Cover Story 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 ORACLE KOREA MAGAZINE Spring 개요빅데이터를처리하는기술의가장중심기술은아파치하둡기술일것이다. 하둡기술은데이터를취득하고이를구조화시키고분석을하는일련의과정에

Size: px
Start display at page:

Download "Cover Story 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 ORACLE KOREA MAGAZINE Spring 개요빅데이터를처리하는기술의가장중심기술은아파치하둡기술일것이다. 하둡기술은데이터를취득하고이를구조화시키고분석을하는일련의과정에"

Transcription

1 Cover Story 04 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 저자 - 홍기현상무, 한국오라클 Tech Sales Consultant(kihyun.hong@oracle.com) 빅데이터기술은데이터크기혹은증가속도가빠르고데이터저장형태도다양하여이를 모델링후분석하기에는부적합한형태의데이터를분산시스템을이용하여분석하는기술이다. 또한빅데이터로는트위터나페이스북같은소셜미디어에올라온데이터가언급되기도하지만, 사실기업내에서도센서데이터나웹로그같은빅데이터는존재하여왔다. 다만이를기존의기술과 인프라에서처리하기에는그비용이많이들어그일부만을선별하여처리하고있었을뿐이다. 이러한데이터를처리하는것에대해서는 Google 이 2003 년에 Google File System(GFS) 와 2004 년에 Map 에대한논문을발표한이후빅데이터를저가의하드웨어를이용하여빠르게처리할수 있는기술이알려지면서현재는많은기업들이관심을가지기시작하였다. 본기고에서는빅데이터를처리하기위한기술에대하여간략히짚어보고, 엔터프라이즈환경에서 빅데이터처리를위해고려되어야할기술적인요소와, Oracle 빅데이터솔루션에대해 알아보고자한다. Cover Story 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 ORACLE KOREA MAGAZINE Spring

2 Cover Story 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 ORACLE KOREA MAGAZINE Spring 개요빅데이터를처리하는기술의가장중심기술은아파치하둡기술일것이다. 하둡기술은데이터를취득하고이를구조화시키고분석을하는일련의과정에대한분산저장및처리기술을담고있다. 우선데이터를취득하여저장할때는저가의장비에저장하는데이때장애를대비하여 3중화를기본으로한 Hadoop Distributed File System(HDFS) 라는파일시스템을구성한다. 이때파일과디스크에대한메타정보를 Name 노드에서관리하고실데이터는 Data Node에서분산시켜저장한다. 각노드간의데이터이동을최소화하기위해서각데이터에대한처리는가능한각각의로컬노드에서수행한다. 이를위해서는분산처리를위한 Map 기술을사용한다. Map는개발자들이저수준의인프라구조의이해를바탕으로네트워크프로그램을작성해야하는번거로움을없애고실제처리하여야하는업무에대한로직을구현할수있도록도와준다. 프로그램은다양한언어를이용하여개발할수있으나실제는 Java 언어를이용하여개발되어진다. 이렇게개발된프로그램은각노드로배포되어수행되어지는데이를 job이라고하고이 job을관리하기위한 JobTracker와실제일을수행하는 TaskTracker 들로이루어진다. 또한분산처리시일어날수있는일부작업의실패에대해안전하게처리하기위한 ZooKeeper 가존재한다. Map를이용한하둡의아키텍쳐는개발자로하여금분산처리환경에서업무위주로개발을할수있도록해주었지만일련의작업을일일이코딩한다는것은힘든일이다. 이를위해개발프레임워크로 MapReduece작업을추상화시킨 Pig나 SQL Syntax를이용한 Query 언어를이용하는 Hive를사용하여생산성을높일수있다. 빅데이터처리의완벽한플렛폼으로서의 Oracle Big Data Appliance 빅데이터처리시스템은흔히 x86으로구성된하드웨어에아파치하둡 (Hadoop) 과이를보완하기위한서브프로젝트의프로그램을설치하여구성한다. 그렇지만, 이들서브프로젝트는각각고유의특성이있어때로는기능이중복되기도하고때로는상호연동이불완전할때가있어각특성별로이해하여취사선택하 여효율적으로시스템을구성하는데에는많은경험과기술이축적되어있어야한다. 또한오류가발생할경우오픈소스이다보니자체적으로해결하거나다른사람이해결할때까지기다리는수밖에없는것이현실이다. 그러므로이를자체적으로구성하여유지보수하는것은이러한기술을바탕으로본업을하는일부회사를제외하고는한계가있다고할수있다. 이러한인프라구성및유지보수에대한해결책이바로 Oracle Big Data Appliance이다오라클 Big Data Appliance는빅데이터프로그램을구동하기위한하드웨어와소프트웨어를최적의상태로구성한상태로고객에게전달함으로서, 고객이빅데이터프로젝트를즉시수행할수있도록하는것을그목표로한다. 또한오류및장애발생시이에대한지원을수행한다. Oracle Big Data Appliance는 Full rack 1대기준으로 864 GB의메인메모리와 648TB의스토리지로구성되어있다. 주요하드웨어구성은다음과같다. 18대의노드로구성, 각노드의서버구성은다음과같다 2 CPUs (6-core Intel Processors) 48 GB의메인메모리 (96 GB 또는 144GB 로업그레이드가능 ) 12 X 3TB 디스크 인피니밴드네트워킹 10 Gb 이더넷연결 Oracle Big Data Appliance는오픈소스를조합하여구성된시스템소프트웨어와오라클에서개발한 Big Data Connectors를포함한다. 주요구성은다음과같다. Cloudera CDH(Cloudera s Distribution Including Apache Hadoop) - Hadoop Core - HDFS - Hive - HBase - Zookeeper - Oozie - Mahout - Sqoop - Cloudera Manager Oracle Linux 5.6

3 Java HotSpot Virtual Machine Open Source R Distribution Oracle NoSQL Database CE Oracle Big Data Connectors 오라클은클라우데라와파트너쉽을맺고 Oracle Big Data Appliance 에클라우데라의아파치하둡배포 판 CDH(Cloudera s Distribution Including Apache Hadoop) 과클라우데라매니저 (Cloudera manager) 솔 루션을포함하여구성하였다. 이 CDH 는기업환경에서 적용가능한아파치하둡의 100% 오픈소스배포판으 로안정성과확장성측면에서뛰어난평가를받고있다. Oracle Big Data Appliance 는이러한클라우데라의하 둡배포판에오라클리눅스, 오라클 Java Hotspot VM, Open Source R Distribution, Oracle NoSQL Database 및 Oracle Big Data Connectors 를설치하여철저한테스 트와검증을통해최적의환경으로구성한시스템이다. Cloudera CDH 클라우데라의아파치하둡배포판 CDH(Cloudera s Distribution Including Apache Hadoop) 는안정된하둡 의버전에중요오류를수정하여패키지화한것으로쉽 게설치할수있다. Apache Hadoop 은데이터의저장과처리를위한플렛폼이다 Scalable Fault tolerant Open source < 그림 1> 하둡의특징및구성요소 Cloudera Manager 하둡크러스터의성능향상, 서비스의품질향상, 관리비 용절감등을위해하둡클러스터의모든부분에제어를 하도록도와주는 End-to-End 관리툴이다. Open Source R Distribution 주요하둡 (HADOOP) 구성요소 Hadoop Distributed File System (HDFS) 파일공유및서버들에분산되어저장된데이터의보호 Map 물리적으로여러개로분리된서버를이용한분산처리 R 은통계분석 / 그래픽을제공하는프로그래밍언어로 2000 년후반부터대형포탈업체에서초대형데이터분 석에사용되고있음이알려지면서폭발적으로도입이늘 어나는오픈소스기반의통계를목적으로한언어이며 R의배포판은그개발환경을말한다. Oracle NoSQL Database 아주많은양의정보 ( 데이터 ) 를수집하여저장하려면빠른처리속도와데이터증가에따른확장이용이해야하고부분적인장애상황에서도서비스를지속할수있어야한다. NoSQL은 Non-SQL 또는 Not-only-SQL를줄임말로데이터를저장할때 key-values와같은간단한구조로저장을하고데이터를저장이나읽을때 SQL을사용하지않는다. SQL없이데이터를관리한다는것을기존 DBMS를사용하는사용자는이상하겠지만 NoSQL이테이블간의조인을허용하지않는다는것을안다면쉽게이해할수있을것이다, 왜냐하면 SQL은여러테이블을조인할때최적의경로를선택하는역할을하는데 NoSQL은한테이블에대해데이터를넣거나질의함으로굳이 SQL을사용할필요없이 API를이용하면되는것이다. 오라클 NoSQL 데이터베이스는키- 밸류데이터모델 (Key-value Data Model) 을사용해데이터를단순하고유연한포맷으로저장함으로서웹로그, 센서, 스마트미터데이터, 소셜네트워크에서생산된데이터같은동적스키마구조를가진대용량데이터를효과적으로저장관리할수있게해준다. 또한 NoSQL DB는개발자스스로가일관성을조절할수있는옵션을제공해비즈니스별특성에맞는개발요구사항을충족시켜줄수있다. 기존인프라스트럭쳐로의연결을위한 Oracle Big Data Connectors 하둡에데이터를저장하고이를 Map를이용해분석하려고하면이를 Java와같은프로그래밍언어로개발해야하는데, 이경우개발에필요한인력및시간이많이필요할뿐만아니라분석가들이프로그램언어를배워야한다. 현재대부분의분석가는 R언어나 SQL을구사할수있고많은분석툴은 SQL을기반으로구성되어있다. 그러므로어느정도구조화된데이터의분석은하둡시스템에서수행하는것보다는기존오라클과같은데이터베이스와연동하여처리하는것이더효율적일것이다. Cover Story 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 ORACLE KOREA MAGAZINE Spring

