LA, P. X. Ma, Nanostructured polymer scaffolds for tissue engineering and regenerative medicine, Wiley Interdiscip Rev Nanomed Nanobiotechnol., 1, 226-36 (2009). 2. B. S. Kim, D. J. Mooney, Development of biocompatible synthetic extracellular matrices for tissue engineering. TIBTECH, 16, 224 (1998). 3. R. Casarano, R. Bentini, V. B. Bueno, T. Iacovella, F. B. F. Monteiro, F. A. S. Iha, A. Campa, D. F. S. Petri, M. Jaffe, L. H. Catalani, Enhanced fibroblast adhesion and proliferation on electrospun fibers obtained from poly (isosorbide succinate-b-l-lactide) block copolymers, Polymer., 50, 6218-6227 (2009). 4. S. Madduri, M. PapaloÁzos, B. Gander, Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration,á Biomaterials., 31, 2323-2334 (2010). 5. H. R. Jung, D. H. Ju, W. J. Lee, X. Zhang, R. Kotek, Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes, Electrochimica Acta., 54, 3630-3637 (2009). 6. E. Guibal, Heterogeneous catalysis on chitosan-based materials : a review, Prog. Polym. Sci., 30, 71-109 (2005). 7. K. MNVR, A review of chitin and chitosan applications, React Funct Polym., 46, 1-27 (2000). 8. S. W. Ko, Y. W. Cho, Chitin (or Chitosan) Blends and Their Applications, Polymer Science and Technology., 8, 538-545 (1997). 9. S. Hirano, C. Itakura, H. Seino, Y. Akiyama, I. Nonaka, N. Biomaterials Research 2010

~ e lltf hf tšh fd 101 Kanbara, T. Kawakami, Chitosan as an ingredient for domesticanimal feeds, J. Agric. Food Chem., 38, 1214-7 (1990). 10. K. Aiedeh, E. Gianasi, I. Orienti, V. Zecchi, Chitosan microcapsules as controlled release systems for insulin, J. Microencapsulation., 14, 567-76 (1997). 11. J. Berger, M. Reist, J. M. Mayer, O. Felt, R. Gurny, Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications, Eur. J. Pharm. Biopharm., 57, 35-52 (2004). 12. K. Yagi, N. Michibayashi, N. Kurikawa, Y. Nakashima, T. Mizoguchi, A. Harada, S. Higashiyama, H. Muranaka, M. Kawase, Effectiveness of fructose-modified chitosan as a scaffold for hepatocyte attachment, Biol. Pharm. Bull., 20, 1290-4 (1997). 13. Y. Zhang, M. Q. Zhang, Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release, J. Biomed. Mater. Res., 62, 378-86(2002). 14. Y. Zhang, M. Q. Zhang, Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for loadbearing bone implants, J. Biomed. Mater. Res., 61, 1-8 (2002). 15. Y. Zhang, M. Q. Zhang, Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering, J. Biomed. Mater. Res., 55, 304-12 (2001). 16. J. D. Schiffman, C. L. Schauer, Cross-Linking Chitosan Nanofibers, Biomacromolecules., 8, 594-601 (2007). 17. X. Geng, O. H. Kwon, J. H. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution, Biomaterials,, 26, 5427-5432 (2005). 18. S. D Vrieze, P. Westbroek, T. V. Camp, L. V. Langenhove, Electrospinning of chitosan nanofibrous structures: feasibility study, J. Mater. Sci., 42, 8029-8034 (2007). 19. P. Sangsanoh, P. Supaphol, Stability Improvement of Electrospun Chitosan Nanofibrous Membranes in Neutral or Weak Basic Aqueous Solutions, Biomacromolecules., 7, 2710-2714 (2006). 20. C. K. S. Pillai, W. Paul, C. P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation, Progress in Polymer Science., 34, 641-678 (2009). 21. B. M. Min, S. W. Lee, J. N. Lim, Y. You, T. S. Lee, P. H. Kang, W. H. Park, Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers, Polymer., 45, 7137-7142 (2004). 22. K. Ohkawa, D. G. Cha, H. K. Kim, A. Nishida, H. Yamamoto, Electrospinning of Chitosan, Macromol. Rapid Commun., 25, 1600-1605 (2004). 23. M. Hasegawa, A. Isogai, F. Onabe, M. Usuda, R. H. Atalla, Characterization of cellulose-chitosan blend films, J. Appl. Polym. Sci., 45, 1873-1879 (1992). 24. S. V. Fridrikh, J. H. Yu, M. P. Brenner, G. C. Rutledge, Controlling the fiber diameter during electrospinning, Phys. Rev. Lett., 90, 144502 (2003). 25. G. Kunike, Chitin and chitosan, J. Soc. Dyers. Colorists., 42, 318-342 (1927). 