Biomaterials Research (2010) 14(2) : 95-102 Biomaterials Research 7 The Korean Society for Biomaterials jm ù œw Fabrication of Chitosan Nanofiber Scaffold and Their Biomedical Applications wùáá«* Ha Na Park, Jung Bok Lee, and Il Keun Kwon* Š tš Department of Maxillofacial Biology and Institute of Oral Biology, School of Dentistry, Kyunghee University, Seoul 130-701, Korea (Received May 10, 2010/Acccepted May 12, 2010) Functional biomaterial research has been directed toward the development of improved scaffolds for tissue engineering. Many biodegradable and biocompatible polymers both synthetic polymers and natural polymers have been used to make scaffolds. Among the naturally derived polymers, chitosan which is deacetylated derivative of chitin, is widely used for biomedical applications such as tissue engineering scaffolds, drug delivery, and wound dressing due to their unique biological properties such as biocompatibility, biodegradability, anti-bacterial, and non-toxicity. In the recent years, electrospinning has been used to be a novel technique to fabricate nano/micro fibers. These nano/micro fibers have been applied in biomedical fields as tissue engineering scaffold because of their high surface area and porosity. In this reason, there has been a growing interest in electrospinning using chitosan in order to improve similarities to natural tissue. This article reviews the recent and relevant reports of the chitosan nanofibers fabricated by electrospinning and their biomedical applications. Key words: chitosan, electrospinning, nanofiber scaffold, tissue engineering lšh (Tissue engineering)f fdš l Œ f fš ilf f gš eš thšf f fdš llt(scaffold) Š Œ lš f. il gf ilšh h f,, gš f llt, ilf gš f fff Šd Š, j ti l hšš if eš fhf dlf i f Š f jd f. 1) f llt f r, l, Œ f Š, f Œ f ihf Š, llt hfš xv,, f f. 2) u h(electrospinning, ELSP)f fdš f lf l e Š ilf ECM i eš Œf l llt hfš f. h f 1882 Lord Rayleigh Š tf Š fh ff hhf gf Š f f, 1934 ff A. Formhals fš f. h f f} f lf l *sfhf: kwoni@khu.ac.kr ef hff Š, hf hf e e Š f e l hf d } eš df f Š f } ƒlf l ff, ilš llt fd f. 3-5) hf fdf d f lf Š Š, 10~50 kvf hf l fš 10~25 cmf h f l f ef hf f Š l df eœ~ lš, ef lf Œ~ fh, l l ff,,, l f h f i f, fš dff ihš eš Œ ~f hff Š. jm(chitosan) g e ~f Š lltf hf d f d eš, j g f d f t hš f poly (L-lactic acid) (PLLA), poly (LA-co-GA) (PLGA), poly (ε-caprolactone) (PCL), poly (L-lactic-coε-caprolactone) (PLCL) f Š f z, h, ~ f s f f f. j ~ 95
96 ŠÁfhÁf Figure 1. (a) ~ (b) ~ f ŒŠ i. (Poly-(1Á4)-2-amino-2-deoxy-β-D-glucose)f z f fl ~ (f d, vf, f f ig)f ~ Œ(deacetylation, DA)Š l t f, z z f fl f ff(figure 1). ~ f Œ h z z f h ef l, f - ƒ, d Š f ~ f f ƒf ih. ~ e f Š (Acid dissociation constant)f pka ~ Œf h, fœ f hš jœ fš h, Œf h 50% tšl f, h j Œ fd Š e pka 6.3-6.7f e. f f t ff d f dš~. f f t ff d f ff ghf Œ fdšf ff r fš lf Š f ~. ~ f jdš ƒf f d Š f dš h l hf., ef f, zf f ~ f ešh lf f Œ Š h h d f j zf ef t f } ~ f. 6) fš ƒf l ~ f Šhf g, Š, Še, t hšf dš 7) d Š, Š e hi ef fdf Š f, vx h, ˆ th, 8) r x 9,10) h t 11) Š il Šh fdf f. 12-15) jm ù ~ e ~ f dš thšf l f fdš