4 Cover Story 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 ORACLE KOREA MAGAZINE Spring Oracle Big Data Connectors 는하둡에서생성된데이터 에접근하기위한다양한방법을제공하며다음과같은 구성요소를가진다. Oracle Loader for Hadoop Oracle Direct Connector for Hadoop Distributed File System (HDFS) Oracle Data Integrator Application Adapter for Hadoop Oracle R Connector for Hadoop Oracle Loader for Hadoop 하둡의데이터를오라클데이터베이스로의적재를위 해최적화된 Map 유틸리티로이전단계에서생 성된 Delimiter 로구분된 Text 나 Hive 상의테이블들 을 Input 데이터로하여데이터를읽은후 Map 를이용하여오라클데이터베이스로적재시킬수있다. Map 작업이시작되면오라클데이터베이스로접 속하여테이블의구조에대한정보를얻은후각각의테 이블과대응되는파티션단위로 작업을완료한 다. 이때정렬도함께수행하며데이터의형변환이필요 한경우하둡시스템의리소스를활용하여미리형변환 을완료한후적재작업으로들어간다. Map 작업 시오라클에직접적재하는 Online 방식과적재가능한 형태로파일을생성해놓는 Offline 방식을지원하며파일 로저장시 pump 포맷의파일로도저장가능하다. Oracle Loader for Hadoop (Online Option) Oracle Loader for Hadoop 의기능은 Oracle Big Data Appliance 상에서만수행되는것이아니라일반하둡으 로구성된시스템에서도오라클과연동하고싶다면설 치하여구동할수있다. < 그림 2> Oracle Loader For Hadoop(Online vs Offline) Oracle Loader for Hadoop (Online Option) Oracle Direct Connector for Hadoop Distributed File System (HDFS) HDFS 상의파일을오라클데이터베이스로의 External table 을이용하여직접읽는방식이다. 이방식은하둡시 스템에서생성된결과를업무상데이터베이스로적재할 필요가없거나데이터베이스내에공간이없을경우에 사용되며필요한데이터만선별하여적재할수있다. 데 이터는 SQL 을이용해질의할수있어오라클내의다른 테이블과조인도가능하다. HDFS < 그림 3> Oracle Direct Connector for HDFS Oracle Data Integrator Application Adapter for Hadoop 하둡클러스터로부터오라클데이터베이스로데이 터를추출, 변경, 적재를수행한다. 이에대한정의는 GUI(Graphical User Interface) 를이용한다. Oracle R Connector for Hadoop 로컬의 R 환경에오라클데이터베이스, 하둡간에인터 페이스를제공함으로이들세가지플렛폼상의데이터를 이용하여분석할수있다. 이를이용하면 R 사용자는하 둡상의데이터를이용하기위해하둡환경이나새로운 프로그램언어를배울필요없이 R 언어를이용해분석 할수있다. 빅데이터분석을지원하는 Oracle Advanced Analytics Oracle Advanced Analytics 는오라클데이터베이스옵 션으로통계나데이터마이닝에필요한기능을제공하며 Oracle R Enterprise 와 Oracle Data mining 으로구성되 어있다. ODCH SQL Query External Table

5 Oracle R Enterprise 오픈소스인 R의환경과언어를오라클데이터베이스 11g에통합함으로서분석가나통계학자들이기존의 R 로작성된어플리케이션을재사용가능하다. 오픈소스 R이데스크탑에서수행됨으로써존재하였던메모리크기한계나 CPU의처리능력의한계도분석작업을오라클이설치된엔터프라이즈서버에서수행하게함으로서극복되었다. 뿐만아니라데이터가있는서버에서직접수행함으로불필요하게데이터를전송할필요가없고오라클의병렬처리기능을이용할수있게되어빠른성능으로데이터를처리할수있게되었다. R workspace 컨솔 Function push-down- 데이터변환및통계작업 < 그림 4> Oracle R Enterprise Oracle statistics engine OBIEE, Web Services 익숙한 R 언어를사용대용량데이터처리운영시스템에통합 Oracle Data Mining (ODM) Oracle Data Mining(ODM) 을이용하면예측분석이나통찰력이필요한차세대응용프로그램을편리하게개발이가능하다. 응용프로그램개발자는오라클데이터베이스내데이터들에대해자동적으로발굴하는 ODM의 SQL API를이용할수있고이과정에서사용되는데이터나모델및결과를오라클데이터베이스내부에서저장함으로서불필요하게데이터를이동시키거나중요데이터가유출되는보안상의문제를방지할수있다. 데이터분석가는 Oracle Data Miner 11g Release 2의그래픽사용자인터페이스를이용하여데이터의패턴이나관계및숨겨진내용에대한통찰을할수있다. Oracle R Distribution Oracle R Distribution은오픈소스 R의배포판에 x86 하드웨어상에서고성능의수치계산을위한인텔의 MKL라이브러리를확장한것이다. 오라클은 R 소프트웨어를지지하고있고오픈소스 R에기업수준의지원을제공할계획이다. 데이터관리를위한 Oracle Engineered System 제품군빅데이터라는신개념과이에수반되는 technology에접하게되면마치모든데이터처리를이새로운개념의시스템이대체하여처리하는것으로생각하는오류를범하게된다. 그렇지만빅데이터시스템은기존의인프라를대체하는것이아니라기존시스템으로저장및처리가힘들었던데이터를처리하여의미있는데이터를추출하는시스템으로기존인프라에추가되는것이다. 이를그림으로나타내면 < 그림 5> 와같이인프라영역의앞단에빅데이터처리시스템이추가되어빅데이터의취득 / 저장, 구조화및분석하는일련의과정을수행하게된다. 정제된데이터는빅데이터시스템에서분석되거나기존의데이터웨어하우징시스템에적재되어분석시스템을이용하여분석할수있다. Oracle Exa Oracle Exa는스토리지, 서버, DBMS를통합하여최적화함으로서 DW와 OLTP 업무구분없이통합가능한데이터베이스전용시스템이다. 대규모병렬아키텍처를사용해데이터베이스서버와스토리지간의데이터대역폭을높였고지능형스토리지소프트웨어를이용하여오라클의질의의일부를스토리지노드에서수행하여유효한데이터만을접근하며한번읽은정보는최대한캐쉬함으로서처리속도를획기적으로향상시킬수있는엔지니어된시스템이다. 이밖에선형확장성과미션크리티컬한안정성을제공할수있다. Oracle Exalytics 엑사리틱스는비즈니스인텔리전스 (BI) 어플라이언스로디스크없이메모리에서데이터를분석하는인메모리기 < 그림 5> 빅데이터의취득및분석을위한시스템들 Cover Story 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 ORACLE KOREA MAGAZINE Spring

6 Cover Story 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 ORACLE KOREA MAGAZINE Spring 술이적용된제품이다. 여기에시각화기능및성능최적화를제공하는오라클의 BI 파운데이션과분석성능이확장된타임스텐인메모리데이터베이스최적화버전, 에스베이스 (ESSBASE) 등의소프트웨어로구성돼있다오라클엔지니어드시스템인 Big Data Appliance, Oracle Exa, Oracle Exalytics를연결한다면고속의인피니밴드네트워크를이용해데이터를이동시킴으로써각시스템간의데이터전송으로인한지연현상을최소화시킬수있을뿐만아니라각각최고의성능을발휘할수있도록설정된엔지니어시스템에서작업을수행함으로중요데이터를적시에볼수있도록할수있다. 빅데이터처리를통한비즈니스가치창출빅데이터는단순히새로운영역의데이터를의미하는것뿐만아니라기존에처리못했던데이터를포함하며처리된결과는새로운데이터의소스로사용된다. 이새로운소스의데이터와기존인프라에서처리하는데이터를통합함으로써보다정교한가치를찾을수있고분석시스템과의연동시킴으로써그진정한효용성을가시화할수있다. 이를 Oracle Big Data Appliance, Exa, Exalytics와같은엔지니어드시스템을인프라스트럭처로구성한다면소프트웨어와하드웨어가최적화된상태로구성된안정적인플랫폼에서데이터를처리할수있을뿐만아니라외부침입으로부터중요데이터를보호할수있게되는것이다. Oracle Big Data Appliance가제공하는준비되고검증된인프라스트럭처기반위에빅데이터처리시스템을구축하여동종업계경쟁사보다먼저안정적으로시스템을구축하고이를바탕으로데이터에숨겨진가치를찾아활용함으로서경영이익을극대화시키기를바란다.