26. X. J. Huang, D. Ge, Z. K. Xu, Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization, European Polymer Journal., 43, 3710-3718 (2007). 27. M. Ignatova, K. Starbova, N. Markova, N. Manolova, I. Rashkov, Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly (vinyl alcohol), Carbohydrate Research., 341, 2098-2107 (2006). 28. R. Mincheva, N. Manolova, D. Paneva, I. Rashkov, Preparation of Polyelectrolyte-Containing Nanofibers by Electrospinning in the Presence of a Non-Ionogenic Water-Soluble Polymer, J. Bioact. Compatible Polym., 20, 419-435 (2005). 29. B. Duan, C. Dong, X. Yuan, K. Yao, Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide), Journal of Biomaterials Science, Polymer Edition., 15, 797-811(2004). 30. H. Matsumoto, H. Yako, M. Minagawa, A. Tanioka, Characterization of chitosan nanofiber fabric by electrospray deposition: Electrokinetic and adsorption behavior, Journal of Colloid and Interface Science., 310, 678-681 (2007). 31. L. G. GRIFFITH, POLYMERIC BIOMATERIALS, Acta mater., 48, 263-277 (2000). 32. F. Yoshiia, Y. Zhanshan, K. Isobe, K. Shinozaki, K. Makuuchi, Electron beam crosslinked PEO and PEO/PVA hydrogels for wound dressing, Radiation Physics and Chemistry., 55, 133-138 (1999). 33. C. D. Sims, P. E. M. Butler, R. Casanova, B. T. Lee, M. A. Randolph, W. P. A. Lee, C. A. Vacanti, M. J. Yaremchuk, Injectable Cartilage Using Polyethylene Oxide Polymer Substrates, Plastic & Reconstructive Surgery., 98, 843-850 (1996). 34. C. Kriegel, K. M. Kit, D. J. McClements, J. Weiss, Influence of Surfactant Type and Concentration on Electrospinning of Chitosan- Poly (Ethylene Oxide) Blend Nanofibers, Food Biophysics., 4, 213-228(2009). 35. K. Desai, K. Kit, J. Li, P. M. Davidson, S. Zivanovic, H. Meyer, Nanofibrous chitosan non-wovens for filtration applications, Polymer., 50, 3661-3669 (2009). 36. N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, M. Zhang, Electrospun chitosan-based nanofibers and their cellular compatibility, Biomaterials., 26, 6176-6184 (2005). 37. K. H. Jung, M. W. Huh, W. Meng,.J. Yuan, S. H. Hyun, J. S. Bae, S. M. Hudson, I. K. Kang, Preparation and Antibacterial Activity of PET/Chitosan Nanofibrous Mats Using an Electrospinning Technique, Journal of Applied Polymer Science., 105, 2816-2823 (2007). 38. S. Torres-Giner, E. Gimenez, J. M. Lagarona, Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning, Food Hydrocolloids., 22, 601-614 (2008). 39. S. Torres-Giner, M. J. Ocio, J. M. Lagaron, Development of Active Antimicrobial Fiber Based Chitosan Polysaccharide Nanostructures using Electrospinning, Eng. Life Sci., 8, 303-314 (2008). 40. Z. Chen, X. Mo, F. Qing, Electrospinning of collagenáchitosan complex, Materials Letters., 61, 3490-3494 (2007). 41. Z. Chen, X. Mo, C. He, H. Wang, Intermolecular interactions in electrospun collagen-chitosan complex nanofibers, Carbohydrate Polymers., 72, 410-418 (2008). 42. X. Mo, Z. Chen, H. J. Weber, Electrospun nanofibers of collagen-chitosan and P(LLA-CL) for tissue engineering, Front. Mater. Sci. China., 1, 20-23 (2007). 43. W. H. Park, L. Jeong, D. I. Yoo, S. Hudson, Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers, Polymer., 45, 7151-7157 (2004). 44. J. L. Vondran, Fabrication, optimization, and characterization of carboxymethylated chitosan nanofiber mats for cartilage regeneration applications, Materials science and engineering., Philadelphia: Drexel University, 123 (2007). 45. R. Mincheva, N. Manolova, I. Rashkov, Bicomponent aligned nanofibers of N-carboxyethylchitosan and poly (vinyl alcohol), European Polymer Journal., 43, 2809-2818 (2007). 46. J. Du, Y. L. Hsieh, Nanofibrous membranes from aqueous electrospinning of carboxymethyl chitosan, Nanotechnology., 19, 125707 (2008). 47. Z. Q. Feng, X. Chu, N. P. Huang, T. Wang, Y. Wang, X. Shi, Y. Vol. 14, No. 2