ilšh fdf ff, hf Š e hf Š Šf fš f. 16-19) ~ f e Š f z unit f Šf fhff f, f f Šf fe f f f. f e d l ~ Š, ~ f f l pka 6.3 f primary amine groups fš Š f ph 6.0 fšf d. 20) 2004 Min f ~ f vz ŠjŠ (depolymerization)š, dš l ~ f 1,1,1,2,2,2- hexafluoro-2-propanol (HFIP) hf ƒ hfš. hf ~ ƒ 40% aq NaOH df f dš 60 o C 100 o C ~ ŒŠ Š ~ ƒ ~ f xœš, FT-IR WAXD Š ih f Œ ŒfŠf hf ~ ƒ hff f ŒfŠ. 21) Geng f ~ f ~ Œ h f, d dš ƒf df g h whš, SEMf Š ~ ef Œ~ ŒfŠ. ff Š ff ~ f fdš h Š e hfš. f ff ~ f 9.5-10.5 wt.%f } } (bead) ŒŠ ef f Š f ŒfŠf, f f f ~ f 2.5-3 wt.% df d Š d e hf f Š f ŒfŠ. ff, 106,000 g/mol f ff l ~ f fdš 7-7.5 wt.%f f fš e ŒŠ f Šf, f ff ~ f Š lf e ŒŠl Š fe ~ f l f fš f hš f f Š. 17) Ohkawa f Š ~ f f df fdš h ŠŠ eš methanol, ethanol, 1,4-dioxane, dichloromethane (DCM) f Ž e d, N,Ndimethylformamide (DMF), dimethylsulfoxie (DMSO) f f d (aprotic solvent), Acetic acid, HCl f d f ŒŠ d fdšf, d j Trifluoroacetic acid (TFA) fdšf d ~ f l e ŒŠ Š. 22) ff ~ / TFAdf hš, ~ f 6wt.% fšf d e Š f Œ(Figure 2(a), (b)), chitosanf 7wt.% f, e dš Œf ŒfŠ(Figure 2(c), (d)). Š fš Œ~ l ~ e 8wt.% f Œ f ŒfŠ(Figure 2(e), (f)). Biomaterials Research 2010
~ e lltf hf tšh fd 97 Figure 2. TFA d fdš ~ h. ~ f h ~ ef SEM fl: a) 5 wt.%, b) 6wt.%, c) 7wt.%, d) 7wt.% e) 8wt.% f) 8wt.%. Figure 3. TFA DCMf ŒŠ ed fdš hf Š hfš ~ ef SEM fl. ~ f 7 wt.% TFA/DCM (70/30 v/v%) ŒŠ ed f. a) jœs Šhf ~ e, b) 5 M NaOH fdš jœs Š f ~ e, c) 5 M Na 2 CO 3 fdš jœsš f ~ e. Ohkawa f TFA d dšf d, hf ~ f h fl f, tm, ~ f TFA f ŒŠ, f fš ~ ff Š Šf z h Š Šj, m, TFAf Š Žf ~ /TFA df h fhf fdš ff f Œ. 22) ~ f hš e hfš eš TFA DCMf dš f. Sangsanoh ftfa/ DCM(70:30)f d Š hfš ~ e ƒ (Figure 3(a)) h dš jœ hf ŠdŠf fl Vol. 14, No. 2
98 ŠÁfhÁf Figure 4. a) NaOH b) Na 2 CO 3 fš ~ f jœ h. Š, NaOH Na 2 CO 3 df fdš 3 jœ s Š. 19) 5M NaOH df sš ~ e ƒ tf ei elšl Šf(Figure 3(b)), Na 2 CO 3 df sš d, tf fiber i elš f df ŒfŠ vhf f Š ih f jœ flf flš. NaOH Na 2 CO 3 f Š ~ f jœ hf (Figure 4) ~. fš ~ f hf fdš e f g } h hh fš e l f ~ f f hf, h Š ~ e hfš eš ~ df h ihš f ŠdŠ. f x s Š Šf Š 24). ~ x s Š ~ f tff Š fš l ff Š, h Š hhš h l ~ df d fš. jm w ù chitosanf acetic acid f d dš ƒf e ŒŠ f. Šl f hi ~ ft hfš f hf, f ŠŠ eš PEO, PVA, PLA, silk fibroin, collagen f Š Œf sff ŒŠf fdš e hfš f. 25) ~ e hfš eš h i ŒŠf hš(table 1) ~. ~ e hfš eš g f d f PVA bone implant, f g f fšhf Š fd f. Xu f enzyme immobilizationf eš hš chitosan e PVAf ŒŠf fdš hfš. 26) ff chitosan PVAf ŒŠdf e NaOH s Š e f PVA h Š hš i l chitosan ef ŒŠ. ef PVAf h ff f TEMf Š ŒfŠ(Figure 5(b)). PVAf h fš Š ~ ef ff f enzyme loading, immobilized lipasef hg enzyme immobilizationf eš hš i hš fff Š. ~ PVA ŒŠŠ antibacterial activity l ~ e ƒ wound healing h dš. 27) ff quaternized ~ (QCS) PVA ŒŠŠ df hš Staphylococcus aureus Escherichia coli Š hšf l ƒ hfš. polyampholyte (N-carboxyethyl chitosan) fœl f }f(poly acrylamide) ŒŠŠ df h fš, f l fš dš ~ e hfš. 28) ~ e hfš eš f ~ (4-6 wt.%) PEO 2:1 1:1f e ŒŠŠ d e hfš. 29,30) PEO thšf if, 31) r h, 32) il g 33) f d f d f. Kriegel f ~ PEO 3:1f e ŒŠŠ f f d e hfš. 34) f Biomaterials Research 2010