들어가는글 2012년 IT 분야에서최고의관심사는아마도빅데이터일것이다. 관계형데이터진영을대표하는오라클은 2011년 10월개최된 오라클오픈월드 2011 에서오라클빅데이터어플라이언스 (Oracle Big Data Appliance, 이하 BDA) 를출시한다고발표하였다. 이와

들어가는글 2012년 IT 분야에서최고의관심사는아마도빅데이터일것이다. 관계형데이터진영을대표하는오라클은 2011년 10월개최된 오라클오픈월드 2011 에서오라클빅데이터어플라이언스 (Oracle Big Data Appliance, 이하 BDA) 를출시한다고발표하였다. 이와 Oracle Data Integrator 와 Oracle Big Data Appliance 저자 - 김태완부장, 한국오라클 Fusion Middleware(taewan.kim@oracle.com) 오라클은최근 Big Data 분약에 End-To-End 솔루션을지원하는벤더로급부상하고있고, 기존관계형데이터저장소와새로운트랜드인비정형빅데이터를통합하는데이터아키텍처로엔터프로이즈시장에서주목을받고있다.

More information

빅데이터처리의핵심인 Hadoop 을오라클은어떻게지원하나요? Oracle Big Data Appliance Solution 01 빅데이터처리를위한전문솔루션이 Oracle Big Data Appliance 군요. Oracle Big Data Appliance 와함께라면더이

빅데이터처리의핵심인 Hadoop 을오라클은어떻게지원하나요? Oracle Big Data Appliance Solution 01 빅데이터처리를위한전문솔루션이 Oracle Big Data Appliance 군요. Oracle Big Data Appliance 와함께라면더이 Cover Story 03 28 Oracle Big Data Solution 01_Oracle Big Data Appliance 02_Oracle Big Data Connectors 03_Oracle Exdata In-Memory Database Machine 04_Oracle Endeca Information Discovery 05_Oracle Event

More information

DB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx

DB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx 빅데이터의기술영역과 요구역량 줌인터넷 ( 주 ) 김우승 소개 http://zum.com 줌인터넷(주) 연구소 이력 줌인터넷 SK planet SK Telecom 삼성전자 http://kimws.wordpress.com @kimws 목차 빅데이터살펴보기 빅데이터에서다루는문제들 NoSQL 빅데이터라이프사이클 빅데이터플랫폼 빅데이터를위한역량 빅데이터를위한역할별요구지식

More information

[Brochure] KOR_TunA

[Brochure] KOR_TunA LG CNS LG CNS APM (TunA) LG CNS APM (TunA) 어플리케이션의 성능 개선을 위한 직관적이고 심플한 APM 솔루션 APM 이란? Application Performance Management 란? 사용자 관점 그리고 비즈니스 관점에서 실제 서비스되고 있는 어플리케이션의 성능 관리 체계입니다. 이를 위해서는 신속한 장애 지점 파악 /

More information

PowerPoint Presentation

PowerPoint Presentation 빅데이터아키텍쳐소개 임상배 (sangbae.lim@oracle.com) Technology Sales Consulting, Oracle Korea Agenda 빅데이터아키텍쳐트랜드 빅데이터활용단계별요소기술 사업방향및활용사례 요약 Q&A 빅데이터아키텍쳐트랜드 빅데이터아키텍쳐트랜드 오픈소스와기간계, 정보계시스템과의융합 현재빅데이터의열풍의근원은하둡 (Hadoop)

More information

Cover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치

Cover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치 Oracle Big Data 오라클 빅 데이터 이야기 Cover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치 최근 빅 데이터에 대한 관심이 커지고 있는데, 그 배경이 무엇일까요? 정말 다양한 소스로부터 엄청난 데이터들이 쏟아져

More information

이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론

이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론 이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론 2. 관련연구 2.1 MQTT 프로토콜 Fig. 1. Topic-based Publish/Subscribe Communication Model. Table 1. Delivery and Guarantee by MQTT QoS Level 2.1 MQTT-SN 프로토콜 Fig. 2. MQTT-SN

More information

문서의 제목 나눔고딕B, 54pt

문서의 제목 나눔고딕B, 54pt 실시간데이터수집및처리 Network Computing System Architecture Lab Dongguk University MooSeon Choi 2013.11.07 목차 1. 연구목표 2. 2차발표리뷰 3. 실시간데이터수집및처리 4. 향후연구계획 3 / 14 연구목표 ( 1 세부 데이터페더레이션을위한기술 ) 모바일기반 SNS( 비정형 ) 데이터와기존

More information

CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관

CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관 방송 통신 전파 KOREA COMMUNICATIONS AGENCY MAGAZINE 2013 VOL.174 09+10 CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내

More information

빅데이터_DAY key

빅데이터_DAY key Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020

More information

Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤

Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 (byounggon.kim@opence.org) 빅데이터분석및서비스플랫폼 모바일 Browser 인포메이션카탈로그 Search 인포메이션유형 보안등급 생성주기 형식

More information

Cloud Friendly System Architecture

Cloud Friendly System Architecture -Service Clients Administrator 1. -Service 구성도 : ( 좌측참고 ) LB(LoadBlancer) 2. -Service 개요 ucloud Virtual Router F/W Monitoring 개념 특징 적용가능분야 Server, WAS, DB 로구성되어 web service 를클라우드환경에서제공하기위한 service architecture

More information

Cover Story Big Data : 산업별 Practice ORACLE KOREA MAGAZINE Spring 통신사 Turkcell의사기탐지를통한비용감소사례 1. 회사소개 사기예측수행 Turkcell(Turkcell lietişim Hizmetle

Cover Story Big Data : 산업별 Practice ORACLE KOREA MAGAZINE Spring 통신사 Turkcell의사기탐지를통한비용감소사례 1. 회사소개 사기예측수행 Turkcell(Turkcell lietişim Hizmetle COVER STORY 04 Big Data 산업별 Practice Turkcell, Sabre Holdings, Thomson Reuters, Caixa Bank 의사례 Cover Story Big Data : 산업별 Practice ORACLE KOREA MAGAZINE Spring 2014 49 Cover Story Big Data : 산업별 Practice

More information

위세아이텍_iOLAP_

위세아이텍_iOLAP_ 빅데이터관리와분석을위한 플랫폼융합활용사례 BI Forum 분석시스템구축 Review(1/2) 1 분석시스템구축 Review(2/2) 분석속도가느리다면? 정보요구사항이변하거나 추가된다면? 데이터량이너무많다면? 2 과거의빅데이터저장 데이터량이너무많다 그러나 RDBMS 에서관리하는것은 막대한비용소요 지금까지의처리방안 1. 데이터간에우선순위부여 신용카드데이터 > 상품데이터

More information

SQL Developer Connect to TimesTen 유니원아이앤씨 DB 기술지원팀 2010 년 07 월 28 일 문서정보 프로젝트명 SQL Developer Connect to TimesTen 서브시스템명 버전 1.0 문서명 작성일 작성자

SQL Developer Connect to TimesTen 유니원아이앤씨 DB 기술지원팀 2010 년 07 월 28 일 문서정보 프로젝트명 SQL Developer Connect to TimesTen 서브시스템명 버전 1.0 문서명 작성일 작성자 SQL Developer Connect to TimesTen 유니원아이앤씨 DB 팀 2010 년 07 월 28 일 문서정보 프로젝트명 SQL Developer Connect to TimesTen 서브시스템명 버전 1.0 문서명 작성일 2010-07-28 작성자 김학준 최종수정일 2010-07-28 문서번호 20100728_01_khj 재개정이력 일자내용수정인버전

More information

Microsoft Word - th1_Big Data 시대의 기술_ _조성우

Microsoft Word - th1_Big Data 시대의 기술_ _조성우 Theme Article Big Data 시대의기술 중앙연구소 Intelligent Knowledge Service 조성우 1. 시대의화두 Big Data 최근 IT 분야의화두가무엇인지물어본다면, 빅데이터가대답들중하나일것이다. 20년전의 PC의메모리, 하드디스크의용량과최신 PC, 노트북사양을비교해보면과거에비해데이터가폭발적으로늘어났다는것을실감할수있을것이다. 특히스마트단말및소셜미디어등으로대표되는다양한정보채널의등장과이로인한정보의생산,

More information

PowerPoint Template

PowerPoint Template 대량기록물의 효율적인 처리를 위한 Database 관리방안 연구 2011.10.08 서강대학교 컴퓨터공학과 이대욱 목 차 1. 연구범위 및 내용 2. 대량기록물의 효율적인 처리를 위한 Database 구조연구 기록관리 서브시스템별 특징,기능 및 DBMS 역할 입수단 / 보존단 / 제공단 3. 인프라 변화에 대응한 Database 관리 방안 연구 대용량데이터처리기술

More information

3월2일자.hwp

3월2일자.hwp 빅데이터시장의현황및전망 8) * 1. 개요 2013년 ICT의최대이슈중하나가바로빅데이터이다. Gartner, IDC 등글로벌 ICT 리서치업체들이 2013년 ICT 산업에영향을미칠기술요소로빅데이터를선정하면서관련산업에대한관심이급증하고있다. 최근소셜미디어, 산업간융합등이확대되고, 기존의 PC뿐만아니라스마트폰, 태블릿 PC 등다양한스마트기기를통한인터넷이용이증가하면서수많은비정형데이터를발생시키고있다.