102 ŠÁfhÁf Ding, Z. Z. Gu, The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function, Biomaterials., 30, 2753-2763 (2009). 48. F. S. Ligler, B. M. Lingerfelt, R. P. Price, P. E. Schoen, Development of Uniform Chitosan Thin-Film Layers on Silicon Chips, Langmuir., 17 (16), 5082-5084 (2001). 49. C. L. Schauer, M. S. Chen, M. Chatterley, K. Eisemann, E. R. Welsh, R. R. Price, P. E. Schoen, F. S. Ligler, Color changes in chitosan and poly (allyl amine) films upon metal binding, Thin Solid Films., 434, 250-257 (2003). 50. Y. C. Wei, S. M. Hudson, J. M. Mayer, D. L. Kaplan, The crosslinking of chitosan fibers, Journal of Polymer Science: Part A Polymer Chemistry., 30, 2187-2193 (1992). 51. J. Jin, M. Song, D. J. Hourston, Novel Chitosan-Based Films Cross-Linked by Genipin with Improved Physical Properties, Biomacromolecules., 5, 162-168 (2004). 52. E. R. Welsh, C. L. Schauer, S. B. Qadri, R. R. Price, Chitosan Cross-Linking with a Water-Soluble, Blocked Diisocyanate. 1. Solid State, Biomacromolecules., 3, 1370-1374 (2002). 53. X. Li, Y. Tsushima, M. Morimoto, H. Saimoto, Y. Okamoto, S. Minami, Y. Shigemasa, Biological Activity of Chitosan-Sugar Hybrids: Specific Interaction with Lectin, Polym. Adv. Technol., 11, 176-179 (2000). 54. W. Wang, S. Itoh, A. Matsuda, S. Ichinose, K. Shinomiya, Y. Hata, J. Tanaka, Influences of mechanical properties and permeability on chitosan nano/microfibermesh tubes as a scaffold for nerve regeneration, J. Biomed. Mater. Res., 84A, 557-566 (2008). 55. W. Wang, S. Itoh, A. Matsuda, T. Aizawa, M. Demura, S. Ichinose, K. Shinomiya, J. Tanaka, Enhanced nerve regeneration through a bilayered chitosan tube: the effect of introduction of glycine spacer into the CYIGSR sequence, J. Biomed. Mater. Res., 85A 919-928 (2008). 56. H. Jiang, D. Fang, B. Hsiao, B. Chu, W. Chen, Preparation and characterization of ibuprofen-loaded poly (lactide-co-glycolide)/ poly (ethylene glycol)-g-chitosan electrospun membranes, J. Biomat. Sci. Polym. Ed., 15, 279-296 (2004). 57. F. CHEN, X. LI, X. MO, C. HE, H. WANG, Y. IKADA, Electrospun chitosan-p(lla-cl) nanofibers for biomimetic extracellular matrix, J. Biomater. Sci. Polymer Edn., 19, 677-691 (2008). 58. Z. Chen, X. Mo, C. He, H. Wang, Intermolecular interactions in electrospun collagen-chitosan complex nanofibers, Carbohydrate Polymers., 72, 410-418 (2008). 59. S. S. Ojha, D. R. Stevens, T. J. Hoffman, K. Stano, R. Klossner, M. C. Scott, W. Krause, L. I. Clarke, R. E. Gorga, Fabrication and Characterization of Electrospun Chitosan Nanofibers Formed via Templating with Polyethylene Oxide, Biomacromolecules., 9, 2523-2529 (2008). 60. L. Li, Y.L. Hsieh, Chitosan bicomponent nanofibers and nanoporous fibers, Carbohydrate Research., 341, 374-381 (2006). 61. C. Kriegel, K. M. Kit, D. J. McClements, J. Weiss, Electrospinning of chitosan-poly (ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions, Polymer., 50, 189-200 (2009). 62. B. Duan, X. Yuan, Y. Zhu, Y. Zhang, X. Li, Y. Zhang, K. Yao, A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning, European Polymer Journal., 42, 2013-2022 (2006). 63. R. R. Klossner, H. A. Queen, A. J. Coughlin, W. E. Krause, Correlation of Chitosan's Rheological Properties and Its Ability to Electrospin, Biomacromolecules., 9, 2947-2953 (2008) 64. Y. Z. Zhang, B. Su, S. Ramakrishna, C. T. Lim, Chitosan Nanofibers from an Easily Electrospinnable UHMWPEO-Doped Chitosan Solution System, Biomacromolecules., 9, 136-141 (2008). 65. J. Du, Y. L. Hsieh, Nanofibrous membranes from aqueous electrospinning of carboxymethyl chitosan, Nanotechnology., 19, 125707 (2008). 66. Y. Zhou, D. Yang, J. Nie, Electrospinning of Chitosan/Poly(vinyl alcohol)/acrylic Acid Aqueous Solutions, Journal of Applied Polymer Science., 102, 5692-5697 (2006). 67. K. H. Jung, M. W. Huh, W. Meng, J. Yuan, S. H. Hyun, J. S. Bae, S. M. Hudson, I. K. Kang, Preparation and Antibacterial Activity of PET/Chitosan Nanofibrous Mats Using an Electrospinning Technique, Journal of Applied Polymer Science., 105, 2816-2823 (2007). Biomaterials Research 2010