~ e lltf hf tšh fd 99 Table 1. l ed ff ŒŠf fdš ~ ef hf Blended polymer Molecular weight DDA [%] Solvent Surfactant Ref. CS/PLLA-CL PLA 50 mol% 60 HFIP, TFA 57 CS/CL I CL-I 0.8-1 10 5 Da 85 HFIP, TFA 58 HFIP, TFA, MC 40 CS 1.48 10 5 g/mol, PEO 9 10 5 g/mol 82 AA 59 CS 190 kda, PEO 900 kda 85 AA, DMSO Triton -100 36 PEO 9 10 5 g/mol CS/PEO CS 4 10 5, 6 10 5, 1.48 10 5 g/mol 75-85 AA 63 PEO 600, 1500, 2300, 4000 kda, CS 654 kda 90 AA 29 CS 1400, 100 kda, PEO 900 kda 80, 70, 60 / 83 AA 35 α-cs/ PEO α-cs 1000 kda, PEO 900 kda 80 AA SDS, Brij 35, DTAB 61 CS/UHMWPEO UHMWPEO >5 10 6 Da 85 AA, DMSO 64 CS/PVA CS/PEO/PVA/ PAA/PAAm CS 1600 kda, PVA 124-186 kda 82.5 AA 60 PEO 9 10 5 g/mol CS 1.2 10 5 Mw 82.5 AAc 66 CS 405, 40, 89 kda PAA 450 kda PEO 100 kda PAAm 10, 5-6 10 5 kda, PVA 124-186 kda CS/PAAm/AMPS/PVA CS 4 10 5 g/mol 80 acrylic acid 28 PLGA/PVA-CS CS 1.65 10 5 Da 90 THF, DMF, AA 62 CS/PET - 85 HFIP, TFA 67 *DDA : degree of deacetylation, SDS : Anionic sodium dodecyl sulfate, Brij 35 : nonionic, polyoxyethylene glycol (23) lauryl ether, DTAB : cationic dodecyltrimethylammoniumbromide CL : collagen, UHMWPEO : ultra high molecular weigh PEO (poly ethylene oxide) PVA : poly vinyl alcohol, PAA : poly acrylic acid, PAAm : poly acrylamide, CS : chitosan, AA : acetic acid, AAc : acrylic acid, DMSO : dimethyl sulfoxide, AMPS : 2-acryloylamido-2-methylpropanesulfonic acid, MC : Methylene chloride, PET : poly (ethylene terephthalate) 84.7 93.3 88.6 65 Figure 5. ~ /PVA f fdš e. a) h jœs hf e b) 0.5 M NaOH sš f ~ e. (Œ : PVA h f pore). ŒŠd nonionic, ionic, cationic surfactant tš d, Š }f d e f f. h h f-d, f-f f h, h, g f df ƒf g jdš dff fdš, Œh Š hhh Œfdf i hš Šf Š. PEO fdš ~ e hfš d ~ f ef lš ef lf Š. 29,35) Bhattarai f ~ /PEO 9/1f e Š i~ g elš (chondrocyte) (osteoblast)f hrf g ellt hfš ilš(bone tissue engineering) fdš. 36) Vol. 14, No. 2
100 ŠÁfhÁf PVA PEO d PET (poly ethylene terpthalate), collagen, silk fibroin f Š f ŒŠŠ e hfš ff, u 37-43) derivated ~ ff ŒŠ df fdš h f. 27,44-47) jm (modification) mw w w» ~ f Š if side chainf ~Šf dš f f eš ƒf ff Š fš (biomedical engineering) d Š fdf f. lf Š ~ f l ƒf tl, ~ f thš, Š, Š, rxe, mucoadhesivity f Šh ƒ(biological properties)f elš f. ~ f f ff Š ŒŠh i f(figure 1(b)) etherification, esterification, cross-linking, graft copolymerization f f ff Š. 20) acetylation, quaternization, aldehyde ketone f f, alkylation, grafting, chelation of metals f Œ Šh ff Š ff, Š r Š(cross-link)f Š diisocyanate, Resimene, 48) N,N-disuccinimidyl suberate, 49) epichlorohydrin, 50) genipin, 51) hexamethylene 1,6-di (aminocarboxysulfonate) f f ŠŠ 52) ff, l f O-acetylation, gratfing, eff H-bonding f Š ff Š f. il Šh hdf eš ~ f l(modification)f Š f ƒh f(specific recognition)f. Š f ~ f Šf j fš ƒ h, f, f f, DDS (drug delivery system), gene therapy, ilš. Li f D-, L- fucose, lectin ƒhš Šf f f f Š f ~ f Š Š Š. 53) PLGA-~ /PVAf Š ƒ f embryo skin fibroblast ~d hšš, 63) ~, PEO, Triton X-100 f ŒŠŠ d(~ /PEO = 9/1,w/w), Š i elš f f rf ll~. 