More information

RUCK2015_Gruter_public

RUCK2015_Gruter_public Apache Tajo 와 R 을연동한빅데이터분석 고영경 / 그루터 ykko@gruter.com 목차 : R Tajo Tajo RJDBC Tajo Tajo UDF( ) TajoR Demo Q&A R 과빅데이터분석 ' R 1) R 2) 3) R (bigmemory, snowfall,..) 4) R (NoSQL, MapReduce, Hive / RHIPE, RHive,..)

More information

빅데이터분산컴퓨팅-5-수정

빅데이터분산컴퓨팅-5-수정 Apache Hive 빅데이터분산컴퓨팅 박영택 Apache Hive 개요 Apache Hive 는 MapReduce 기반의 High-level abstraction HiveQL은 SQL-like 언어를사용 Hadoop 클러스터에서 MapReduce 잡을생성함 Facebook 에서데이터웨어하우스를위해개발되었음 현재는오픈소스인 Apache 프로젝트 Hive 유저를위한

More information

Portal_9iAS.ppt [읽기 전용]

Portal_9iAS.ppt [읽기 전용] Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Oracle9i Application Server e-business Portal Client Database Server e-business Portals B2C, B2B, B2E, WebsiteX B2Me GUI ID B2C

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

분산처리 프레임워크를 활용한대용량 영상 고속분석 시스템

분산처리 프레임워크를 활용한대용량 영상 고속분석 시스템 분산처리프레임워크를활용한 대용량영상고속분석시스템 2015.07.16 SK C&C 융합기술본부오상문 (sangmoon.oh@sk.com) 목차 I. 영상분석서비스 II. Apache Storm III.JNI (Java Native Interface) IV. Image Processing Libraries 2 1.1. 배경및필요성 I. 영상분석서비스 현재대부분의영상관리시스템에서영상분석은

More information

Beyond Relational SQL Server, Windows Server 에디션비교 씨앤토트 SW 기술팀장세원

Beyond Relational SQL Server, Windows Server 에디션비교 씨앤토트 SW 기술팀장세원 Beyon Relational SQL Server, Winows Server 에디션비교 씨앤토트 SW 기술팀장세원 SQL Server 2012 Eition 비교 요약 항목 Enterprise Business Intelligence Stanar H/W 지원 고가용성 확장성및성능 보안 관리생산성 SQL Server Integration Services Master

More information

따끈따끈한 한국 Azure 데이터센터 서비스를 활용한 탁월한 데이터 분석 방안 (To be named)

따끈따끈한 한국 Azure 데이터센터 서비스를 활용한 탁월한 데이터 분석 방안 (To be named) 오늘그리고미래의전략적자산 데이터. 데이터에서인사이트까지 무엇이? 왜? 그리고? 그렇다면? Insight 데이터의변화 CONNECTED DIGITAL ANALOG 1985 1990 1995 2000 2005 2010 2015 2020 데이터의변화 CONNECTED DIGITAL ANALOG 1985 1990 1995 2000 2005 2010 2015 2020

More information

통신회사에서가장중요한데이터자원이라고하면뭐니뭐니해도고객들의통화기록이라할수있다. 이를 Call Detail Record(CDR) 라고하며, 고객들이유선전화나휴대폰을사용하여통화할때마다통화위치, 통화대상, 통화시간등이로그데이터로기록된다. 매통화마다기록되므로 1일발생량은수억건에

통신회사에서가장중요한데이터자원이라고하면뭐니뭐니해도고객들의통화기록이라할수있다. 이를 Call Detail Record(CDR) 라고하며, 고객들이유선전화나휴대폰을사용하여통화할때마다통화위치, 통화대상, 통화시간등이로그데이터로기록된다. 매통화마다기록되므로 1일발생량은수억건에 White Paper Big Data Case Study 통신회사에서가장중요한데이터자원이라고하면뭐니뭐니해도고객들의통화기록이라할수있다. 이를 Call Detail Record(CDR) 라고하며, 고객들이유선전화나휴대폰을사용하여통화할때마다통화위치, 통화대상, 통화시간등이로그데이터로기록된다. 매통화마다기록되므로 1일발생량은수억건에달하는그야말로대표적인빅데이터라고할수있다.

More information

PowerPoint Presentation

PowerPoint Presentation Hadoop 과 Advanced Analytics 을활용한 Big Data 숨은가치창출 임상배부장 (sangbae.lim@oracle.com) Technology 사업본부, 한국오라클 Safe Harbor The following is intended to outline our general product direction. It is intended for

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 ㆍ Natural Language Understanding 관련기술 ㆍ Semantic Parsing Conversational AI Natural Language Understanding / Machine Learning ㆍEntity Extraction and Resolution - Machine Learning 관련기술연구개발경험보유자ㆍStatistical

More information

Basic Template

Basic Template Hadoop EcoSystem 을홗용한 Hybrid DW 구축사례 2013-05-02 KT cloudware / NexR Project Manager 정구범 klaus.jung@{kt nexr}.com KT의대용량데이터처리이슈 적재 Data의폭발적인증가 LTE 등초고속무선 Data 통싞 : 트래픽이예상보다빨리 / 많이증가 비통싞 ( 컨텐츠 / 플랫폼 /Bio/

More information

PowerPoint Presentation

PowerPoint Presentation 하둡전문가로가는길 심탁길 terryshim@naver.com 목차 1. 하둡과에코시스템개요 2. 홗용사례붂석 3. 하둡젂문가의필요성 4. 무엇을어떻게준비할까? 5. 하둡기반추천시스템데모 하둡개요 구글인프라 배치애플리케이션 온라인서비스 MapReduce Bigtable GFS Client API Chubby Cluster Mgmt 주요소프트웨어스택 Google

More information

consulting

consulting CONSULTING 전략 컨설팅 클라우드 마이그레이션 애플리케이션 마이그레이션 데이터 마이그레이션 HELPING YOU ADOPT CLOUD. 클라우드로 가기로 결정했다면 누구와 함께 갈지를 선택해야 합니다. 처음부터 끝까지 믿을만한 파트너를 찾는다면 베스핀글로벌이 정답입니다. 전략 컨설팅 다양한 클라우드 공급자가 존재하고, 클라우드 공급자마다 다른 장단점을

More information

초보자를 위한 분산 캐시 활용 전략

초보자를 위한 분산 캐시 활용 전략 초보자를위한분산캐시활용전략 강대명 charsyam@naver.com 우리가꿈꾸는서비스 우리가꿈꾸는서비스 우리가꿈꾸는서비스 우리가꿈꾸는서비스 그러나현실은? 서비스에필요한것은? 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 적절한기능 서비스안정성 트위터에매일고래만보이면? 트위터에매일고래만보이면?

More information

Æí¶÷4-¼Ö·ç¼Çc03ÖÁ¾š

Æí¶÷4-¼Ö·ç¼Çc03ÖÁ¾š 솔루션 2006 454 2006 455 2006 456 2006 457 2006 458 2006 459 2006 460 솔루션 2006 462 2006 463 2006 464 2006 465 2006 466 솔루션 2006 468 2006 469 2006 470 2006 471 2006 472 2006 473 2006 474 2006 475 2006 476

More information

Windows 10 General Announcement v1.0-KO

Windows 10 General Announcement v1.0-KO Windows 10 Fuji Xerox 장비와의호환성 v1.0 7 July, 2015 머리말 Microsoft 는 Windows 10 이 Windows 자동업데이트기능을통해예약되어질수있다고 6 월 1 일발표했다. 고객들은 윈도우 10 공지알림을받기 를표시하는새로운아이콘을알아차릴수있습니다. Fuji Xerox 는 Microsoft 에서가장최신운영시스템인 Windows

More information

DBMS & SQL Server Installation Database Laboratory

DBMS & SQL Server Installation Database Laboratory DBMS & 조교 _ 최윤영 } 데이터베이스연구실 (1314 호 ) } 문의사항은 cyy@hallym.ac.kr } 과제제출은 dbcyy1@gmail.com } 수업공지사항및자료는모두홈페이지에서확인 } dblab.hallym.ac.kr } 홈페이지 ID: 학번 } 홈페이지 PW:s123 2 차례 } } 설치전점검사항 } 설치단계별설명 3 Hallym Univ.