54,55) Jiang f hf fdš ibuprofenf ~g f PLGA/PEG-g-chitosanŒŠ ƒ hfš. ff PEGg-chitosan fdš PLGA ƒ t f v f jf, PEG-g-chitosanf 2j f ibuprofen Šf elš f Šf u h 56) f fdš hfš e ƒ hhš h Š hff h. ~ f thš, Š, Š f dš Šh ƒ Š, f dš f df f Š ilšh hdf e h f f l Š f. Šl ff Œ Œf f ŒŠ f Š h dfš Š ff, f fdš h ~ e hfš f. u f fdš f f. e h hfš f j Šf hf h, l l ff, df jf f df f, h, h, g Š d jdš dff fdš, ƒ f f f l ff d ŒŠ f ff, f ff f lf } e ŒŠ hf fdš ~ f fdf hf Š eš f ŒŠ e, d Š h i f hhš g f g jdš. hhš if ŒŠ h, rx f fšhf hd df hf ~ f ƒ f fd f f. uf ll(b0010536) es (10035291)f le fš fhf f. šx 1. I. O. Smith, X. H. Liu, Smith LA, P. X. Ma, Nanostructured polymer scaffolds for tissue engineering and regenerative medicine, Wiley Interdiscip Rev Nanomed Nanobiotechnol., 1, 226-36 (2009). 2. B. S. Kim, D. J. Mooney, Development of biocompatible synthetic extracellular matrices for tissue engineering. TIBTECH, 16, 224 (1998). 3. R. Casarano, R. Bentini, V. B. Bueno, T. Iacovella, F. B. F. Monteiro, F. A. S. Iha, A. Campa, D. F. S. Petri, M. Jaffe, L. H. Catalani, Enhanced fibroblast adhesion and proliferation on electrospun fibers obtained from poly (isosorbide succinate-b-l-lactide) block copolymers, Polymer., 50, 6218-6227 (2009). 4. S. Madduri, M. PapaloÁzos, B. Gander, Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration,á Biomaterials., 31, 2323-2334 (2010). 5. H. R. Jung, D. H. Ju, W. J. Lee, X. Zhang, R. Kotek, Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes, Electrochimica Acta., 54, 3630-3637 (2009). 6. E. Guibal, Heterogeneous catalysis on chitosan-based materials : a review, Prog. Polym. Sci., 30, 71-109 (2005). 7. K. MNVR, A review of chitin and chitosan applications, React Funct Polym., 46, 1-27 (2000). 8. S. W. Ko, Y. W. Cho, Chitin (or Chitosan) Blends and Their Applications, Polymer Science and Technology., 8, 538-545 (1997). 9. S. Hirano, C. Itakura, H. Seino, Y. Akiyama, I. Nonaka, N. Biomaterials Research 2010
~ e lltf hf tšh fd 101 Kanbara, T. Kawakami, Chitosan as an ingredient for domesticanimal feeds, J. Agric. Food Chem., 38, 1214-7 (1990). 10. K. Aiedeh, E. Gianasi, I. Orienti, V. Zecchi, Chitosan microcapsules as controlled release systems for insulin, J. Microencapsulation., 14, 567-76 (1997). 11. J. Berger, M. Reist, J. M. Mayer, O. Felt, R. Gurny, Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications, Eur. J. Pharm. Biopharm., 57, 35-52 (2004). 12. K. Yagi, N. Michibayashi, N. Kurikawa, Y. Nakashima, T. Mizoguchi, A. Harada, S. Higashiyama, H. Muranaka, M. Kawase, Effectiveness of fructose-modified chitosan as a scaffold for hepatocyte attachment, Biol. Pharm. Bull., 20, 1290-4 (1997). 13. Y. Zhang, M. Q. Zhang, Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release, J. Biomed. Mater. Res., 62, 378-86(2002). 14. Y. Zhang, M. Q. Zhang, Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for loadbearing bone implants, J. Biomed. Mater. Res., 61, 1-8 (2002). 15. Y. Zhang, M. Q. Zhang, Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering, J. Biomed. Mater. Res., 55, 304-12 (2001). 16. J. D. Schiffman, C. L. Schauer, Cross-Linking Chitosan Nanofibers, Biomacromolecules., 8, 594-601 (2007). 17. X. Geng, O. H. Kwon, J. H. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution, Biomaterials,, 26, 5427-5432 (2005). 18. S. D Vrieze, P. Westbroek, T. V. Camp, L. V. Langenhove, Electrospinning of chitosan nanofibrous structures: feasibility study, J. Mater. Sci., 42, 8029-8034 (2007). 19. P. Sangsanoh, P. Supaphol, Stability Improvement of Electrospun Chitosan Nanofibrous Membranes in Neutral or Weak Basic Aqueous Solutions, Biomacromolecules., 7, 2710-2714 (2006). 20. C. K. S. Pillai, W. Paul, C. P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation, Progress in Polymer Science., 34, 641-678 (2009). 21. B. M. Min, S. W. Lee, J. N. Lim, Y. You, T. S. Lee, P. H. Kang, W. H. Park, Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers, Polymer., 45, 7137-7142 (2004). 22. K. Ohkawa, D. G. Cha, H. K. Kim, A. Nishida, H. Yamamoto, Electrospinning of Chitosan, Macromol. Rapid Commun., 25, 1600-1605 (2004). 23. M. Hasegawa, A. Isogai, F. Onabe, M. Usuda, R. H. Atalla, Characterization of cellulose-chitosan blend films, J. Appl. Polym. Sci., 45, 1873-1879 (1992). 24. S. V. Fridrikh, J. H. Yu, M. P. Brenner, G. C. Rutledge, Controlling the fiber diameter during electrospinning, Phys. Rev. Lett., 90, 144502 (2003). 25. G. Kunike, Chitin and chitosan, J. Soc. Dyers. Colorists., 42, 318-342 (1927). 26. X. J. Huang, D. Ge, Z. K. Xu, Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization, European Polymer Journal., 43, 3710-3718 (2007). 27. M. Ignatova, K. Starbova, N. Markova, N. Manolova, I. Rashkov, Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly (vinyl alcohol), Carbohydrate Research., 341, 2098-2107 (2006). 28. R. Mincheva, N. Manolova, D. Paneva, I. Rashkov, Preparation of Polyelectrolyte-Containing Nanofibers by Electrospinning in the Presence of a Non-Ionogenic Water-Soluble Polymer, J. Bioact. Compatible Polym., 20, 419-435 (2005). 29. B. Duan, C. Dong, X. Yuan, K. Yao, Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide), Journal of Biomaterials Science, Polymer Edition., 15, 797-811(2004). 30. H. Matsumoto, H. Yako, M. Minagawa, A. Tanioka, Characterization of chitosan nanofiber fabric by electrospray deposition: Electrokinetic and adsorption behavior, Journal of Colloid and Interface Science., 310, 678-681 (2007). 31. L. G. GRIFFITH, POLYMERIC BIOMATERIALS, Acta mater., 48, 263-277 (2000). 32. F. Yoshiia, Y. Zhanshan, K. Isobe, K. Shinozaki, K. Makuuchi, Electron beam crosslinked PEO and PEO/PVA hydrogels for wound dressing, Radiation Physics and Chemistry., 55, 133-138 (1999). 33. C. D. Sims, P. E. M. Butler, R. Casanova, B. T. Lee, M. A. Randolph, W. P. A. Lee, C. A. Vacanti, M. J. Yaremchuk, Injectable Cartilage Using Polyethylene Oxide Polymer Substrates, Plastic & Reconstructive Surgery., 98, 843-850 (1996). 34. C. Kriegel, K. M. Kit, D. J. McClements, J. Weiss, Influence of Surfactant Type and Concentration on Electrospinning of Chitosan- Poly (Ethylene Oxide) Blend Nanofibers, Food Biophysics., 4, 213-228(2009). 35. K. Desai, K. Kit, J. Li, P. M. Davidson, S. Zivanovic, H. Meyer, Nanofibrous chitosan non-wovens for filtration applications, Polymer., 50, 3661-3669 (2009). 