More information

Cover Story 04 소셜 네트워크를 통한 모던 HCM의 실현 소셜은 HCM의 새로운 패러다임을 제시한다. 모던 HCM 솔루션이란 HR담당자뿐만 아니라 회사의 모든 직원이 사용하는 시스템을 의미하기에 이를 실현하기 위해 최고인사책임자(CHRO) 및 최고투자책임자

Cover Story 04 소셜 네트워크를 통한 모던 HCM의 실현 소셜은 HCM의 새로운 패러다임을 제시한다. 모던 HCM 솔루션이란 HR담당자뿐만 아니라 회사의 모든 직원이 사용하는 시스템을 의미하기에 이를 실현하기 위해 최고인사책임자(CHRO) 및 최고투자책임자 36 37 Cover Story 04-2 소셜과 빅데이터로 모던 HR을 실현하라 HR부서가 빠르게 변하는 IT환경 속에서 민첩하게 대응해야 기업이 경쟁에서 살아남을 수 있다. 기술이 안 겨다 주는 운영적인 효율성을 넘어서 이를 분석해서 인사이트를 창출해야 한다. 또 직무 경험을 향상하기 위 해서 기술 활용을 통한

More information

Slide 1

Slide 1 빅데이터기술의이해 2016. 8. 23 장형석 충북대비즈니스데이터융합학과교수 chjang1204@nate.com 장형석교수 # 경력 ( 현직 ) - 충북대학교비즈니스데이터융합학과 - 국민대학교빅데이터경영 MBA 과정겸임교수 - 연세대학교데이터사이언스과정외래교수 # 저서및역서 - [ 실전하둡운용가이드 ] 한빛미디어, 2013.07 - [ 빅데이터컴퓨팅기술 ]

More information

Amazon EBS (Elastic Block Storage) Amazon EC2 Local Instance Store (Ephemeral Volumes) Amazon S3 (Simple Storage Service) / Glacier Elastic File Syste (EFS) Storage Gateway AWS Import/Export 1 Instance

More information

Microsoft PowerPoint - 02_Linux_Fedora_Core_8_Vmware_Installation [호환 모드]

Microsoft PowerPoint - 02_Linux_Fedora_Core_8_Vmware_Installation [호환 모드] 리눅스 설치 Vmware를 이용한 Fedora Core 8 설치 소프트웨어실습 1 Contents 가상 머신 실습 환경 구축 Fedora Core 8 설치 가상 머신 가상 머신 가상 머신의 개념 VMware의 설치 VMware : 가상 머신 생성 VMware의 특징 실습 환경 구축 실습 환경 구축 Fedora Core 8 설치 가상 머신의 개념 가상 머신 (Virtual

More information

DW 개요.PDF

DW 개요.PDF Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.

More information

라우터

라우터 네트워크 라우터 네트워크연결 라우터의 포지셔닝 맵 예전에는 소규모 환경에서도 스위치 무선 액세스 포인트 가속 어플라이언스 등 다양한 디바이스를 설치해야만 했습니다 은 이런 여러 디바이스에서 제공되는 네트워크 서비스를 하나의 플랫폼에 통합할 수 있는 슈퍼 라우터 입니다 이런 라우터들은 여러 서비스를 통합할 수 있을 뿐 아니라 라이선스 활성화 및 또는 확장 모듈

More information

I I-1 I-2 I-3 I-4 I-5 I-6 GIS II II-1 II-2 II-3 III III-1 III-2 III-3 III-4 III-5 III-6 IV GIS IV-1 IV-2 (Complement) IV-3 IV-4 V References * 2012.

I I-1 I-2 I-3 I-4 I-5 I-6 GIS II II-1 II-2 II-3 III III-1 III-2 III-3 III-4 III-5 III-6 IV GIS IV-1 IV-2 (Complement) IV-3 IV-4 V References * 2012. : 2013 1 25 Homepage: www.gaia3d.com Contact: info@gaia3d.com I I-1 I-2 I-3 I-4 I-5 I-6 GIS II II-1 II-2 II-3 III III-1 III-2 III-3 III-4 III-5 III-6 IV GIS IV-1 IV-2 (Complement) IV-3 IV-4 V References

More information

슬라이드 1

슬라이드 1 Data Warehouse 통합솔루션 회사연혁 Teradata Corporation (NYSE: TDC) 은 30 년이상업계를선도하며, 전세계적으로 Big Data 및데이터웨어하우스관련 Analytic 솔루션과컨설팅서비스를제공하는최고의기술을보유한 Global 기업 Teradata 본사 한국 Teradata 미국오하이오주 Dayton에세계최초의금전등록기제조사

More information

Business Agility () Dynamic ebusiness, RTE (Real-Time Enterprise) IT Web Services c c WE-SDS (Web Services Enabled SDS) SDS SDS Service-riented Architecture Web Services ( ) ( ) ( ) / c IT / Service- Service-

More information

Windows 8에서 BioStar 1 설치하기

Windows 8에서 BioStar 1 설치하기 / 콘텐츠 테이블... PC에 BioStar 1 설치 방법... Microsoft SQL Server 2012 Express 설치하기... Running SQL 2012 Express Studio... DBSetup.exe 설정하기... BioStar 서버와 클라이언트 시작하기... 1 1 2 2 6 7 1/11 BioStar 1, Windows 8 BioStar

More information

s

s EMC ISILON 및 CLOUDERA ENTERPRISE 를활용한 HADOOP 솔루션 주요특징 EMC Isilon Hadoop이기본적으로지원되는업계최초이자유일한스케일아웃 NAS 솔루션사용 이동없는데이터분석을통해비용절감및신속한결과제공 80% 이상의스토리지활용도및데이터중복제거를통해효율성향상 여러개의 Hadoop 버전및인스턴스를동시에지원 멀티프로토콜지원으로운영유연성향상

More information

PowerPoint Presentation

PowerPoint Presentation 1 2 Enterprise AI 인공지능 (AI) 을업무에도입하는최적의제안 Taewan Kim Solution Engineer Data & Analytics @2045 Imagine the endless possibilities to learn from 2.5 quintillion bytes of data generated every day AI REVOLUTION

More information

Spring Boot/JDBC JdbcTemplate/CRUD 예제

Spring Boot/JDBC JdbcTemplate/CRUD 예제 Spring Boot/JDBC JdbcTemplate/CRUD 예제 오라클자바커뮤니티 (ojc.asia, ojcedu.com) Spring Boot, Gradle 과오픈소스인 MariaDB 를이용해서 EMP 테이블을만들고 JdbcTemplate, SimpleJdbcTemplate 을이용하여 CRUD 기능을구현해보자. 마리아 DB 설치는다음 URL 에서확인하자.

More information

<4D F736F F F696E74202D C61645FB3EDB8AEC7D5BCBA20B9D720C5F8BBE7BFEBB9FD2E BC8A3C8AF20B8F0B5E55D>

<4D F736F F F696E74202D C61645FB3EDB8AEC7D5BCBA20B9D720C5F8BBE7BFEBB9FD2E BC8A3C8AF20B8F0B5E55D> VHDL 프로그래밍 D. 논리합성및 Xilinx ISE 툴사용법 학습목표 Xilinx ISE Tool 을이용하여 Xilinx 사에서지원하는해당 FPGA Board 에맞는논리합성과정을숙지 논리합성이가능한코드와그렇지않은코드를구분 Xilinx Block Memory Generator를이용한 RAM/ ROM 생성하는과정을숙지 2/31 Content Xilinx ISE

More information

sdf

sdf 하둡기반트래픽분석경험으로 보는 IoT 데이터수집및분석방법 2014. 5. 29 이영석 lee@cnu.ac.kr 충남대학교컴퓨터공학과데이터네트워크연구실 (http://networks.cnu.ac.kr ) 1 발표내용 하둡기반인터넷트래픽측정 IoT 데이터수집과분석 결론 2 인터넷트래픽측정분석연구 Challenges Scalability Storage for bulky

More information

슬라이드 1

슬라이드 1 장비지원사례연구 ( 세종대학교인공지능 - 빅데이터연구센터중심으로 ) 신병주 bjshin@sejong.ac.kr 문제 기업의빅데이터인력및시스템투자예산 데이터분석역량및경험부족 19.6% 시스템구축비, 관리비등예산부족 19.4% 정보보호및안정성에대한우려 17.5% 투자대비수익 (ROI) 의불투명성 15.1% 빅데이터에준비되지않은기업문화 15.9% 적합한데이터관리솔루션의부재