36. N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, M. Zhang, Electrospun chitosan-based nanofibers and their cellular compatibility, Biomaterials., 26, 6176-6184 (2005). 37. K. H. Jung, M. W. Huh, W. Meng,.J. Yuan, S. H. Hyun, J. S. Bae, S. M. Hudson, I. K. Kang, Preparation and Antibacterial Activity of PET/Chitosan Nanofibrous Mats Using an Electrospinning Technique, Journal of Applied Polymer Science., 105, 2816-2823 (2007). 38. S. Torres-Giner, E. Gimenez, J. M. Lagarona, Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning, Food Hydrocolloids., 22, 601-614 (2008). 39. S. Torres-Giner, M. J. Ocio, J. M. Lagaron, Development of Active Antimicrobial Fiber Based Chitosan Polysaccharide Nanostructures using Electrospinning, Eng. Life Sci., 8, 303-314 (2008). 40. Z. Chen, X. Mo, F. Qing, Electrospinning of collagenáchitosan complex, Materials Letters., 61, 3490-3494 (2007). 41. Z. Chen, X. Mo, C. He, H. Wang, Intermolecular interactions in electrospun collagen-chitosan complex nanofibers, Carbohydrate Polymers., 72, 410-418 (2008). 42. X. Mo, Z. Chen, H. J. Weber, Electrospun nanofibers of collagen-chitosan and P(LLA-CL) for tissue engineering, Front. Mater. Sci. China., 1, 20-23 (2007). 43. W. H. Park, L. Jeong, D. I. Yoo, S. Hudson, Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers, Polymer., 45, 7151-7157 (2004). 44. J. L. Vondran, Fabrication, optimization, and characterization of carboxymethylated chitosan nanofiber mats for cartilage regeneration applications, Materials science and engineering., Philadelphia: Drexel University, 123 (2007). 45. R. Mincheva, N. Manolova, I. Rashkov, Bicomponent aligned nanofibers of N-carboxyethylchitosan and poly (vinyl alcohol), European Polymer Journal., 43, 2809-2818 (2007). 46. J. Du, Y. L. Hsieh, Nanofibrous membranes from aqueous electrospinning of carboxymethyl chitosan, Nanotechnology., 19, 125707 (2008). 47. Z. Q. Feng, X. Chu, N. P. Huang, T. Wang, Y. Wang, X. Shi, Y. Vol. 14, No. 2
102 ŠÁfhÁf Ding, Z. Z. Gu, The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function, Biomaterials., 30, 2753-2763 (2009). 48. F. S. Ligler, B. M. Lingerfelt, R. P. Price, P. E. Schoen, Development of Uniform Chitosan Thin-Film Layers on Silicon Chips, Langmuir., 17 (16), 5082-5084 (2001). 49. C. L. Schauer, M. S. Chen, M. Chatterley, K. Eisemann, E. R. Welsh, R. R. Price, P. E. Schoen, F. S. Ligler, Color changes in chitosan and poly (allyl amine) films upon metal binding, Thin Solid Films., 434, 250-257 (2003). 50. Y. C. Wei, S. M. Hudson, J. M. Mayer, D. L. Kaplan, The crosslinking of chitosan fibers, Journal of Polymer Science: Part A Polymer Chemistry., 30, 2187-2193 (1992). 51. J. Jin, M. Song, D. J. Hourston, Novel Chitosan-Based Films Cross-Linked by Genipin with Improved Physical Properties, Biomacromolecules., 5, 162-168 (2004). 52. E. R. Welsh, C. L. Schauer, S. B. Qadri, R. R. Price, Chitosan Cross-Linking with a Water-Soluble, Blocked Diisocyanate. 