More information

Global Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항

Global Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항 Global Bigdata 사용 현황 및 향후 활용 전망 빅데이터 미도입 이유 필요성 못느낌, 분석 가치 판단 불가 향후 투자를 집중할 분야는 보안 모니터링 분야 와 자동화 시스템 분야 빅데이터의 핵심 가치 - 트랜드 예측 과 제품 개선 도움 빅데이터 운영 애로 사항 - 재직자 전문성, 복잡성으로 인해 알고리즘 개발 난항 본 조사 내용은 美 Techpro Research

More information

BMP 파일 처리

BMP 파일 처리 BMP 파일처리 김성영교수 금오공과대학교 컴퓨터공학과 학습내용 영상반전프로그램제작 2 Inverting images out = 255 - in 3 /* 이프로그램은 8bit gray-scale 영상을입력으로사용하여반전한후동일포맷의영상으로저장한다. */ #include #include #define WIDTHBYTES(bytes)

More information

Samsung SDS Enterprise Cloud Networking CDN Load Balancer WAN

Samsung SDS Enterprise Cloud Networking CDN Load Balancer WAN Samsung SDS Enterprise Cloud Networking CDN Load Balancer WAN Enterprise Cloud Networking CDN (Content Delivery Network) 전 세계에 배치된 콘텐츠 서버를 통해 빠른 전송을 지원하는 서비스 전 세계에 전진 배치된 CDN 서버를 통해 사용자가 요청한 콘텐츠를 캐싱하여

More information

경우 1) 80GB( 원본 ) => 2TB( 복사본 ), 원본 80GB 는 MBR 로디스크초기화하고 NTFS 로포맷한경우 복사본 HDD 도 MBR 로디스크초기화되고 80GB 만큼포맷되고나머지영역 (80GB~ 나머지부분 ) 은할당되지않음 으로나온다. A. Window P

경우 1) 80GB( 원본 ) => 2TB( 복사본 ), 원본 80GB 는 MBR 로디스크초기화하고 NTFS 로포맷한경우 복사본 HDD 도 MBR 로디스크초기화되고 80GB 만큼포맷되고나머지영역 (80GB~ 나머지부분 ) 은할당되지않음 으로나온다. A. Window P Duplicator 는기본적으로원본하드디스크를빠르게복사본하드디스크에복사하는기능을하는것입니다.. 복사본 하드디스크가원본하드디스크와똑같게하는것을목적으로하는것이어서저용량에서고용량으로복사시몇 가지문제점이발생할수있습니다. 하드디스크는사용하려면, 디스크초기화를한후에포맷을해야사용가능합니다. Windows PC는 MBR과 GPT 2 개중에 1개로초기화합니다. -Windows

More information

통합관리솔루션(Zabbix) 2.4 소개

통합관리솔루션(Zabbix) 2.4 소개 N-Watch Architecture - 오픈소스 Zabbix 를활용한대용량시스템모니터링솔루션 2015. 7. 10 IT 서비스혁신센터 SW 기술연구소전우성 작성일시 _ 작성부서 _ 작성자명 목차 I. N-Watch 시스템개요 1. N-Watch구성 2. 아키텍처 II. N-Watch 아키텍처설계 1. 요구사항분석 2. 문제해결방안 3. 프록시구성 4. H/A지원

More information

SANsymphony-V

SANsymphony-V 국내대표적인구축사례 (KR) XXXX공사(공공) 2013년 12월 도입 센터 이전에 따른 스토리지가상화 통합 및 이기종통합 이기종 스토리지 (무중단이중하) 무중단 서비스 확보 24시간 운영 체계의 고가용 확보 스토리지 인프라의 유연한 구성 및 통합 환경 구축 업무서버 Unix 20대 업무서버 V 58대 CIe SSD(Fusion IO 3.2TB) ㅇㅇㅇㅇㅇㅇ

More information

vm-웨어-01장

vm-웨어-01장 Chapter 16 21 (Agenda). (Green),., 2010. IT IT. IT 2007 3.1% 2030 11.1%, IT 2007 1.1.% 2030 4.7%, 2020 4 IT. 1 IT, IT. (Virtualization),. 2009 /IT 2010 10 2. 6 2008. 1970 MIT IBM (Mainframe), x86 1. (http

More information

J2EE & Web Services iSeminar

J2EE & Web Services iSeminar 9iAS :, 2002 8 21 OC4J Oracle J2EE (ECperf) JDeveloper : OLTP : Oracle : SMS (Short Message Service) Collaboration Suite Platform Email Developer Suite Portal Java BI XML Forms Reports Collaboration Suite

More information

Integ

Integ HP Integrity HP Chipset Itanium 2(Processor 9100) HP Integrity HP, Itanium. HP Integrity Blade BL860c HP Integrity Blade BL870c HP Integrity rx2660 HP Integrity rx3600 HP Integrity rx6600 2 HP Integrity

More information

Hallym Communication Policy Research Center 15 빅데이터기술은대용량의데이터를다룰때, 여러과정을거치게되는데, 데이터수집및데이터전처리, 저장, 분석, 활용 ( 시각화 ) 까지의과정을 거치게되며각과정별로핵심기술이존재한다. 빅데이터기술은대용

Hallym Communication Policy Research Center 15 빅데이터기술은대용량의데이터를다룰때, 여러과정을거치게되는데, 데이터수집및데이터전처리, 저장, 분석, 활용 ( 시각화 ) 까지의과정을 거치게되며각과정별로핵심기술이존재한다. 빅데이터기술은대용 14 한림 ICT 정책저널 H a l l y m I C T P o l i c y J o u r n a l 빅데이터기술동향 전략적클라우드림 김광호이재준이사교수 빅데이터기술이란? 빅데이터기술은기존의데이터분석기법에비해 100배이상많은데이터를다루는기술이다. 빅데이터기술이다루는데이터의성격은다양하다. 예를들어시스템운영을통해산출되는로그데이터와구매기록데이터등의정형데이터뿐만아니라,

More information

Agenda 오픈소스 트렌드 전망 Red Hat Enterprise Virtualization Red Hat Enterprise Linux OpenStack Platform Open Hybrid Cloud

Agenda 오픈소스 트렌드 전망 Red Hat Enterprise Virtualization Red Hat Enterprise Linux OpenStack Platform Open Hybrid Cloud 오픈소스 기반 레드햇 클라우드 기술 Red Hat, Inc. Senior Solution Architect 최원영 부장 wchoi@redhat.com Agenda 오픈소스 트렌드 전망 Red Hat Enterprise Virtualization Red Hat Enterprise Linux OpenStack Platform Open Hybrid Cloud Red

More information

SAMSUNG SDS Cloud Database EPAS PostgreSQL Microsoft SQL Server MariaDB MySQL ScyllaDB MongoDB

SAMSUNG SDS Cloud Database EPAS PostgreSQL Microsoft SQL Server MariaDB MySQL ScyllaDB MongoDB SAMSUNG SDS Cloud Database EPAS PostgreSQL Microsoft SQL Server MariaDB MySQL ScyllaDB MongoDB Cloud Database EPAS 오픈소스 PostgreSQL 기반엔터프라이즈급관계형데이터베이스 EPAS(EDB Postgres Advanced Server) 는오픈소스인 PostgreSQL

More information

Microsoft PowerPoint - CNVZNGWAIYSE.pptx

Microsoft PowerPoint - CNVZNGWAIYSE.pptx 대용량데이터처리를위한 Sharding 2013.1. 이동현 DBMS 개발랩 /NHN Business Platform SQL 기술전략세미나 2 대용량데이터를위한솔루션은 NoSQL 인가, RDBMS 인가? 모든경우에대해어떤하나의선택을하자는게아닙니다. SQL 기술전략세미나 3 언제, 그리고왜 RDBMS 를선택해야하는가? NoSQL 과다른 RDBMS 만의특징이필요할때

More information

슬라이드 1

슬라이드 1 2015( 제 8 회 ) 한국소프트웨어아키텍트대회 Database In-Memory 2015. 07. 16 한국오라클 김용한 Agenda 1 2 3 4 5 6 In-Memory Computing 개요주요요소기술 In-Memory의오해와실제적용시고려사항 12c In-Memory Option의소개결론 2 1. In-Memory Computing 개요 전통적인데이터처리방식

More information

빅데이터시대 Self-BI 전략 이혁재이사 비아이씨엔에스

빅데이터시대 Self-BI 전략 이혁재이사 비아이씨엔에스 빅데이터시대 Self-BI 전략 이혁재이사 비아이씨엔에스 Agenda 1 Oracle In-Memory 소개 2 BI 시스템구성도 3 BI on In-Memory 테스트 4 In-Memory 활용한 BI 오라클인메모리목표 규모분석에대한속도향상 빠른속도 : 혼합워크로드업무 간편함 : 어플리케이션투명성및쉬운배치 저렴함 : 일부필요데이터만인메모리에존재가능 2 메모리운용방식

More information

ODS-FM1

ODS-FM1 OPTICAL DISC ARCHIVE FILE MANAGER ODS-FM1 INSTALLATION GUIDE [Korean] 1st Edition (Revised 4) 상표 Microsoft, Windows 및 Internet Explorer는 미국 및 / 또는 다른 국가에서 Microsoft Corporation 의 등록 상표입 Intel 및 Intel Core

More information

Network Security - Wired Sniffing 실습 ICNS Lab. Kyung Hee University

Network Security - Wired Sniffing 실습 ICNS Lab. Kyung Hee University Network Security - Wired Sniffing 실습 ICNS Lab. Kyung Hee University Outline Network Network 구조 Source-to-Destination 간 packet 전달과정 Packet Capturing Packet Capture 의원리 Data Link Layer 의동작 Wired LAN Environment

More information

Office 365, FastTrack 4 FastTrack. Tony Striefel FastTrack FastTrack

Office 365, FastTrack 4 FastTrack. Tony Striefel FastTrack FastTrack FastTrack 1 Office 365, FastTrack 4 FastTrack. Tony Striefel FastTrack FastTrack 5 11 2 FASTTRACK 소개 디지털 혁신은 여기서 시작합니다. Microsoft FastTrack은 Microsoft 클라우드를 사용하여 고객이 신속하게 비즈니스 가치를 실현하도록 돕는 고객 성공 서비스입니다.

More information

untitled

untitled 3 IBM WebSphere User Conference ESB (e-mail : ljm@kr.ibm.com) Infrastructure Solution, IGS 2005. 9.13 ESB 를통한어플리케이션통합구축 2 IT 40%. IT,,.,, (Real Time Enterprise), End to End Access Processes bounded by

More information

スライド タイトルなし

スライド タイトルなし 2 3 회사 소개 60%출자 40%출자 주식회사 NTT데이타 아이테크 NTT DATA의 영업협력이나 첨단기술제공, 인재육성등 여러가지 지원을 통해서 SII 그룹을 대상으로 고도의 정보 서비스를 제공 함과 동시에 NTT DATA ITEC 가 보유하고 있는 높은 업무 노하우 와 SCM을 비롯한 ERP분야의 기술력을 살려서 조립가공계 및 제조업 등 새로운 시장에

More information

aws

aws Amazon Web Services AWS MIGRATION MANAGED SERVICE FOR AWS 베스핀글로벌 S AWS OFFERING 베스핀글로벌과 Amazon Web Services (AWS) 가 여러분의 비즈니스에 클라우드 날개를 달아드립니다. AWS에 높은 이해도를 갖춘 베스핀글로벌의 클라우드 전문가가 다양한 산업 영역에서의 구축 경험과 노하우를

More information

U.Tu System Application DW Service AGENDA 1. 개요 4. 솔루션 모음 1.1. 제안의 배경 및 목적 4.1. 고객정의 DW구축에 필요한 메타정보 생성 1.2. 제품 개요 4.2. 사전 변경 관리 1.3. 제품 특장점 4.3. 부품화형

U.Tu System Application DW Service AGENDA 1. 개요 4. 솔루션 모음 1.1. 제안의 배경 및 목적 4.1. 고객정의 DW구축에 필요한 메타정보 생성 1.2. 제품 개요 4.2. 사전 변경 관리 1.3. 제품 특장점 4.3. 부품화형 AGENDA 1. 개요 4. 솔루션 모음 1.1. 제안의 배경 및 목적 4.1. 고객정의 DW구축에 필요한 메타정보 생성 1.2. 제품 개요 4.2. 사전 변경 관리 1.3. 제품 특장점 4.3. 부품화형 언어 변환 1.4. 기대 효과 4.4. 프로그램 Restructuring 4.5. 소스 모듈 관리 2. SeeMAGMA 적용 전략 2.1. SeeMAGMA

More information

금융고객 보안 Selling

금융고객 보안 Selling Big Data Innovation : 효율적인활용전략고찰 장성우상무 Technology Business Unit, Oracle Korea Agenda Big Data 브리핑 Big Data 활용전략 주요질문정리 활용시고려사항 Big Data 아키텍쳐구성방안 Big Data To-Be Architecture 오라클의지원솔루션

More information

PowerPoint Presentation

PowerPoint Presentation Data Protection Rapid Recovery x86 DR Agent based Backup - Physical Machine - Virtual Machine - Cluster Agentless Backup - VMware ESXi Deploy Agents - Windows - AD, ESXi Restore Machine - Live Recovery

More information

이 드리는 혜택 완벽 을 위한 발환경 : Team Foundation Server 200 & CAL 제공 최저의 비용으로 구현을 위해 Visual Studio Team Foundation Server 200 서버 라이센스와 CAL이 에 포함되어 있습니다 을 모든 팀원이

이 드리는 혜택 완벽 을 위한 발환경 : Team Foundation Server 200 & CAL 제공 최저의 비용으로 구현을 위해 Visual Studio Team Foundation Server 200 서버 라이센스와 CAL이 에 포함되어 있습니다 을 모든 팀원이 이 드리는 혜택 완벽 을 위한 발환경 : Team Foundation Server 200 & CAL 제공 최저의 비용으로 구현을 위해 Visual Studio Team Foundation Server 200 서버 라이센스와 CAL이 에 포함되어 있습니다 을 모든 팀원이 보유한 발팀 추가 비용없이 Team Foundation Server를 활용하여 형상관리 소스

More information

Slide 1

Slide 1 레고블럭처럼 쉽게구축하는그래픽가상화인프라 NUTANIX KOREA 이용훈부장 (YHLEE@NUTANIX.COM) WORKSTATION Ethernet Fibre Channel iscsi storage NFS storage Network Fibre Channel storage VIRTUALIZATION hypervisor Ethernet Fibre Channel

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Why Microsoft Data Warehouse & BI? 아젠다 Ⅰ Ⅱ Ⅲ Ⅳ Microsoft Data Warehouse 소개 Microsoft Power BI 소개 Microsoft Data Warehouse & BI 구축사례메이븐클라우드서비스소개 Microsoft Data Warehouse 소개 Microsoft Data Warehouse 소개 Microsoft

More information

PowerPoint Template

PowerPoint Template Market & Issue 분석 Report 2012. 7. 17 [ 빅데이터처리기술현황및전망 ] 차세대방송 모바일미래인터넷융합기술정보보호전파위성방송통신시장방송통신정책 본보고서의내용은집필자개인의견해로서한국방송통신전파진흥원의공식입장과는무관합니다. I. 개요 빅데이터 (Big Data) 는기존데이터베이스관리도구의데이터수집, 관리, 분석역량을넘어서는대량의데이터셋

More information

PowerPoint Presentation

PowerPoint Presentation 오에스아이소프트코리아세미나세미나 2012 Copyright Copyright 2012 OSIsoft, 2012 OSIsoft, LLC. LLC. PI Coresight and Mobility Presented by Daniel Kim REGIONAL 세미나 SEMINAR 세미나 2012 2012 2 Copyright Copyright 2012 OSIsoft,

More information

gcp

gcp Google Cloud Platform GCP MIGRATION MANAGED SERVICE FOR GCP 베스핀글로벌 S GCP OFFERING 베스핀글로벌과 Google Cloud Platform이 여러분의 비즈니스에 클라우드 날개를 달아드립니다. GCP에 전문성을 갖춘 베스핀글로벌의 클라우드 전문가들이 다양한 산업 영역에서의 구축 경험과 노하우를 바탕으로

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 빅데이터플랫폼 Flamingo 를통해알아보는성공적인오픈소스비즈니스비법 빅데이터개발본부 김병곤상무 GPL 라이선스인 Ghostscript 를한컴오피스에내장 GPL 라이선스위반 Ghostscript 개발사인 Artifex 가소송 소송에서패소 ( 협의만남음 ) 여전히한컴은소스코드를 공개하지않음 오픈소스 (open source) 는소프트웨어의제작자의권리를지키면서원시코드를누구나열람할수있도록한소프트웨어혹은오픈소스라이선스에준하는모든통칭을일컫는다.

More information

OZ-LMS TM OZ-LMS 2008 OZ-LMS 2006 OZ-LMS Lite Best IT Serviece Provider OZNET KOREA Management Philosophy & Vision Introduction OZNETKOREA IT Mission Core Values KH IT ERP Web Solution IT SW 2000 4 3 508-2

More information

TTA Journal No.157_서체변경.indd

TTA Journal No.157_서체변경.indd 표준 시험인증 기술 동향 FIDO(Fast IDentity Online) 생체 인증 기술 표준화 동향 이동기 TTA 모바일응용서비스 프로젝트그룹(PG910) 의장 SK텔레콤 NIC 담당 매니저 76 l 2015 01/02 PASSWORDLESS EXPERIENCE (UAF standards) ONLINE AUTH REQUEST LOCAL DEVICE AUTH

More information

쉽게 풀어쓴 C 프로그래밊

쉽게 풀어쓴 C 프로그래밊 Power Java 제 27 장데이터베이스 프로그래밍 이번장에서학습할내용 자바와데이터베이스 데이터베이스의기초 SQL JDBC 를이용한프로그래밍 변경가능한결과집합 자바를통하여데이터베이스를사용하는방법을학습합니다. 자바와데이터베이스 JDBC(Java Database Connectivity) 는자바 API 의하나로서데이터베이스에연결하여서데이터베이스안의데이터에대하여검색하고데이터를변경할수있게한다.