1. Solid State, Biomacromolecules., 3, 1370-1374 (2002). 53. X. Li, Y. Tsushima, M. Morimoto, H. Saimoto, Y. Okamoto, S. Minami, Y. Shigemasa, Biological Activity of Chitosan-Sugar Hybrids: Specific Interaction with Lectin, Polym. Adv. Technol., 11, 176-179 (2000). 54. W. Wang, S. Itoh, A. Matsuda, S. Ichinose, K. Shinomiya, Y. Hata, J. Tanaka, Influences of mechanical properties and permeability on chitosan nano/microfibermesh tubes as a scaffold for nerve regeneration, J. Biomed. Mater. Res., 84A, 557-566 (2008). 55. W. Wang, S. Itoh, A. Matsuda, T. Aizawa, M. Demura, S. Ichinose, K. Shinomiya, J. Tanaka, Enhanced nerve regeneration through a bilayered chitosan tube: the effect of introduction of glycine spacer into the CYIGSR sequence, J. Biomed. Mater. Res., 85A 919-928 (2008). 56. H. Jiang, D. Fang, B. Hsiao, B. Chu, W. Chen, Preparation and characterization of ibuprofen-loaded poly (lactide-co-glycolide)/ poly (ethylene glycol)-g-chitosan electrospun membranes, J. Biomat. Sci. Polym. Ed., 15, 279-296 (2004). 57. F. CHEN, X. LI, X. MO, C. HE, H. WANG, Y. IKADA, Electrospun chitosan-p(lla-cl) nanofibers for biomimetic extracellular matrix, J. Biomater. Sci. Polymer Edn., 19, 677-691 (2008). 58. Z. Chen, X. Mo, C. He, H. Wang, Intermolecular interactions in electrospun collagen-chitosan complex nanofibers, Carbohydrate Polymers., 72, 410-418 (2008). 59. S. S. Ojha, D. R. Stevens, T. J. Hoffman, K. Stano, R. Klossner, M. C. Scott, W. Krause, L. I. Clarke, R. E. Gorga, Fabrication and Characterization of Electrospun Chitosan Nanofibers Formed via Templating with Polyethylene Oxide, Biomacromolecules., 9, 2523-2529 (2008). 60. L. Li, Y.L. Hsieh, Chitosan bicomponent nanofibers and nanoporous fibers, Carbohydrate Research., 341, 374-381 (2006). 61. C. Kriegel, K. M. Kit, D. J. McClements, J. Weiss, Electrospinning of chitosan-poly (ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions, Polymer., 50, 189-200 (2009). 62. B. Duan, X. Yuan, Y. Zhu, Y. Zhang, X. Li, Y. Zhang, K. Yao, A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning, European Polymer Journal., 42, 2013-2022 (2006). 63. R. R. Klossner, H. A. Queen, A. J. Coughlin, W. E. Krause, Correlation of Chitosan's Rheological Properties and Its Ability to Electrospin, Biomacromolecules., 9, 2947-2953 (2008) 64. Y. Z. Zhang, B. Su, S. Ramakrishna, C. T. Lim, Chitosan Nanofibers from an Easily Electrospinnable UHMWPEO-Doped Chitosan Solution System, Biomacromolecules., 9, 136-141 (2008). 65. J. Du, Y. L. Hsieh, Nanofibrous membranes from aqueous electrospinning of carboxymethyl chitosan, Nanotechnology., 19, 125707 (2008). 66. Y. Zhou, D. Yang, J. Nie, Electrospinning of Chitosan/Poly(vinyl alcohol)/acrylic Acid Aqueous Solutions, Journal of Applied Polymer Science., 102, 5692-5697 (2006). 67. K. H. Jung, M. W. Huh, W. Meng, J. Yuan, S. H. Hyun, J. S. Bae, S. M. Hudson, I. K. Kang, Preparation and Antibacterial Activity of PET/Chitosan Nanofibrous Mats Using an Electrospinning Technique, Journal of Applied Polymer Science., 105, 2816-2823 (2007). Biomaterials Research 2010