More information

ORACLE KOREA MAGAZINE SPRING Oracle Cloud Machine은기업의데이터센터내부에서 Oracle Cloud를제공함으로써 Oracle Cloud Platform 에대한새로운선택권을제공하는클라우드오퍼링이다. 오라클퍼블릭클라우드의

ORACLE KOREA MAGAZINE SPRING Oracle Cloud Machine은기업의데이터센터내부에서 Oracle Cloud를제공함으로써 Oracle Cloud Platform 에대한새로운선택권을제공하는클라우드오퍼링이다. 오라클퍼블릭클라우드의 ORACLE NEW TECHNOLOGY 02 _ Oracle Public Cloud Machine 80 Oracle Public Cloud Machine 오라클클라우드의한조각을떼어고객의데이터센터내부로옮긴다 LARRY ELLISON( 오라클회장및 CTO) ORACLE KOREA MAGAZINE SPRING 2017 81 Oracle Cloud Machine은기업의데이터센터내부에서

More information

Microsoft Word - s.doc

Microsoft Word - s.doc 오라클 백서 2010년 9월 WebLogic Suite를 위해 최적화된 오라클 솔루션 비즈니스 백서 개요...1 들어가는 글...2 통합 웹 서비스 솔루션을 통해 비즈니스 혁신 추구...3 단순화...4 기민한 환경 구축...5 탁월한 성능 경험...6 판도를 바꾸고 있는 플래시 기술...6 오라클 시스템은 세계 최고의 성능 제공...6 절감 효과 극대화...8

More information

Cisco FirePOWER 호환성 가이드

Cisco FirePOWER 호환성 가이드 Cisco 호환성가이드 Cisco 호환성 이문서에서는 Cisco 소프트웨어와하드웨어의호환성및요건을다룹니다. 추가 릴리스또는제품정보는다음을참조하십시오. 설명서로드맵 : http://www.cisco.com/c/en/us/td/docs/security/firesight/ roadmap/firesight-roadmap.html Cisco ASA 호환성가이드 : http://www.cisco.com/c/en/us/td/docs/security/asa/compatibility/

More information

소프트웨어 정의 스토리지

소프트웨어 정의 스토리지 Anything as a Service 를위한소프트웨어정의스토리지 이상우한국이엠씨컴퓨터시스템즈 1 목차 3 rd 플랫폼시대로의전환 소프트웨어정의스토리지 EMC ViPR Overview EMC ViPR Controller / Data Services New Elastic Cloud Storage Appliance 2 3 rd 플랫폼시대로의전환 3 소프트웨어에의해재정의되고있는기업환경

More information

Analyst Briefing

Analyst Briefing . Improve your Outlook on Email and File Management iseminar.. 1544(or 6677)-3355 800x600. iseminar Chat... Improve your Outlook on Email and File Management :, 2003 1 29.. Collaboration Suite - Key Messages

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Spider For MySQL 실전사용기 피망플러스유닛최윤묵 Spider For MySQL Data Sharding By Spider Storage Engine http://spiderformysql.com/ 성능 8 만 / 분 X 4 대 32 만 / 분 많은 DB 중에왜 spider 를? Source: 클라우드컴퓨팅구 선택의기로 Consistency RDBMS

More information

Microsoft PowerPoint - 6.pptx

Microsoft PowerPoint - 6.pptx DB 암호화업데이트 2011. 3. 15 KIM SUNGJIN ( 주 ) 비에이솔루션즈 1 IBM iseries 암호화구현방안 목차 목 차 정부시책및방향 제정안특이사항 기술적보호조치기준고시 암호화구현방안 암호화적용구조 DB 암호화 Performance Test 결과 암호화적용구조제안 [ 하이브리드방식 ] 2 IBM iseries 암호화구현방안 정부시책및방향

More information

JDBC 소개및설치 Database Laboratory

JDBC 소개및설치 Database Laboratory JDBC 소개및설치 JDBC } What is the JDBC? } JAVA Database Connectivity 의약어 } 자바프로그램안에서 SQL 을실행하기위해데이터베이스를연결해주는응용프로그램인터페이스 } 연결된데이터베이스의종류와상관없이동일한방법으로자바가데이터베이스내에서발생하는트랜잭션을제어할수있도록하는환경을제공 2 JDBC Driver Manager }

More information

Cover Story 2009 01 vol.536 Cover Story 2009 01 vol.536 253,000 Sales 18,000 EBIT DOOSAN vol. 536 04 05 DOOSAN vol. 536 06 07 DOOSAN vol. 536 08 09 DOOSAN vol. 536 10 11 DOOSAN vol. 536 12 13 DOOSAN

More information

서현수

서현수 Introduction to TIZEN SDK UI Builder S-Core 서현수 2015.10.28 CONTENTS TIZEN APP 이란? TIZEN SDK UI Builder 소개 TIZEN APP 개발방법 UI Builder 기능 UI Builder 사용방법 실전, TIZEN APP 개발시작하기 마침 TIZEN APP? TIZEN APP 이란? Mobile,

More information

810 & 820 810 는 소기업 및 지사 애 플리케이션용으로 설계되었으며, 독립 실행형 장치로 구성하거 나 HA(고가용성)로 구성할 수 있습니다. 810은 표준 운영 체제를 실행하는 범용 서버에 비해 가격 프리미엄이 거의 또는 전혀 없기 때문에 화이트박스 장벽 을

810 & 820 810 는 소기업 및 지사 애 플리케이션용으로 설계되었으며, 독립 실행형 장치로 구성하거 나 HA(고가용성)로 구성할 수 있습니다. 810은 표준 운영 체제를 실행하는 범용 서버에 비해 가격 프리미엄이 거의 또는 전혀 없기 때문에 화이트박스 장벽 을 목적에 맞게 설계된 어플라 이언스 원격 용도로 최적화된 어플라이언스 관리 및 에너지 효율성 향상 원격 관리 LOM(Lights Out Management), IPMI 2.0 장치 식별 버튼/LED 실시간 시스템 환경 및 오류 모 니터링 Infoblox MIBS를 통한 SNMP 모니터링 고가용성 공급 장치 예비 디스크 예비 냉각 팬 전원 공급 장치 현장 교체

More information

Visual Studio online Limited preview 간략하게살펴보기

Visual Studio online Limited preview 간략하게살펴보기 11월의주제 Visual Studio 2013 제대로파헤쳐보기! Visual Studio online Limited preview 간략하게살펴보기 ALM, 언제어디서나 연결된 IDE Theme와 Visual Design 편집기의강화된생산성기능들성능최적화및디버깅개선 Microsoft 계정으로 IDE에서로그인가능다양한머신사이에서개발환경유지다양한디바이스에걸쳐설정을동기화개선된

More information

1,000 AP 20,000 ZoneDirector IT 5, WLAN. ZoneFlex AP ZoneDirector. WLAN. WLAN AP,,,,,,., Wi-Fi. AP. PSK PC. VLAN WLAN.. ZoneDirector 5000 WLAN L

1,000 AP 20,000 ZoneDirector IT 5, WLAN. ZoneFlex AP ZoneDirector. WLAN. WLAN AP,,,,,,., Wi-Fi. AP. PSK PC. VLAN WLAN.. ZoneDirector 5000 WLAN L 1,000 AP 20,000 ZoneDirector 5000. IT 5, WLAN. ZoneFlex AP ZoneDirector. WLAN. WLAN AP,,,,,,., Wi-Fi. AP. PSK PC. VLAN WLAN.. WLAN LAN Ruckus Wireless (ZD5000),, WLAN. 20,000 2,048 WLAN ZD5000 1,000 ZoneFlex

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 System Software Experiment 1 Lecture 5 - Array Spring 2019 Hwansoo Han (hhan@skku.edu) Advanced Research on Compilers and Systems, ARCS LAB Sungkyunkwan University http://arcs.skku.edu/ 1 배열 (Array) 동일한타입의데이터가여러개저장되어있는저장장소

More information

슬라이드 1

슬라이드 1 Hadoop 기반 규모확장성있는패킷분석도구 충남대학교데이터네트워크연구실이연희 yhlee06@cnu.ac.kr Intro 목차 인터넷트래픽측정 Apache Hadoop Hadoop 기반트래픽분석시스템 Hadoop을이용한트래픽분석예제 - 2- Intro 트래픽이란 - 3- Intro Data Explosion - 4- Global Trend: Data Explosion

More information